Search results for: business intelligence for higher learning
7613 An Informetrics Analysis of Research on Phishing in Scopus and Web of Science Databases from 2012 to 2021
Authors: Nkosingiphile Mbusozayo Zungu
Abstract:
The purpose of the current study is to adopt informetrics methods to analyse the research on phishing from 2012 to 2021 in three selected databases in order to contribute to global cybersecurity through impactful research. The study follows a quantitative research methodology. We opted for the positivist epistemology and objectivist ontology. The analysis focuses on: (i) the productivity of individual authors, institutions, and countries; (ii) the research contributions, using co-authorship as a measure of collaboration; (iii) the altmetrics of selected research contributions; (iv) the citation patterns and research impact of research on phishing; and (v) research contributions by keywords, to discover the concepts that are related to phishing. The preliminary findings favour developed countries in terms of quantity and quality of research in the domain. There are unique research trends and patterns in the developing countries, including those in Africa, that provide opportunities for research development in the domain in the region. This study explores an important research domain by using unexplored method in the region. The study supports the SDG Agenda 2030, such as ending abuse, exploitation, trafficking, and all other forms of violence and torture of children through the use of cyberspace (SDG 16). Further, the results from this study can inform research, teaching, and learning largely in Africa. Invariably, the study contributes to cybersecurity awareness that will mitigate cybersecurity threats against vulnerable communities.Keywords: phishing, cybersecurity, informetrics, information security
Procedia PDF Downloads 1137612 The Effect of Phase Development on Micro-Climate Change of Urban Area
Authors: Tommy Lo
Abstract:
This paper presented the changes in temperature and air ventilation of an inner urban area at different development stages during 2002 to 2012 and the high-rise buildings to be built in 2018. 3D simulation models ENVI-met and Autodesk Falcon were used. The results indicated that replacement of old residence buildings or open space with high-rise buildings will increase the air temperature of inner urban area; the air temperature at the pedestrian level will increase more than that at the upper levels. The temperature of the inner street in future will get higher than that in 2002, 2008 and 2012. It is attributed that heat is trapped in the street canyons as the air permeability at the pedestrian levels is lower. High-rise buildings with massive podium will further reduce the air ventilation in that area. In addition, sufficient separations among buildings is essential in design. High-rise buildings aligned along the waterfront will obstruct the wind flowing into the inner urban area and accelerate the temperature increase both in daytime and night time.Keywords: micro-climate change, urban design, ENVI-met, construction engineering
Procedia PDF Downloads 2827611 Quantitative, Preservative Methodology for Review of Interview Transcripts Using Natural Language Processing
Authors: Rowan P. Martnishn
Abstract:
During the execution of a National Endowment of the Arts grant, approximately 55 interviews were collected from professionals across various fields. These interviews were used to create deliverables – historical connections for creations that began as art and evolved entirely into computing technology. With dozens of hours’ worth of transcripts to be analyzed by qualitative coders, a quantitative methodology was created to sift through the documents. The initial step was to both clean and format all the data. First, a basic spelling and grammar check was applied, as well as a Python script for normalized formatting which used an open-source grammatical formatter to make the data as coherent as possible. 10 documents were randomly selected to manually review, where words often incorrectly translated during the transcription were recorded and replaced throughout all other documents. Then, to remove all banter and side comments, the transcripts were spliced into paragraphs (separated by change in speaker) and all paragraphs with less than 300 characters were removed. Secondly, a keyword extractor, a form of natural language processing where significant words in a document are selected, was run on each paragraph for all interviews. Every proper noun was put into a data structure corresponding to that respective interview. From there, a Bidirectional and Auto-Regressive Transformer (B.A.R.T.) summary model was then applied to each paragraph that included any of the proper nouns selected from the interview. At this stage the information to review had been sent from about 60 hours’ worth of data to 20. The data was further processed through light, manual observation – any summaries which proved to fit the criteria of the proposed deliverable were selected, as well their locations within the document. This narrowed that data down to about 5 hours’ worth of processing. The qualitative researchers were then able to find 8 more connections in addition to our previous 4, exceeding our minimum quota of 3 to satisfy the grant. Major findings of the study and subsequent curation of this methodology raised a conceptual finding crucial to working with qualitative data of this magnitude. In the use of artificial intelligence there is a general trade off in a model between breadth of knowledge and specificity. If the model has too much knowledge, the user risks leaving out important data (too general). If the tool is too specific, it has not seen enough data to be useful. Thus, this methodology proposes a solution to this tradeoff. The data is never altered outside of grammatical and spelling checks. Instead, the important information is marked, creating an indicator of where the significant data is without compromising the purity of it. Secondly, the data is chunked into smaller paragraphs, giving specificity, and then cross-referenced with the keywords (allowing generalization over the whole document). This way, no data is harmed, and qualitative experts can go over the raw data instead of using highly manipulated results. Given the success in deliverable creation as well as the circumvention of this tradeoff, this methodology should stand as a model for synthesizing qualitative data while maintaining its original form.Keywords: B.A.R.T.model, keyword extractor, natural language processing, qualitative coding
