Search results for: unequal mean operation times
5176 3D-Shape-Perception Studied Exemplarily with Tetrahedron and Icosahedron as Prototypes of the Polarities Sharp versus Round
Authors: Iris Sauerbrei, Jörg Trojan, Erich Lehner
Abstract:
Introduction and significance of the study: This study examines if three-dimensional shapes elicit distinct patterns of perceptions. If so, it is relevant for all fields of design, especially for the design of the built environment. Description of basic methodologies: The five platonic solids are the geometrical base for all other three-dimensional shapes, among which tetrahedron and icosahedron provide the clearest representation of the qualities sharp and round. The component pair of attributes ‘sharp versus round’ has already been examined in various surveys in a psychology of perception and in neuroscience by means of graphics, images of products of daily use, as well as by photographs and walk-through-videos of landscapes and architecture. To verify a transfer of outcomes of the existing surveys to the perception of three-dimensional shapes, walk-in models (total height 2.2m) of tetrahedron and icosahedron were set up in a public park in Frankfurt am Main, Germany. Preferences of park visitors were tested by questionnaire; also they were asked to write down associations in a free text. In summer 2015, the tetrahedron was assembled eight times, the icosahedron seven times. In total 288 participants took part in the study; 116 rated the tetrahedron, 172 rated the icosahedron. Findings: Preliminary analyses of the collected data using Wilcoxon Rank-Sum tests show that the perceptions of the two solids differ in respect to several attributes and that each of the tested model show significance for specific attributes. Conclusion: These findings confirm the assumptions and provide first evidence that the perception of three-dimensional shapes are associated to characteristic attributes and to which. In order to enable conscious choices for spatial arrangements in design processes for the built environment, future studies should examine attributes for the other three basic bodies - Octahedron, Cube, and Dodecahedron. Additionally, similarities and differences between the perceptions of two- and three-dimensional shapes as well as shapes that are more complex need further research.Keywords: 3D shapes, architecture, geometrical features, space perception, walk-in models
Procedia PDF Downloads 2285175 Dietary Micronutritient and Health among Youth in Algeria
Authors: Allioua Meryem
Abstract:
Similar to much of the developing world, Algeria is currently undergoing an epidemiological transition. While mal- and under-nutrition and infectious diseases used to be the main causes of poor health, today there is a higher proportion of chronic, non-communicable diseases (NCDs), including cardiovascular disease, diabetes mellitus, cancer, etc. According to estimates for Algeria from the World Health Organization (WHO), NCDs accounted for 63% of all deaths in 2010. The objective of this study was the assessment of eating habits and anthropometric characteristics in a group of youth aged 15 to 19 years in Tlemcen. This study was conducted on a total effective of 806 youth enrolled in a descriptive cross-sectional study; the classification of nutritional status has been established by international standards IOTF, youth were defined as obese if they had a BMI ≥ 95th percentile, and youth with 85th ≤ BMI ≤ 95th percentile were defined as overweight. Wc is classified by the criteria HD, Wc with moderate risk ≥ 90th percentile and Wc with high risk ≥ 95th percentile. The dietary assessment was based on a 24-hour dietary recall assisted by food records. USDA’S nutrient database for Nutrinux® program was used to analyze dietary intake. Nutrients adequacy ratio was calculated by dividing daily individual intake to dietary recommended intake DRI for each nutrient. 9% of the population was overweight, 3% was obese, 7.5% had abdominal obesity, foods eaten in moderation are chips, cookies, chocolate 1-3 times/day and increased consumption of fried foods in the week, almost half of youth consume sugary drinks more than 3 times per week, we observe a decreased intake of energy, protein (P < 0.001, P = 0.003), SFA (P = 0.018), the NAR of phosphorus, iron, magnesium, vitamin B6, vitamin E, folate, niacin, and thiamin reflecting less consumption of fruit, vegetables, milk, and milk products. Youth surveyed have eating habits at risk of developing obesity and chronic disease.Keywords: food intake, health, anthropometric characteristics, Algeria
Procedia PDF Downloads 5405174 Design and Implementation of Grid-Connected Photovoltaic Inverter
Authors: B. H. Lee
Abstract:
Nowadays, a grid-connected photovoltaic (PV) inverter is adopted in various places like as home, factory, because grid-connected PV inverter can reduce total power consumption by supplying electricity from PV array. In this paper, design and implementation of a 300 W grid-connected PV inverter are described. It is implemented with TI Piccolo DSP core and operated at 100 kHz switching frequency in order to reduce harmonic contents. The maximum operating input voltage is up to 45 V. The characteristics of the designed system that include maximum power point tracking (MPPT), single operation and battery charging are verified by simulation and experimental results.Keywords: design, grid-connected, implementation, photovoltaic
Procedia PDF Downloads 4205173 Experimental investigation on the lithium-Ion Battery Thermal Management System Based on Micro Heat Pipe Array in High Temperature Environment
Authors: Ruyang Ren, Yaohua Zhao, Yanhua Diao
Abstract:
The intermittent and unstable characteristics of renewable energy such as solar energy can be effectively solved through battery energy storage system. Lithium-ion battery is widely used in battery energy storage system because of its advantages of high energy density, small internal resistance, low self-discharge rate, no memory effect and long service life. However, the performance and service life of lithium-ion battery is seriously affected by its operating temperature. Thus, the safety operation of the lithium-ion battery module is inseparable from an effective thermal management system (TMS). In this study, a new type of TMS based on micro heat pipe array (MHPA) for lithium-ion battery is established, and the TMS is applied to a battery energy storage box that needs to operate at a high temperature environment of 40 °C all year round. MHPA is a flat shape metal body with high thermal conductivity and excellent temperature uniformity. The battery energy storage box is composed of four battery modules, with a nominal voltage of 51.2 V, a nominal capacity of 400 Ah. Through the excellent heat transfer characteristics of the MHPA, the heat generated by the charge and discharge process can be quickly transferred out of the battery module. In addition, if only the MHPA cannot meet the heat dissipation requirements of the battery module, the TMS can automatically control the opening of the external fan outside the battery module according to the temperature of the battery, so as to further enhance the heat dissipation of the battery module. The thermal management performance of lithium-ion battery TMS based on MHPA is studied experimentally under different ambient temperatures and the condition to turn on the fan or not. Results show that when the ambient temperature is 40 °C and the fan is not turned on in the whole charge and discharge process, the maximum temperature of the battery in the energy storage box is 53.1 °C and the maximum temperature difference in the battery module is 2.4 °C. After the fan is turned on in the whole charge and discharge process, the maximum temperature is reduced to 50.1 °C, and the maximum temperature difference is reduced to 1.7 °C. Obviously, the lithium-ion battery TMS based on MHPA not only could control the maximum temperature of the battery below 55 °C, but also ensure the excellent temperature uniformity of the battery module. In conclusion, the lithium-ion battery TMS based on MHPA can ensure the safe and stable operation of the battery energy storage box in high temperature environment.Keywords: heat dissipation, lithium-ion battery thermal management, micro heat pipe array, temperature uniformity
Procedia PDF Downloads 1815172 Passive Aeration of Wastewater: Analytical Model
Authors: Ayman M. El-Zahaby, Ahmed S. El-Gendy
Abstract:
Aeration for wastewater is essential for the proper operation of aerobic treatment units where the wastewater normally has zero dissolved oxygen. This is due to the need of oxygen by the aerobic microorganisms to grow and survive. Typical aeration units for wastewater treatment require electric energy for their operation such as mechanical aerators or diffused aerators. The passive units are units that operate without the need of electric energy such as cascade aerators, spray aerators and tray aerators. In contrary to the cascade aerators and spray aerators, tray aerators require much smaller area foot print for their installation as the treatment stages are arranged vertically. To the extent of the authors knowledge, the design of tray aerators for the aeration purpose has not been presented in the literature. The current research concerns with an analytical study for the design of tray aerators for the purpose of increasing the dissolved oxygen in wastewater treatment systems, including an investigation on different design parameters and their impact on the aeration efficiency. The studied aerator shall act as an intermediate stage between an anaerobic primary treatment unit and an aerobic treatment unit for small scale treatment systems. Different free falling flow regimes were investigated, and the thresholds for transition between regimes were obtained from the literature. The study focused on the jetting flow regime between trays. Starting from the two film theory, an equation that relates the dissolved oxygen concentration effluent from the system was derived as a function of the flow rate, number of trays, tray area, spacing between trays, number and diameter of holes and the water temperature. A MATLab ® model was developed for the derived equation. The expected aeration efficiency under different tray configurations and operating conditions were illustrated through running the model with varying the design parameters. The impact of each parameter was illustrated. The overall system efficiency was found to increase by decreasing the hole diameter. On the other side, increasing the number of trays, tray area, flow rate per hole or tray spacing had positive effect on the system efficiency.Keywords: aeration, analytical, passive, wastewater
Procedia PDF Downloads 2095171 Nondestructive Monitoring of Atomic Reactions to Detect Precursors of Structural Failure
Authors: Volodymyr Rombakh
Abstract:
This article was written to substantiate the possibility of detecting the precursors of catastrophic destruction of a structure or device and stopping operation before it. Damage to solids results from breaking the bond between atoms, which requires energy. Modern theories of strength and fracture assume that such energy is due to stress. However, in a letter to W. Thomson (Lord Kelvin) dated December 18, 1856, J.C. Maxwell provided evidence that elastic energy cannot destroy solids. He proposed an equation for estimating a deformable body's energy, equal to the sum of two energies. Due to symmetrical compression, the first term does not change, but the second term is distortion without compression. Both types of energy are represented in the equation as a quadratic function of strain, but Maxwell repeatedly wrote that it is not stress but strain. Furthermore, he notes that the nature of the energy causing the distortion is unknown to him. An article devoted to theories of elasticity was published in 1850. Maxwell tried to express mechanical properties with the help of optics, which became possible only after the creation