Procedia PDF Downloads 297610 Human Resource Information System: Role in HRM Practices and Organizational Performance
Authors: Ejaz Ali M. Phil
Abstract:
Enterprise Resource Planning (ERP) systems are playing a vital role in effective management of business functions in large and complex organizations. Human Resource Information System (HRIS) is a core module of ERP, providing concrete solutions to implement Human Resource Management (HRM) Practices in an innovative and efficient manner. Over the last decade, there has been considerable increase in the studies on HRIS. Nevertheless, previous studies relatively lacked to examine the moderating role of HRIS in performing HRM practices that may affect the firms’ performance. The current study was carried out to examine the impact of HRM practices (training, performance appraisal) on perceived organizational performance, with moderating role of HRIS, where the system is in place. The study based on Resource Based View (RBV) and Ability Motivation Opportunity (AMO) Theories, advocating that strengthening of human capital enables an organization to achieve and sustain competitive advantage which leads to improved organizational performance. Data were collected through structured questionnaire based upon adopted instruments after establishing reliability and validity. The structural equation modeling (SEM) were used to assess the model fitness, hypotheses testing and to establish validity of the instruments through Confirmatory Factor Analysis (CFA). A total 220 employees of 25 firms in corporate sector were sampled through non-probability sampling technique. Path analysis revealing that HRM practices and HRIS have significant positive impact on organizational performance. The results further showed that the HRIS moderated the relationships between training, performance appraisal and organizational performance. The interpretation of the findings and limitations, theoretical and managerial implications are discussed.Keywords: enterprise resource planning, human resource, information system, human capital
Procedia PDF Downloads 3967609 Surface Modification of Polyethylene Terephthalate Substrates via Direct Fluorination to Promote the Ag+ Ions Adsorption
Authors: Kohei Yamamoto, Jae-Ho Kim, Susumu Yonezawa
Abstract:
The surface of polyethylene terephthalate (PET) was modified with fluorine gas at 25 ℃ and 100 Torr for one h. Moreover, the effect of ethanol washing on surface modification was investigated in this study. The surface roughness of the fluorinated and washed PET samples was approximately six times larger than that (0.6 nm) of the untreated thing. The results of Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy showed that the bonds such as -C=O and -C-Hx derived from raw PET decreased and were converted into fluorinated bonds such as -CFx after surface fluorination. Even after washing with ethanol, the fluorinated bonds stably existed on the surface. These fluorinated bonds showed higher electronegativity according to the zeta potential results. The negative surface charges were increased by washing the ethanol, and it caused to increase in the number of polar groups such as -CHF- and -C-Fx. The fluorinated and washed surface of PET could promote the adsorption of Ag+ ions in AgNO₃ solution because of the increased surface roughness and the negatively charged surface.Keywords: Ag+ ions adsorption, polyethylene terephthalate, surface fluorination, zeta potential
Procedia PDF Downloads 1217608 Pt Decorated Functionalized Acetylene Black as Efficient Cathode Material for Li Air Battery and Fuel Cell Applications
Authors: Rajashekar Badam, Vedarajan Raman, Noriyoshi Matsumi
Abstract:
Efficiency of energy converting and storage systems like fuel cells and Li-Air battery principally depended on oxygen reduction reaction (ORR) which occurs at cathode. As the kinetics of the ORR is very slow, it becomes the rate determining step. Exploring carbon substrates for enhancing the dispersion and activity of the metal catalyst and commercially viable simple preparation method is a very crucial area of research in the field of energy materials. Hence, many researchers made large number of carbon-based ORR materials today. But, there are hardly few studies on the effect of interaction between Pt-carbon and carbon-electrolyte on activity. In this work, we have prepared functionalized carbon-based Pt catalyst (Pt-FAB) with enhanced interfacial properties that lead to efficient ORR catalysis. The present work deals with a single-pot method to exfoliate and functionalized acetylene black with enhanced interaction with Pt as well as electrolyte. Acetylene black was functionalized and exfoliated using a facile single pot acid treatment method. The resulted FAB was further decorated with Pt-nano particles (Pt-np). The TEM images of Pt-FAB with uniformly decorated Pt-np of ~3 nm. Further, XPS studies of Pt 4f peak revealed that Pt0 peak was shifted by 0.4 eV in Pt-FAB compared to binding energy of typical Pt⁰ found in Pt/C. The shift can be ascribed to the modulation of electronic state and strong electronic interaction of Pt with carbon. Modulated electronic structure of Pt and strong electronic interaction of Pt with FAB enhances the catalytic activity and durability respectively. To understand the electrode electrolyte interface, electrochemical impedance spectroscopy was carried out. These measurements revealed that the charge transfer resistance of electrode to electrolyte for Pt-FAB is 10 times smaller than that of conventional Pt/C. The interaction with electrolyte helps reduce the interface boundaries, which in turn affects the overall catalytic performance of the electrode. Cyclic voltammetric measurements in 0.1M HClO₄ aq. at a potential scan rate of 50 mVs-1 was employed to evaluate electrochemical surface area (ECSA) of Pt. ECSA of Pt-FAB was found to be as high as 67.2 m²g⁻¹. The three-electrode system showed very high ORR catalytic activity. Mass activity at 0.9 V vs. RHE showed 460 A/g which is much higher than the DOE target values for the year 2020. Further, it showed enhanced performance by showing 723 mW/cm² of highest power density and 1006 mA/cm² of current density at 0.6 V in fuel cell single cell type configuration and 1030 mAhg⁻¹ of rechargeable capacity in Li air battery application. The higher catalytic activity can be ascribed to the improved interaction of FAB with Pt and electrolyte. The aforementioned results evince that Pt-FAB will be a promising cathode material for efficient ORR with significant cyclability for its application in fuel cells and Li-Air batteries. In conclusion, a disordered material was prepared from AB and was systematically characterized. The extremely high ORR activity and ease of preparation make it competent for replacing commercially available ORR materials.Keywords: functionalized acetylene black, oxygen reduction reaction, fuel cells, Functionalized battery
Procedia PDF Downloads 1087607 Study the Action of Malathion Induced Enzymatic Changes in the Target Organ of Fish Labeo Rohita
Authors: Sudha Summarwar, Jyotsana Pandey, Deepali Lall
Abstract:
The Malathion compound has the great tendency to be accumulated in the organs of the fishes both if it is present in traces or in higher amount in the aquatic environment. It has the tendency to be accumulated more in quantity in the organs directly exposed to it. The accumulation was found to be time and concentration dependent. The accumulation of malathion was maximum in gills and is the minimum in the brain. Effect of different sub-lethal concentrations (l/5th, l/l0th, l/15th, l/20th, and 1/25th fractions of 96 hr. LC50) of malathion compound on acid phosphatase (AcPase), alkaline phosphatase (AlPase), serum glutamic oxalacetic transaminase (SGOT) and Serum Glucose-6-Phosphatase (S-G-6-Pase), serum glutamic pyruvic transaminase (SGPT) in blood of Labeo rohita exposed for the period of 15. 30, 45, and 60 days, have been studied in present investigations. In general the alterations were concentrations and duration dependent.Keywords: AcPase, AlPase, Labeo rohita, malathion, S-G-6-Pase, SGOT, SGPT
Procedia PDF Downloads 3277606 Optimizing Electric Vehicle Charging with Charging Data Analytics
Authors: Tayyibah Khanam, Mohammad Saad Alam, Sanchari Deb, Yasser Rafat
Abstract:
Electric vehicles are considered as viable replacements to gasoline cars since they help in reducing harmful emissions and stimulate power generation through renewable energy sources, hence contributing to sustainability. However, one of the significant obstacles in the mass deployment of electric vehicles is the charging time anxiety among users and, thus, the subsequent large waiting times for available chargers at charging stations. Data analytics, on the other hand, has revolutionized the decision-making tasks of management and operating systems since its arrival. In this paper, we attempt to optimize the choice of EV charging stations for users in their vicinity by minimizing the time taken to reach the charging stations and the waiting times for available chargers. Time taken to travel to the charging station is calculated by the Google Maps API and the waiting times are predicted by polynomial regression of the historical data stored. The proposed framework utilizes real-time data and historical data from all operating charging stations in the city and assists the user in finding the best suitable charging station for their current situation and can be implemented in a mobile phone application. The algorithm successfully predicts the most optimal choice of a charging station and the minimum required time for various sample data sets.Keywords: charging data, electric vehicles, machine learning, waiting times
Procedia PDF Downloads 1957605 Daily Stand-up Meetings - Relationships with Psychological Safety and Well-being in Teams
Authors: Sarah Rietze, Hannes Zacher
Abstract:
Daily stand-up meetings are the most commonly used method in agile teams. In daily stand-ups, team members gather to coordinate and align their efforts, typically for a predefined period of no more than 15 minutes. The primary purpose is to ask and answer the following three questions: What was accomplished yesterday? What will be done today? What obstacles are impeding my progress? Daily stand-ups aim to enhance communication, mutual understanding, and support within the team, as well as promote collective learning from mistakes through daily synchronization and transparency. The use of daily stand-ups is intended to positively influence psychological safety within teams, which is the belief that it is safe to show oneself and take personal risks. Two studies will be presented, which explore the relationships between daily stand-ups, psychological safety, and psychological well-being. In a first study, based on survey results (n = 318), we demonstrated that daily stand-ups have a positive indirect effect on job satisfaction and a negative indirect effect on turnover intention through their impact on psychological safety. In a second study, we investigate, using an experimental design, how the use of daily stand-ups in teams enhances psychological safety and well-being compared to a control group that does not use daily stand-ups. Psychological safety is considered one of the most crucial cultural factors for a sustainable, agile organization. Agile approaches, such as daily stand-ups, are a critical part of the evolving work environment and offer a proactive means to shape and foster psychological safety within teams.Keywords: occupational wellbeing, agile work practices, psychological safety, daily stand-ups
Procedia PDF Downloads 667604 Antimicrobial Efficacy of 0.75% Metronidazole and 2% Chlorhexidine Gel Applied in Implant Screw Hole: A Clinical Trial
Authors: Mostafa Solati
Abstract:
Objectives: Considering the gap of information regarding the optimal antimicrobial efficacy of metronidazole for application in the implant screw hole, this study aimed to compare the antimicrobial efficacy of 0.75% metronidazole and 2% chlorhexidine (CHX) gel applied in the implant screw hole. Materials and Methods: This randomized controlled clinical trial evaluated 60 implants (20 patients, each requiring three implants) in three groups (n=20). In group 1, 0.75% metronidazole gel was applied to the implant screw hole. In group 2, 2% CHX gel was applied, and in group 3, no material was used. Microbial samples were collected from the screw holes after three months, and the microbial colonies were counted. Data were analyzed using ANOVA. Results: The number of bacteria in the control group was significantly higher than that in 0.75% metronidazole gel and 2% CHX groups (P<0.05). The CHX group caused the maximum reduction in colony count with no significant difference from the metronidazole group (P>0.05). Conclusion: The application of 0.75% metronidazole gel and 2% CHX can effectively decrease the colony count in the implant screw hole and can probably play a role in the preservation of peri-implant tissue health.Keywords: dental implant, metronidazole, CHX, screw hole