of quantum mechanics. However, Maxwell's work on elasticity is not cited in the theories of strength and fracture. The authors of these theories and their associates are still trying to describe the phenomena they observe based on classical mechanics. The study of Faraday's experiments, Maxwell's and Rutherford's ideas, made it possible to discover a previously unknown area of electromagnetic radiation. The properties of photons emitted in this reaction are fundamentally different from those of photons emitted in nuclear reactions and are caused by the transition of electrons in an atom. The photons released during all processes in the universe, including from plants and organs in natural conditions; their penetrating power in metal is millions of times greater than that of one of the gamma rays. However, they are not non-invasive. This apparent contradiction is because the chaotic motion of protons is accompanied by the chaotic radiation of photons in time and space. Such photons are not coherent. The energy of a solitary photon is insufficient to break the bond between atoms, one of the stages of which is ionization. The photographs registered the rail deformation by 113 cars, while the Gaiger Counter did not. The author's studies show that the cause of damage to a solid is the breakage of bonds between a finite number of atoms due to the stimulated emission of metastable atoms. The guarantee of the reliability of the structure is the ratio of the energy dissipation rate to the energy accumulation rate, but not the strength, which is not a physical parameter since it cannot be measured or calculated. The possibility of continuous control of this ratio is due to the spontaneous emission of photons by metastable atoms. The article presents calculation examples of the destruction of energy and photographs due to the action of photons emitted during the atomic-proton reaction.Keywords: atomic-proton reaction, precursors of man-made disasters, strain, stress
Procedia PDF Downloads 925170 Study on the Impact of Default Converter on the Quality of Energy Produced by DFIG Based Wind Turbine
Authors: N. Zerzouri, N. Benalia, N. Bensiali
Abstract:
This work is devoted to an analysis of the operation of a doubly fed induction generator (DFIG) integrated with a wind system. The power transfer between the stator and the network is carried out by acting on the rotor via a bidirectional signal converter. The analysis is devoted to the study of a fault in the converter due to an interruption of the control of a semiconductor. Simulation results obtained by the MATLAB/Simulink software illustrate the quality of the power generated at the default.Keywords: doubly fed induction generator (DFIG), wind energy, PWM inverter, modeling
Procedia PDF Downloads 3165169 A Parallel Implementation of k-Means in MATLAB
Authors: Dimitris Varsamis, Christos Talagkozis, Alkiviadis Tsimpiris, Paris Mastorocostas
Abstract:
The aim of this work is the parallel implementation of k-means in MATLAB, in order to reduce the execution time. Specifically, a new function in MATLAB for serial k-means algorithm is developed, which meets all the requirements for the conversion to a function in MATLAB with parallel computations. Additionally, two different variants for the definition of initial values are presented. In the sequel, the parallel approach is presented. Finally, the performance tests for the computation times respect to the numbers of features and classes are illustrated.Keywords: K-means algorithm, clustering, parallel computations, Matlab
Procedia PDF Downloads 3855168 Waste Management in a Hot Laboratory of Japan Atomic Energy Agency – 1: Overview and Activities in Chemical Processing Facility
Authors: Kazunori Nomura, Hiromichi Ogi, Masaumi Nakahara, Sou Watanabe, Atsuhiro Shibata
Abstract:
Chemical Processing Facility of Japan Atomic Energy Agency is a basic research field for advanced back-end technology developments with using actual high-level radioactive materials such as irradiated fuels from the fast reactor, high-level liquid waste from reprocessing plant. In the nature of a research facility, various kinds of chemical reagents have been offered for fundamental tests. Most of them were treated properly and stored in the liquid waste vessel equipped in the facility, but some were not treated and remained at the experimental space as a kind of legacy waste. It is required to treat the waste in safety. On the other hand, we formulated the Medium- and Long-Term Management Plan of Japan Atomic Energy Agency Facilities. This comprehensive plan considers Chemical Processing Facility as one of the facilities to be decommissioned. Even if the plan is executed, treatment of the “legacy” waste beforehand must be a necessary step for decommissioning operation. Under this circumstance, we launched a collaborative research project called the STRAD project, which stands for Systematic Treatment of Radioactive liquid waste for Decommissioning, in order to develop the treatment processes for wastes of the nuclear research facility. In this project, decomposition methods of chemicals causing a troublesome phenomenon such as corrosion and explosion have been developed and there is a prospect of their decomposition in the facility by simple method. And solidification of aqueous or organic liquid wastes after the decomposition has been studied by adding cement or coagulants. Furthermore, we treated experimental tools of various materials with making an effort to stabilize and to compact them before the package into the waste container. It is expected to decrease the number of transportation of the solid waste and widen the operation space. Some achievements of these studies will be shown in this paper. The project is expected to contribute beneficial waste management outcome that can be shared world widely.Keywords: chemical processing facility, medium- and long-term management plan of JAEA facilities, STRAD project, treatment of radioactive waste
Procedia PDF Downloads 1425167 Finite Element Modelling and Optimization of Post-Machining Distortion for Large Aerospace Monolithic Components
Authors: Bin Shi, Mouhab Meshreki, Grégoire Bazin, Helmi Attia
Abstract:
Large monolithic components are widely used in the aerospace industry in order to reduce airplane weight. Milling is an important operation in manufacturing of the monolithic parts. More than 90% of the material could be removed in the milling operation to obtain the final shape. This results in low rigidity and post-machining distortion. The post-machining distortion is the deviation of the final shape from the original design after releasing the clamps. It is a major challenge in machining of the monolithic parts, which costs billions of economic losses every year. Three sources are directly related to the part distortion, including initial residual stresses (RS) generated from previous manufacturing processes, machining-induced RS and thermal load generated during machining. A finite element model was developed to simulate a milling process and predicate the post-machining distortion. In this study, a rolled-aluminum plate AA7175 with a thickness of 60 mm was used for the raw block. The initial residual stress distribution in the block was measured using a layer-removal method. A stress-mapping technique was developed to implement the initial stress distribution into the part. It is demonstrated that this technique significantly accelerates the simulation time. Machining-induced residual stresses on the machined surface were measured using MTS3000 hole-drilling strain-gauge system. The measured RS was applied on the machined surface of a plate to predict the distortion. The predicted distortion was compared with experimental results. It is found that the effect of the machining-induced residual stress on the distortion of a thick plate is very limited. The distortion can be ignored if the wall thickness is larger than a certain value. The RS generated from the thermal load during machining is another important factor causing part distortion. Very limited number of research on this topic was reported in literature. A coupled thermo-mechanical FE model was developed to evaluate the thermal effect on the plastic deformation of a plate. A moving heat source with a feed rate was used to simulate the dynamic cutting heat in a milling process. When the heat source passed the part surface, a small layer was removed to simulate the cutting operation. The results show that for different feed rates and plate thicknesses, the plastic deformation/distortion occurs only if the temperature exceeds a critical level. It was found that the initial residual stress has a major contribution to the part distortion. The machining-induced stress has limited influence on the distortion for thin-wall structure when the wall thickness is larger than a certain value. The thermal load can also generate part distortion when the cutting temperature is above a critical level. The developed numerical model was employed to predict the distortion of a frame part with complex structures. The predictions were compared with the experimental measurements, showing both are in good agreement. Through optimization of the position of the part inside the raw plate using the developed numerical models, the part distortion can be significantly reduced by 50%.Keywords: modelling, monolithic parts, optimization, post-machining distortion, residual stresses
Procedia PDF Downloads 545166 On the Design of Wearable Fractal Antenna
Authors: Amar Partap Singh Pharwaha, Shweta Rani
Abstract:
This paper is aimed at proposing a rhombus shaped wearable fractal antenna for wireless communication systems. The geometrical descriptors of the antenna have been obtained using bacterial foraging optimization (BFO) for wide band operation. The method of moment based IE3D software has been used to simulate the antenna and observed that miniaturization of 13.08% has been achieved without degrading the resonating properties of the proposed antenna. An analysis with different substrates has also been done in order to evaluate the effectiveness of electrical permittivity on the presented structure. The proposed antenna has low profile, light weight and has successfully demonstrated wideband and multiband characteristics for wearable electronic applications.Keywords: BFO, bandwidth, electrical permittivity, fractals, wearable antenna
Procedia PDF Downloads 4635165 Design of Local Interconnect Network Controller for Automotive Applications
Authors: Jong-Bae Lee, Seongsoo Lee
Abstract:
Local interconnect network (LIN) is a communication protocol that combines sensors, actuators, and processors to a functional module in automotive applications. In this paper, a LIN ver. 2.2A controller was designed in Verilog hardware description language (Verilog HDL) and implemented in field-programmable gate array (FPGA). Its operation was verified by making full-scale LIN network with the presented FPGA-implemented LIN controller, commercial LIN transceivers, and commercial processors. When described in Verilog HDL and synthesized in 0.18 μm technology, its gate size was about 2,300 gates.Keywords: local interconnect network, controller, transceiver, processor
Procedia PDF Downloads 2885164 Foil Bearing Stiffness Estimation with Pseudospectral Scheme
Authors: Balaji Sankar, Sadanand Kulkarni
Abstract:
Compliant foil gas lubricated bearings are used for the support of light loads in the order of few kilograms at high speeds, in the order of 50,000 RPM. The stiffness of the foil bearings depends both on the stiffness of the compliant foil and on the lubricating gas film. The stiffness of the bearings plays a crucial role in the stable operation of the supported rotor over a range of speeds. This paper describes a numerical approach to estimate the stiffness of the bearings using pseudo spectral scheme. Methodology to obtain the stiffness of the foil bearing as a function of weight of the shaft is given and the results are presented.Keywords: foil bearing, simulation, numerical, stiffness estimation