Procedia PDF Downloads 707603 Application of Generalized Autoregressive Score Model to Stock Returns
Authors: Katleho Daniel Makatjane, Diteboho Lawrence Xaba, Ntebogang Dinah Moroke
Abstract:
The current study investigates the behaviour of time-varying parameters that are based on the score function of the predictive model density at time t. The mechanism to update the parameters over time is the scaled score of the likelihood function. The results revealed that there is high persistence of time-varying, as the location parameter is higher and the skewness parameter implied the departure of scale parameter from the normality with the unconditional parameter as 1.5. The results also revealed that there is a perseverance of the leptokurtic behaviour in stock returns which implies the returns are heavily tailed. Prior to model estimation, the White Neural Network test exposed that the stock price can be modelled by a GAS model. Finally, we proposed further researches specifically to model the existence of time-varying parameters with a more detailed model that encounters the heavy tail distribution of the series and computes the risk measure associated with the returns.Keywords: generalized autoregressive score model, South Africa, stock returns, time-varying
Procedia PDF Downloads 5017602 A Hybrid Expert System for Generating Stock Trading Signals
Authors: Hosein Hamisheh Bahar, Mohammad Hossein Fazel Zarandi, Akbar Esfahanipour
Abstract:
In this paper, a hybrid expert system is developed by using fuzzy genetic network programming with reinforcement learning (GNP-RL). In this system, the frame-based structure of the system uses the trading rules extracted by GNP. These rules are extracted by using technical indices of the stock prices in the training time period. For developing this system, we applied fuzzy node transition and decision making in both processing and judgment nodes of GNP-RL. Consequently, using these method not only did increase the accuracy of node transition and decision making in GNP's nodes, but also extended the GNP's binary signals to ternary trading signals. In the other words, in our proposed Fuzzy GNP-RL model, a No Trade signal is added to conventional Buy or Sell signals. Finally, the obtained rules are used in a frame-based system implemented in Kappa-PC software. This developed trading system has been used to generate trading signals for ten companies listed in Tehran Stock Exchange (TSE). The simulation results in the testing time period shows that the developed system has more favorable performance in comparison with the Buy and Hold strategy.Keywords: fuzzy genetic network programming, hybrid expert system, technical trading signal, Tehran stock exchange
Procedia PDF Downloads 3327601 Linguistic Features for Sentence Difficulty Prediction in Aspect-Based Sentiment Analysis
Authors: Adrian-Gabriel Chifu, Sebastien Fournier
Abstract:
One of the challenges of natural language understanding is to deal with the subjectivity of sentences, which may express opinions and emotions that add layers of complexity and nuance. Sentiment analysis is a field that aims to extract and analyze these subjective elements from text, and it can be applied at different levels of granularity, such as document, paragraph, sentence, or aspect. Aspect-based sentiment analysis is a well-studied topic with many available data sets and models. However, there is no clear definition of what makes a sentence difficult for aspect-based sentiment analysis. In this paper, we explore this question by conducting an experiment with three data sets: ”Laptops”, ”Restaurants”, and ”MTSC” (Multi-Target-dependent Sentiment Classification), and a merged version of these three datasets. We study the impact of domain diversity and syntactic diversity on difficulty. We use a combination of classifiers to identify the most difficult sentences and analyze their characteristics. We employ two ways of defining sentence difficulty. The first one is binary and labels a sentence as difficult if the classifiers fail to correctly predict the sentiment polarity. The second one is a six-level scale based on how many of the top five best-performing classifiers can correctly predict the sentiment polarity. We also define 9 linguistic features that, combined, aim at estimating the difficulty at sentence level.Keywords: sentiment analysis, difficulty, classification, machine learning
Procedia PDF Downloads 897600 Continuous Dyeing of Graphene and Polyaniline on Textiles for Electromagnetic Interference Shielding: An Application of Intelligent Fabrics
Authors: Mourad Makhlouf, Meriem Boutamine, Hachemi Hichem, Zoubir Benmaamar, Didier Villemin
Abstract:
This study explores the use of intelligent textiles for electromagnetic shielding through the continuous dyeing of graphene and polyaniline onto cotton fabric. Graphene was obtained by recycling graphite from spent batteries, and polyaniline was obtained in situ using H2O2. Graphene and polyaniline were bottom-modified on the fiber surface to improve adhesion and achieve a uniform distribution. This study evaluated the effect of the specific gravity percentage on sheet performance and active shielding against electromagnetic interference (EMI). Results showed that the dyed fabrics of graphene, polyaniline, and graphene/polyaniline demonstrated higher conductivity and EMI SE values of 9 to 16 dB in the 8 to 9 GHz range of the X-band, with potential applications in electromagnetic shielding. The use of intelligent textiles offers a sustainable and effective approach to achieving EMI shielding, with the added benefits of recycling waste materials and improving the properties of cotton fabrics.Keywords: 'ntelligent textiles, graphene, polyaniline, electromagnetic shielding, conductivity, recycling.