Procedia PDF Downloads 3425163 Examining a Volunteer-Tutoring Program for Students with Special Education Needs
Authors: David Dean Hampton, William Morrison, Mary Rizza, Jan Osborn
Abstract:
This evaluation examined the effects of a supplemental reading intervThis evaluation examined the effects of a supplemental reading intervention for students with specific learning disabilities in reading who were presented with below grade level on fall benchmark scores on DIBELS 6th ed. Revised. Participants consisted of a condition group, those who received supplemental reading instruction in addition to core + special education services and a comparison group of students who were at grade level in their fall benchmark scores. The students in the condition group received 26 weeks of Project MORE instruction delivered multiple times each week from trained volunteer tutors. Using a regression-discontinuity design, condition and comparison groups were compared on reading development growth using DIBELS ORF. Significant findings were reported for grade 2, 3, and 4. ntion for students with specific learning disabilities in reading who presented with below grade level on fall benchmark scores on DIBELS 6th ed. Revised. Participants consisted of a condition group, those who received supplemental reading instruction in addition to core + special education services and a comparison group of students who were at grade level in their fall benchmark scores. The students in the condition group received 26 weeks of Project MORE instruction delivered multiple times each week from trained volunteer tutors. Using a regression-discontinuity design, condition and comparison groups were compared on reading development growth using DIBELS ORF. Significant findings were reported for grade 2, 3, and 4.Keywords: special education, evidence-based practices, curriculum, tutoring
Procedia PDF Downloads 665162 The Permutation of Symmetric Triangular Equilateral Group in the Cryptography of Private and Public Key
Authors: Fola John Adeyeye
Abstract:
In this paper, we propose a cryptosystem private and public key base on symmetric group Pn and validates its theoretical formulation. This proposed system benefits from the algebraic properties of Pn such as noncommutative high logical, computational speed and high flexibility in selecting key which makes the discrete permutation multiplier logic (DPML) resist to attack by any algorithm such as Pohlig-Hellman. One of the advantages of this scheme is that it explore all the possible triangular symmetries. Against these properties, the only disadvantage is that the law of permutation multiplicity only allow an operation from left to right. Many other cryptosystems can be transformed into their symmetric group.Keywords: cryptosystem, private and public key, DPML, symmetric group Pn
Procedia PDF Downloads 2025161 Associated Factors of Hypertension, Hypercholesterolemia and Double Burden Hypertension-Hypercholesterolemia in Patients With Congestive Heart Failure: Hospital Based Study
Authors: Pierre Mintom, William Djeukeu Asongni, Michelle Moni, William Dakam, Christine Fernande Nyangono Biyegue.
Abstract:
Background: In order to prevent congestive heart failure, control of hypertension and hypercholesterolemia is necessary because those risk factors frequently occur in combination. Objective: The aim of the study is to determine the prevalence and risk factors of hypertension, hypercholesterolemia and double burden HTA-Hypercholesterolemia in patients with congestive heart failure. Methodology: A database of 98 patients suffering from congestive heart failure was used. The latter were recruited from August 15, 2017, to March 5, 2018, in the Cardiology department of Deido District Hospital of Douala. This database provides information on sociodemographic parameters, biochemical examinations, characteristics of heart failure and food consumption. ESC/ESH and NCEP-ATPIII definitions were used to define Hypercholesterolemia (total cholesterol ≥200mg/dl), Hypertension (SBP≥140mmHg and/or DBP≥90mmHg). Double burden hypertension-hypercholesterolemia was defined as follows: total cholesterol (CT)≥200mg/dl, SBP≥140mmHg and DBP≥90mmHg. Results: The prevalence of hypertension (HTA), hypercholesterolemia (hyperchol) and double burden HTA-Hyperchol were 61.2%, 66.3% and 45.9%, respectively. No sociodemographic factor was associated with hypertension, hypercholesterolemia and double burden, but Male gender was significantly associated (p<0.05) with hypercholesterolemia. HypoHDLemia significantly increased hypercholesterolemia and the double burden by 19.664 times (p=0.001) and 14.968 times (p=0.021), respectively. Regarding dietary habits, the consumption of rice, peanuts and derivatives and cottonseed oil respectively significantly (p<0.05) exposed to the occurrence of hypertension. The consumption of tomatoes, green bananas, corn and derivatives, peanuts and derivatives and cottonseed oil significantly exposed (p<0.05) to the occurrence of hypercholesterolemia. The consumption of palm oil and cottonseed oil exposed the occurrence of the double burden of hypertension-hypercholesterolemia. Consumption of eggs protects against hypercholesterolemia, and consumption of peanuts and tomatoes protects against the double burden. Conclusion: hypercholesterolemia associated with hypertension appears as a complicating factor of congestive heart failure. Key risk factors are mainly diet-based, suggesting the importance of nutritional education for patients. New management protocols emphasizing diet should be considered.Keywords: risk factors, hypertension, hypercholesterolemia, congestive heart failure
Procedia PDF Downloads 685160 Covid-19 Pandemic: Another Lesson Learned by a Military Hospital
Authors: Mariana Floria, Elena-Diana Năfureanu, Diana-Mihaela Gălăţanu, Anca-Ecaterina Grumeza, Cristina Gorea-Bocîncă, Diana-Elena Iov, Aurelian-Corneliu Moraru, Dragoș-Marian Popescu
Abstract:
SARS-CoV-2 is the most deadly and devastating virus of the last one hundred years, being more highly contagious than EBOLA, HIV, Swine Influenza, Severe Acute Respiratory Syndrome, or Middle Eastern Respiratory Syndrome. After two years of pandemic, planning and budgeting for use of healthcare resources and services is very important. The aim of this study was to analyze the costs for hospital stay in patients with predominantly moderate forms of COVID-19 in a support military hospital located in Nord-East of Romania. Inpatient COVID-19 hospitalizations costs, regardless of ICD-10 procedure codes (DRG payment), in a Covid-19 support military hospital were analyzed. From August 2020 through June 2021, 241 patientswere hospitalized. Our national protocol for the treatment of Covid-19 infection was applied. The main COVID-19 manifestations were: 69% respiratory (18% with severe pneumonia, 2.9% with pulmonary embolism, diagnosed by angio-computed tomography), 3.3% cardiac, 28% digestive, and 33% psychiatric (most common anxiety) manifestations. According to COVID-19 severity, most of the patients had moderate (104 patients – 43%) and severe (50 patients - 21%) forms. Seven patients with severe form died because of multiple comorbidities, and 30 patients were transferred in hospitals with COVID-19 intensive care units.Only two patients have had procalcitonin>10 ng/mL (high probability of severe sepsis or septic shock), and 1 patient had moderate risk for septic shock (0.5 - 2 ng/mL). The average estimated costs were about 3000€/patient, without significantly differences depending on disease severity. Equipment costs were 2 times higher than for drugs and 4 times than for laboratory tests. In a Covid-19 support military hospital that took care for predominantly moderate forms of COVID-19, the costs for equipment were much higher than that for treatment. Therefore, new criteria for hospitalization of these forms of COVID-19 deserve to be analyzed to avoid useless costs.Keywords: Covid-19, costs, hospital stay, military hospital
Procedia PDF Downloads 1785159 Cluster Analysis and Benchmarking for Performance Optimization of a Pyrochlore Processing Unit
Authors: Ana C. R. P. Ferreira, Adriano H. P. Pereira
Abstract:
Given the frequent variation of mineral properties throughout the Araxá pyrochlore deposit, even if a good homogenization work has been carried out before feeding the processing plants, an operation with quality and performance’s high variety standard is expected. These results could be improved and standardized if the blend composition parameters that most influence the processing route are determined, and then the types of raw materials are grouped by them, finally presenting a great reference with operational settings for each group. Associating the physical and chemical parameters of a unit operation through benchmarking or even an optimal reference of metallurgical recovery and product quality reflects in the reduction of the production costs, optimization of the mineral resource, and guarantee of greater stability in the subsequent processes of the production chain that uses the mineral of interest. Conducting a comprehensive exploratory data analysis to identify which characteristics of the ore are most relevant to the process route, associated with the use of Machine Learning algorithms for grouping the raw material (ore) and associating these with reference variables in the process’ benchmark is a reasonable alternative for the standardization and improvement of mineral processing units. Clustering methods through Decision Tree and K-Means were employed, associated with algorithms based on the theory of benchmarking, with criteria defined by the process team in order to reference the best adjustments for processing the ore piles of each cluster. A clean user interface was created to obtain the outputs of the created algorithm. The results were measured through the average time of adjustment and stabilization of the process after a new pile of homogenized ore enters the plant, as well as the average time needed to achieve the best processing result. Direct gains from the metallurgical recovery of the process were also measured. The results were promising, with a reduction in the adjustment time and stabilization when starting the processing of a new ore pile, as well as reaching the benchmark. Also noteworthy are the gains in metallurgical recovery, which reflect a significant saving in ore consumption and a consequent reduction in production costs, hence a more rational use of the tailings dams and life optimization of the mineral deposit.Keywords: mineral clustering, machine learning, process optimization, pyrochlore processing
Procedia PDF Downloads 1435158 [Keynote Speech]: Competitive Evaluation of Power Plants in Energy Policy
Authors: Beril Tuğrul
Abstract:
Electrical energy is the most important form of energy and electrical power plants have highest impact factor in energy policy. This study is in relation with evaluation of various power plants including fossil fuels, nuclear and renewable energy based power plants. The power plants evaluated with regard to their overall impact that considered for establishing of the plants. Both positive and negative impacts of power plant operation are compared view of different arguments. Then calculate the impact factor by using variation linear extrapolation for each argument. With this study, power plants assessed with the different point of view and clarified objectively. Procedia PDF Downloads 5245157 Critical Mathematics Education and School Education in India: A Study of the National Curriculum Framework 2022 for Foundational Stage
Authors: Eish Sharma
Abstract:
Literature around Mathematics education suggests that democratic attitudes can be strengthened through teaching and learning Mathematics. Furthermore, connections between critical education and Mathematics education are observed in the light of critical pedagogy to locate Critical Mathematics Education (CME) as the theoretical framework. Critical pedagogy applied to Mathematics education is identified as one of the key themes subsumed under Critical Mathematics Education. Through the application of critical pedagogy in mathematics, unequal power relations and social injustice can be identified, analyzed, and challenged. The research question is: have educational policies in India viewed the role of critical pedagogy applied to mathematics education (i.e., critical mathematics education) to ensure social justice as an educational aim? The National Curriculum Framework (NCF), 2005 upholds education for democracy and the role of mathematics education in facilitating the same. More than this, NCF 2005 rests on Critical Pedagogy Framework and it recommends that critical pedagogy must be practiced in all dimensions of school education. NCF 2005 visualizes critical pedagogy for social sciences as well as sciences, stating that the science curriculum, including mathematics, must be used as an “instrument for achieving social change to reduce the divide based on economic class, gender, caste, religion, and the region”. Furthermore, the implementation of NCF 2005 led to a reform in the syllabus and textbooks in school mathematics at the national level, and critical pedagogy was applied to mathematics textbooks at the primary level. This intervention led to ethnomathematics and critical mathematics education in the school curriculum in India for the first time at the national level. In October 2022, the Ministry of Education launched the National Curriculum Framework for Foundational Stage (NCF-FS), developed in light of the National Education Policy, 2020, for children in the three to eight years age group. I want to find out whether critical pedagogy-based education and critical pedagogy-based mathematics education are carried forward in NCF 2022. To find this, an argument analysis of specific sections of the National Curriculum Framework 2022 document needs to be executed. Des Gasper suggests two tables: The first table contains four columns, namely, text component, comments on meanings, possible reformulation of the same text, and identified conclusions and assumptions (both stated and unstated). This table is for understanding the components and meanings of the text and is based on Scriven’s model for understanding the components and meanings of words in the text. The second table contains four columns i.e., claim identified, given data, warrant, and stated qualifier/rebuttal. This table is for describing the structure of the argument, how and how well the components fit together and is called ‘George Table diagram based on Toulmin-Bunn Model’.Keywords: critical mathematics education, critical pedagogy, social justice, etnomathematics
Procedia PDF Downloads 825156 Gender Perspective in Peace Operations: An Analysis of 14 UN Peace Operations
Authors: Maressa Aires de Proenca
Abstract:
The inclusion of a gender perspective in peace operations is based on a series of conventions, treaties, and resolutions designed to protect and include women addressing gender mainstreaming. The UN Security Council recognizes that women's participation and gender equality within peace operations are indispensable for achieving sustainable development and peace. However, the participation of women in the field of peace and security is still embryonic. There are gaps when we think about female participation in conflict resolution and peace promotion spaces, and it does not seem clear how women are present in these spaces. This absence may correspond to silence about representation and the guarantee of the female perspective within the context of peace promotion. Thus, the present research aimed to describe the panorama of the participation of women who are currently active in the 14 active UN peace operations, which are: 1) MINUJUSTH, Haiti, 2) MINURSO, Western Sahara, 3) MINUSCA, Central African Republic, 4) MINUSMA, Mali, 5) MONUSCO, the Democratic Republic of the Congo, 6) UNAMID, Darfur, 7) UNDOF, Golan, 8) UNFICYP, Cyprus, 9) UNIFIL, Lebanon, 10) UNISFA, Abyei, 11) UNMIK, Kosovo, 12) UNMISS, South Sudan, 13) UNMOGIP, India, and Pakistan, and 14) UNTSO, Middle East. A database was constructed that reported: (1) position held by the woman in the peace operation, (2) her profession, (3) educational level, (4) marital status, (5) religion, (6) nationality, (8) number of years working with peace operations, (9) whether the operation in which it operates has provided training on gender issues. For the construction of this database, official reports and statistics accessed through the UN Peacekeeping Resource Hub were used; The United Nations Statistical Commission, Peacekeeping Master Open Datasets, The Armed Conflict Database (ACD), The International Institute for Strategic Studies (IISS) database; Armed Conflict Location & Event Data Project (ACLED) database; from the Evidence and Data for Gender Equality (EDGE) database. In addition to access to databases, peacekeeping operations will be contacted directly, and data requested individually. The database showed that the presence of women in these peace operations is still incipient, but growing. There are few women in command positions, and most of them occupy administrative or human-care positions.Keywords: women, peace and security, peacekeeping operations, peace studies
Procedia PDF Downloads 1365155 The Evolution of Domestic Terrorism: Global Contemporary Models
Authors: Bret Brooks
Abstract:
As the international community has focused their attention in recent times on international and transnational terrorism, many nations have ignored their own domestic terrorist groups. Domestic terrorism has significantly evolved over the last 15 years and as such nation states must adequately understand their own individual issues as well as the broader worldwide perspective. Contemporary models show that obtaining peace with domestic groups is not only the end goal, but also very obtainable. By evaluating modern examples and incorporating successful strategies, countries around the world have the ability to bring about a diplomatic resolution to domestic extremism and domestic terrorism.Keywords: domestic, evolution, peace, terrorism