Procedia PDF Downloads 417599 Theoretical and Experimental Investigation of Structural, Electrical and Photocatalytic Properties of K₀.₅Na₀.₅NbO₃ Lead- Free Ceramics Prepared via Different Synthesis Routes
Authors: Manish Saha, Manish Kumar Niranjan, Saket Asthana
Abstract:
The K₀.₅Na₀.₅NbO₃ (KNN) system has emerged as one of the most promising lead-free piezoelectric over the years. In this work, we perform a comprehensive investigation of electronic structure, lattice dynamics and dielectric/ferroelectric properties of the room temperature phase of KNN by combining ab-initio DFT-based theoretical analysis and experimental characterization. We assign the symmetry labels to KNN vibrational modes and obtain ab-initio polarized Raman spectra, Infrared (IR) reflectivity, Born-effective charge tensors, oscillator strengths etc. The computed Raman spectrum is found to agree well with the experimental spectrum. In particular, the results suggest that the mode in the range ~840-870 cm-¹ reported in the experimental studies is longitudinal optical (LO) with A_1 symmetry. The Raman mode intensities are calculated for different light polarization set-ups, which suggests the observation of different symmetry modes in different polarization set-ups. The electronic structure of KNN is investigated, and an optical absorption spectrum is obtained. Further, the performances of DFT semi-local, metal-GGA and hybrid exchange-correlations (XC) functionals, in the estimation of KNN band gaps are investigated. The KNN bandgap computed using GGA-1/2 and HSE06 hybrid functional schemes are found to be in excellant agreement with the experimental value. The COHP, electron localization function and Bader charge analysis is also performed to deduce the nature of chemical bonding in the KNN. The solid-state reaction and hydrothermal methods are used to prepare the KNN ceramics, and the effects of grain size on the physical characteristics these ceramics are examined. A comprehensive study on the impact of different synthesis techniques on the structural, electrical, and photocatalytic properties of ferroelectric ceramics KNN. The KNN-S prepared by solid-state method have significantly larger grain size as compared to that for KNN-H prepared by hydrothermal method. Furthermore, the KNN-S is found to exhibit higher dielectric, piezoelectric and ferroelectric properties as compared to KNN-H. On the other hand, the increased photocatalytic activity is observed in KNN-H as compared to KNN-S. As compared to the hydrothermal synthesis, the solid-state synthesis causes an increase in the relative dielectric permittivity (ε^') from 2394 to 3286, remnant polarization (P_r) from 15.38 to 20.41 μC/cm^², planer electromechanical coupling factor (k_p) from 0.19 to 0.28 and piezoelectric coefficient (d_33) from 88 to 125 pC/N. The KNN-S ceramics are also found to have a lower leakage current density, and higher grain resistance than KNN-H ceramic. The enhanced photocatalytic activity of KNN-H is attributed to relatively smaller particle sizes. The KNN-S and KNN-H samples are found to have degradation efficiencies of RhB solution of 20% and 65%, respectively. The experimental study highlights the importance of synthesis methods and how these can be exploited to tailor the dielectric, piezoelectric and photocatalytic properties of KNN. Overall, our study provides several bench-mark important results on KNN that have not been reported so far.Keywords: lead-free piezoelectric, Raman intensity spectrum, electronic structure, first-principles calculations, solid state synthesis, photocatalysis, hydrothermal synthesis
Procedia PDF Downloads 497598 Self-Attention Mechanism for Target Hiding Based on Satellite Images
Authors: Hao Yuan, Yongjian Shen, Xiangjun He, Yuheng Li, Zhouzhou Zhang, Pengyu Zhang, Minkang Cai
Abstract:
Remote sensing data can provide support for decision-making in disaster assessment or disaster relief. The traditional processing methods of sensitive targets in remote sensing mapping are mainly based on manual retrieval and image editing tools, which are inefficient. Methods based on deep learning for sensitive target hiding are faster and more flexible. But these methods have disadvantages in training time and cost of calculation. This paper proposed a target hiding model Self Attention (SA) Deepfill, which used self-attention modules to replace part of gated convolution layers in image inpainting. By this operation, the calculation amount of the model becomes smaller, and the performance is improved. And this paper adds free-form masks to the model’s training to enhance the model’s universal. The experiment on an open remote sensing dataset proved the efficiency of our method. Moreover, through experimental comparison, the proposed method can train for a longer time without over-fitting. Finally, compared with the existing methods, the proposed model has lower computational weight and better performance.Keywords: remote sensing mapping, image inpainting, self-attention mechanism, target hiding
Procedia PDF Downloads 1367597 The Redistributive Effects of Debtor Protection Laws
Authors: Hamid Boustanifar, Geraldo Cerqueiro, María Fabiana Penas
Abstract:
We exploit state-level changes in the amount of personal wealth individuals can protect under Chapter 7 to analyze the causal effect of debtor protection on income inequality. We find that an increase in state exemptions significantly increases inequality by reducing income for low-income individuals and by increasing income for high-income individuals. The increase in inequality is four times larger among the self-employed than among wage earners, and it is due mainly to a growing income gap between skilled (i.e., individuals with a college degree) and unskilled entrepreneurs. We also find that the employment rate of skilled entrepreneurs significantly increases, while the employment rate of unskilled wage earners falls. Our results are consistent with a recent literature that shows that higher exemptions redistribute credit from low-wealth to high-wealth entrepreneurs, affecting the performance of their businesses.Keywords: debtor protection, credit markets, income inequality, debtor protection laws
Procedia PDF Downloads 4327596 Context-Aware Point-Of-Interests Recommender Systems Using Integrated Sentiment and Network Analysis
Authors: Ho Yeon Park, Kyoung-Jae Kim
Abstract:
Recently, user’s interests for location-based social network service increases according to the advances of social web and location-based technologies. It may be easy to recommend preferred items if we can use user’s preference, context and social network information simultaneously. In this study, we propose context-aware POI (point-of-interests) recommender systems using location-based network analysis and sentiment analysis which consider context, social network information and implicit user’s preference score. We propose a context-aware POI recommendation system consisting of three sub-modules and an integrated recommendation system of them. First, we will develop a recommendation module based on network analysis. This module combines social network analysis and cluster-indexing collaboration filtering. Next, this study develops a recommendation module using social singular value decomposition (SVD) and implicit SVD. In this research, we will develop a recommendation module that can recommend preference scores based on the frequency of POI visits of user in POI recommendation process by using social and implicit SVD which can reflect implicit feedback in collaborative filtering. We also develop a recommendation module using them that can estimate preference scores based on the recommendation. Finally, this study will propose a recommendation module using opinion mining and emotional analysis using data such as reviews of POIs extracted from location-based social networks. Finally, we will develop an integration algorithm that combines the results of the three recommendation modules proposed in this research. Experimental results show the usefulness of the proposed model in relation to the recommended performance.Keywords: sentiment analysis, network analysis, recommender systems, point-of-interests, business analytics
Procedia PDF Downloads 2507595 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method
Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas
Abstract:
To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.Keywords: building energy prediction, data mining, demand response, electricity market
Procedia PDF Downloads 3167594 Cohabitation, Ethnicities, and Tolerance: An Anthropologic Approach of Political Conflicts in Mozambique
Authors: Samuel Francisco Ngovene
Abstract:
Mozambique is a country with cultural segregation along its rivers, dividing the main ethnic groups of Machangana, Macena, and Macua, inter alia South, Centre, and North. This division has led to internal conflicts, seemingly rooted in ethnicity. The aim of this study is to analyze the tolerance of the main ethnic groups in Mozambique in terms of cohabitation, sharing opportunities, and political power. The study utilizes participant observation in the field, group discussions, and a questionnaire targeting 150 respondents split into 50 for each ethnic group. The study finds that people in Mozambique are generally tolerant of cohabiting or marrying individuals from different ethnic groups. However, when it comes to sharing opportunities such as employment or business, there is a perception that individuals from different ethnic groups may be taking away opportunities. Similarly, each ethnic group believes that having a president from their own group would lead to better opportunities for their community. The study highlights the importance of addressing this intolerance, as it can be a source of internal political conflicts. The anthropological approach provides a valuable tool for diplomacy channels to ensure long-lasting peace. Analysis procedures: The data collected through participant observation, group discussions are analytically crosschecked, comparing the opinions of people from different ethnic groups, while the data from the questionnaire are analyzed statistically to understand the level of tolerance among the ethnic groups and their perceptions of sharing opportunities and political power. The study addresses the question of whether the main ethnic groups in Mozambique are tolerant of cohabitation, sharing opportunities, and political power among themselves. The study concludes that while there is overall tolerance for cohabitation and marriage across ethnic groups, there is also a perception that individuals from different ethnic groups may take away opportunities. The study suggests that cultural education from a young age may be an effective way to promote tolerance.Keywords: cohabitation, ethnicities, Mozambique, political conflicts, tolerance
Procedia PDF Downloads 587593 Efficacy of Self-Assessment in Written Production among High School Students
Authors: Yoko Suganuma Oi
Abstract:
The purpose of the present study is to find the efficacy of high school student self-assessment of written production. It aimed to explore the following two research questions: 1)How is topic development of their written production improved after student self-assessment and teacher feedback? 2)Does the consistency between student self-assessment and teacher assessment develop after student self-assessment and teacher feedback? The data came from the written production of 82 Japanese high school students aged from 16 to 18 years old, an American English teacher and one Japanese English teacher. Students were asked to write English compositions, about 150 words, for thirty minutes without using dictionaries. It was conducted twice at intervals of two months. Students were supposed to assess their own compositions by themselves. Teachers also assessed students’ compositions using the same assessment sheet. The results showed that both teachers and students assessed the second compositions higher than the first compositions. However, there was not the development of the consistency in coherence.Keywords: feedback, self-assessment, topic development, high school students
Procedia PDF Downloads 5027592 A Review of the Literature on Factors Impacting Women’s Retention in Science, Technology, Engineering, Mathematics: A Critical Analysis of Nigeria and Georgia
Authors: Josephine O. Okocha, Ifeanyi Adigwe
Abstract:
This research aims to examine the factors impacting women's retention in STEM in Nigeria and Georgia. In a bid to come up with strategies to enhance women’s participation in STEM, this study identifies and juxtaposes the factors impacting the retention of women in STEM and how they vary from one country to another are discussed. This study adopted the literature review method to perform the critical analysis. A total of 76 papers were retrieved from the Scopus database and were published between 2018 and 2023. Only 12 papers met the criteria for inclusion in the analysis. The findings reveal that the factors impacting women’s retention in STEM include funding (NGOs and government agencies), scholarship, specialized recruitment, mentoring, the establishment of women-only higher institutions, creating a balanced work and family environment, combating stereotypes, and enabling policies and laws. The paper highlights some key recommendations to help improve the retention of women in STEM in Africa and Nigeria in particular.Keywords: STEM, women, retention, career, Nigeria, Georgia, women’s retention, women representation
Procedia PDF Downloads 737591 Development and Characterization of Biodegradable Films Based on Biopolymer Extracted From Natural Sources
Authors: Dalila Hammiche, Lisa Klaai, Sonia Imzi, Amar Boukerrou
Abstract:
The fight against plastic pollution implies the development of polymers as alternatives to synthetic polymers. Starch is a natural polymer that can easily be plasticized by means of additives. The objective of this work is to develop and characterize biodegradable biofilms based on starch, plasticized by glycerol (20 and 30%). The elaboration of the biofilms was carried out by the casting method under simple conditions. The samples were characterized by infrared spectroscopy analysis with Fourier transform (FTIR), thermogravimetric analysis, and biodegradability test. Infrared spectral analysis showed that the 30% and 20% glycerol films have the same chemical structure and no functional group changes occurred. Thermogravimetric analysis showed that a 30% glycerol film has higher thermal stability than a 20% glycerol film. Biodegradability test showed that the lower the percentage of glycerol, the more easily the biofilm degrades.Keywords: starch, natural sources, FTIR, thermogravimetric analysis, biodegradability test
Procedia PDF Downloads 1027590 Design of Compact Dual-Band Planar Antenna for WLAN Systems
Authors: Anil Kumar Pandey
Abstract:
A compact planar monopole antenna with dual-band operation suitable for wireless local area network (WLAN) application is presented in this paper. The antenna occupies an overall area of 18 ×12 mm2. The antenna is fed by a coplanar waveguide (CPW) transmission line and it combines two folded strips, which radiates at 2.4 and 5.2 GHz. In the proposed antenna, by optimally selecting the antenna dimensions, dual-band resonant modes with a much wider impedance matching at the higher band can be produced. Prototypes of the obtained optimized design have been simulated using EM solver. The simulated results explore good dual-band operation with -10 dB impedance bandwidths of 50 MHz and 2400 MHz at bands of 2.4 and 5.2 GHz, respectively, which cover the 2.4/5.2/5.8 GHz WLAN operating bands. Good antenna performances such as radiation patterns and antenna gains over the operating bands have also been observed. The antenna with a compact size of 18×12×1.6 mm3 is designed on an FR4 substrate with a dielectric constant of 4.4.Keywords: CPW antenna, dual-band, electromagnetic simulation, wireless local area network (WLAN)
Procedia PDF Downloads 2097589 Anti-Corruption Education in Ukraine during Martial Law and in Lithuania during the State of Emergency
Authors: Kateryna Kulyk
Abstract:
Anti-corruption education is an integral element of the corruption prevention mechanism of any state. Effective implementation of anti-corruption policy is impossible without awareness-raising activities. Information campaigns should target different social groups and aim to reduce tolerance to any form of corruption. Today, Ukraine and Lithuania have all the necessary infrastructure to actively work in this direction. Anti-corruption measures and building a society resistant to corruption are particularly important in the context of martial law in Ukraine and the state of emergency in Lithuania, as these conditions increase the risks of corrupt practices. To implement this area of activity, it is recommended to actively involve all state and local authorities, business representatives, non-governmental organisations, and all interested citizens. As of today, educational institutions, specialised anti-corruption bodies, and the public are already involved in this process. The purpose of the research is to draw public attention to the need and importance of obtaining basic knowledge on combating and preventing corruption, even in a state of emergency or martial law. This topic remains relevant even during the period of a state of emergency or martial law, as the risk of corrupt practices increases during these periods. The study is based on a comprehensive analysis of the anti-corruption policies of Ukraine and Lithuania, sociological research, and our own survey of anti-corruption experts. Legislation, reports of anti-corruption bodies and civil society organisations were analysed. We also conducted an anonymous survey of 13 anti-corruption experts on the most important anti-corruption measures in the countries studied. The main contribution of the research is to draw attention to the problem of low awareness of the population of countries about the importance of anti-corruption education as one of the necessary conditions for reducing corruption practices.Keywords: corruption, prevention and combating of corruption, education, anti-corruption education, martial law, state of emergency
Procedia PDF Downloads 357588 A Web and Cloud-Based Measurement System Analysis Tool for the Automotive Industry
Authors: C. A. Barros, Ana P. Barroso
Abstract:
Any industrial company needs to determine the amount of variation that exists within its measurement process and guarantee the reliability of their data, studying the performance of their measurement system, in terms of linearity, bias, repeatability and reproducibility and stability. This issue is critical for automotive industry suppliers, who are required to be certified by the 16949:2016 standard (replaces the ISO/TS 16949) of International Automotive Task Force, defining the requirements of a quality management system for companies in the automotive industry. Measurement System Analysis (MSA) is one of the mandatory tools. Frequently, the measurement system in companies is not connected to the equipment and do not incorporate the methods proposed by the Automotive Industry Action Group (AIAG). To address these constraints, an R&D project is in progress, whose objective is to develop a web and cloud-based MSA tool. This MSA tool incorporates Industry 4.0 concepts, such as, Internet of Things (IoT) protocols to assure the connection with the measuring equipment, cloud computing, artificial intelligence, statistical tools, and advanced mathematical algorithms. This paper presents the preliminary findings of the project. The web and cloud-based MSA tool is innovative because it implements all statistical tests proposed in the MSA-4 reference manual from AIAG as well as other emerging methods and techniques. As it is integrated with the measuring devices, it reduces the manual input of data and therefore the errors. The tool ensures traceability of all performed tests and can be used in quality laboratories and in the production lines. Besides, it monitors MSAs over time, allowing both the analysis of deviations from the variation of the measurements performed and the management of measurement equipment and calibrations. To develop the MSA tool a ten-step approach was implemented. Firstly, it was performed a benchmarking analysis of the current competitors and commercial solutions linked to MSA, concerning Industry 4.0 paradigm. Next, an analysis of the size of the target market for the MSA tool was done. Afterwards, data flow and traceability requirements were analysed in order to implement an IoT data network that interconnects with the equipment, preferably via wireless. The MSA web solution was designed under UI/UX principles and an API in python language was developed to perform the algorithms and the statistical analysis. Continuous validation of the tool by companies is being performed to assure real time management of the ‘big data’. The main results of this R&D project are: MSA Tool, web and cloud-based; Python API; New Algorithms to the market; and Style Guide of UI/UX of the tool. The MSA tool proposed adds value to the state of the art as it ensures an effective response to the new challenges of measurement systems, which are increasingly critical in production processes. Although the automotive industry has triggered the development of this innovative MSA tool, other industries would also benefit from it. Currently, companies from molds and plastics, chemical and food industry are already validating it.Keywords: automotive Industry, industry 4.0, Internet of Things, IATF 16949:2016, measurement system analysis
Procedia PDF Downloads 2147587 How Restorative Justice Can Inform and Assist the Provision of Effective Remedies to Hate Crime, Case Study: The Christchurch Terrorist Attack
Authors: Daniel O. Kleinsman
Abstract:
The 2019 terrorist attack on two masjidain in Christchurch, New Zealand, was a shocking demonstration of the harm that can be caused by hate crime. As legal and governmental responses to the attack struggle to provide effective remedies to its victims, restorative justice has emerged as a tool that can assist, in terms of both meeting victims’ needs and discharging the obligations of the state under the International Covenant on Civil and Political Rights (ICCPR), arts 2(3), 26, 27. Restorative justice is a model that emphasizes the repair of harm caused or revealed by unjust behavior. It also prioritises the facilitation of dialogue, the restoration of equitable relationships, and the prevention of future harm. Returning to the case study, in the remarks of the sentencing judge, the terrorist’s actions were described as a hate crime of vicious malevolence that the Court was required to decisively reject, as anathema to the values of acceptance, tolerance and mutual respect upon which New Zealand’s inclusive society is based and which the country strives to maintain. This was one of the reasons for which the terrorist received a life sentence with no possibility of parole. However, in the report of the Royal Commission of Inquiry into the Attack, it was found that victims felt the attack occurred within the context of widespread racism, discrimination and Islamophobia, where hostile behaviors, including hate-based threats and attacks, were rarely recorded, analysed or acted on. It was also found that the Government had inappropriately concentrated intelligence resources on the risk of ‘Islamist’ terrorism and had failed to adequately respond to concerns raised about threats against the Muslim community. In this light, the remarks of the sentencing judge can be seen to reflect a criminal justice system that, in the absence of other remedies, denies systemic accountability and renders hate crime an isolated incident rather than an expression of more widespread discrimination and hate to be holistically addressed. One of the recommendations of the Royal Commission was to explore with victims the desirability and design of restorative justice processes. This presents an opportunity for victims to meet with state representatives and pursue effective remedies (ICCPR art 2(3)) not only for the harm caused by the terrorist but the harm revealed by a system that has exposed the minority Muslim community in New Zealand to hate in all forms, including but not limited to violent extremism. In this sense, restorative justice can also assist the state in discharging its wider obligations to protect all persons from discrimination (art 26) and allow ethnic and religious minorities to enjoy their own culture and profess and practice their own religion (art 27). It can also help give effect to the law and its purpose as a remedy to hate crime, as expressed in this case study by the sentencing judge.Keywords: hate crime, restorative justice, minorities, victims' rights
Procedia PDF Downloads 1117586 Lipopolysaccharide Induced Avian Innate Immune Expression in Heterophils
Authors: Rohita Gupta, G. S. Brah, R. Verma, C. S. Mukhopadhayay
Abstract:
Although chicken strains show differences in susceptibility to a number of diseases, the underlying immunological basis is yet to be elucidated. In the present study, heterophils were subjected to LPS stimulation and total RNA extraction, further differential gene expression was studied in broiler, layer and indigenous Aseel strain by Real Time RT-PCR at different time periods before and after induction. The expression of the 14 AvBDs and chTLR 1, 2, 3, 4, 5, 7, 15 and 21 was detectable in heterophils. The expression level of most of the AvBDs significantly increased (P<0.05) 3 hours post in vitro lipopolysaccharide challenge. Higher expression level and stronger activation of most AvBDs, NFkB-1 and IRF-3 in heterophils was observed, with the stimulation of LPS in layer compared to broiler, and in Aseel compared to both layer and broiler. This investigation will allow more refined interpretation of immuno-genetic basis of the variable disease resistance/susceptibility in divergent stock of chicken including indigenous breed. Moreover this study will be helpful in formulation of strategy for isolation of antimicrobial peptides from heterophils.Keywords: differential expression, heterophils, cytokines, defensin, TLR
Procedia PDF Downloads 6187585 A Quantitative Analysis for the Correlation between Corporate Financial and Social Performance
Authors: Wafaa Salah, Mostafa A. Salama, Jane Doe
Abstract:
Recently, the corporate social performance (CSP) is not less important than the corporate financial performance (CFP). Debate still exists about the nature of the relationship between the CSP and CFP, whether it is a positive, negative or a neutral correlation. The objective of this study is to explore the relationship between corporate social responsibility (CSR) reports and CFP. The study uses the accounting-based and market-based quantitative measures to quantify the financial performance of seven organizations listed on the Egyptian Stock Exchange in 2007-2014. Then uses the information retrieval technologies to quantify the contribution of each of the three dimensions of the corporate social responsibility report (environmental, social and economic). Finally, the correlation between these two sets of variables is viewed together in a model to detect the correlations between them. This model is applied on seven firms that generate social responsibility reports. The results show a positive correlation between the Earnings per share (market based measure) and the economical dimension in the CSR report. On the other hand, total assets and property, plant and equipment (accounting-based measure) are positively correlated to the environmental and social dimensions of the CSR reports. While there is not any significant relationship between ROA, ROE, Operating income and corporate social responsibility. This study contributes to the literature by providing more clarification of the relationship between CFP and the isolated CSR activities in a developing country.Keywords: financial, social, machine learning, corporate social performance, corporate social responsibility
Procedia PDF Downloads 3117584 Dynamic Route Optimization in Vehicle Adhoc Networks: A Heuristics Routing Protocol
Authors: Rafi Ullah, Shah Muhammad Emaduddin, Taha Jilani
Abstract:
Vehicle Adhoc Networks (VANET) belongs to a special class of Mobile Adhoc Network (MANET) with high mobility. Network is created by road side vehicles equipped with communication devices like GPS and Wifi etc. Since the environment is highly dynamic due to difference in speed and high mobility of vehicles and weak stability of the network connection, it is a challenging task to design an efficient routing protocol for such an unstable environment. Our proposed algorithm uses heuristic for the calculation of optimal path for routing the packet efficiently in collaboration with several other parameters like geographical location, speed, priority, the distance among the vehicles, communication range, and networks congestion. We have incorporated probabilistic, heuristic and machine learning based approach inconsistency with the relay function of the memory buffer to keep the packet moving towards the destination. These parameters when used in collaboration provide us a very strong and admissible heuristics. We have mathematically proved that the proposed technique is efficient for the routing of packets, especially in a medical emergency situation. These networks can be used for medical emergency, security, entertainment and routing purposes.Keywords: heuristics routing, intelligent routing, VANET, route optimization
Procedia PDF Downloads 178