Procedia PDF Downloads 5205154 Method to Calculate the Added Value in Supply Chains of Electric Power Meters
Authors: Andrey Vinajera-Zamora, Norge Coello-Machado, Elke Glistau
Abstract:
The objective of this research is calculate the added value in operations of electric power meters (EPM) supply chains, specifically the EPM of 220v. The tool used is composed by six steps allowing at same time the identification of calibration of EPM as the bottleneck operation according the net added value being at same time the process of higher added value. On the other hand, this methodology allows calculate the amount of money to buy the raw material. The main conclusions are related to the analyze ‘s way and calculating of added value in supply chain integrated by the echelons procurement, production and distribution or any of these.Keywords: economic value added, supply chain management, value chain, bottleneck detection
Procedia PDF Downloads 2955153 PSS and SVC Controller Design by BFA to Enhance the Power System Stability
Authors: Saeid Jalilzadeh
Abstract:
Designing of PSS and SVC controller based on Bacterial Foraging Algorithm (BFA) to improve the stability of power system is proposed in this paper. Same controllers for PSS and SVC has been considered and Single machine infinite bus (SMIB) system with SVC located at the terminal of generator is used to evaluate the proposed controllers. BFA is used to optimize the coefficients of the controllers. Finally simulation for a special disturbance as an input power of generator with the proposed controllers in order to investigate the dynamic behavior of generator is done. The simulation results demonstrate that the system composed with optimized controllers has an outstanding operation in fast damping of oscillations of power system.Keywords: PSS, SVC, SMIB, optimize controller
Procedia PDF Downloads 4575152 A Novel Nanocomposite Membrane Designed for the Treatment of Oil/Gas Produced Water
Authors: Zhaoyang Liu, Detao Qin, Darren Delai Sun
Abstract:
The onshore production of oil and gas (for example, shale gas) generates large quantities of wastewater, referred to be ‘produced water’, which contains high contents of oils and salts. The direct discharge of produced water, if not appropriately treated, can be toxic to the environment and human health. Membrane filtration has been deemed as an environmental-friendly and cost-effective technology for treating oily wastewater. However, conventional polymeric membranes have their drawbacks of either low salt rejection rate or high membrane fouling tendency when treating oily wastewater. Recent years, forward osmosis (FO) membrane filtration has emerged as a promising technology with its unique advantages of low operation pressure and less membrane fouling tendency. However, until now there is still no report about FO membranes specially designed and fabricated for treating the oily and salty produced water. In this study, a novel nanocomposite FO membrane was developed specially for treating oil- and salt-polluted produced water. By leveraging the recent advance of nanomaterials and nanotechnology, this nanocomposite FO membrane was designed to be made of double layers: an underwater oleophobic selective layer on top of a nanomaterial infused polymeric support layer. Wherein, graphene oxide (GO) nanosheets were selected to add into the polymeric support layer because adding GO nanosheets can optimize the pore structures of the support layer, thus potentially leading to high water flux for FO membranes. In addition, polyvinyl alcohol (PVA) hydrogel was selected as the selective layer because hydrated and chemically-crosslinked PVA hydrogel is capable of simultaneously rejecting oil and salt. After nanocomposite FO membranes were fabricated, the membrane structures were systematically characterized with the instruments of TEM, FESEM, XRD, ATR-FTIR, surface zeta-potential and Contact angles (CA). The membrane performances for treating produced waters were tested with the instruments of TOC, COD and Ion chromatography. The working mechanism of this new membrane was also analyzed. Very promising experimental results have been obtained. The incorporation of GO nanosheets can reduce internal concentration polarization (ICP) effect in the polymeric support layer. The structural parameter (S value) of the new FO membrane is reduced by 23% from 265 ± 31 μm to 205 ± 23 μm. The membrane tortuosity (τ value) is decreased by 20% from 2.55 ± 0.19 to 2.02 ± 0.13 μm, which contributes to the decrease of S value. Moreover, the highly-hydrophilic and chemically-cross-linked hydrogel selective layer present high antifouling property under saline oil/water emulsions. Compared with commercial FO membrane, this new FO membrane possesses three times higher water flux, higher removal efficiencies for oil (>99.9%) and salts (>99.7% for multivalent ions), and significantly lower membrane fouling tendency (<10%). To our knowledge, this is the first report of a nanocomposite FO membrane with the combined merits of high salt rejection, high oil repellency and high water flux for treating onshore oil/gas produced waters. Due to its outstanding performance and ease of fabrication, this novel nanocomposite FO membrane possesses great application potential in wastewater treatment industry.Keywords: nanocomposite, membrane, polymer, graphene oxide
Procedia PDF Downloads 2495151 Simulation of Focusing of Diamagnetic Particles in Ferrofluid Microflows with a Single Set of Overhead Permanent Magnets
Authors: Shuang Chen, Zongqian Shi, Jiajia Sun, Mingjia Li
Abstract:
Microfluidics is a technology that small amounts of fluids are manipulated using channels with dimensions of tens to hundreds of micrometers. At present, this significant technology is required for several applications in some fields, including disease diagnostics, genetic engineering, and environmental monitoring, etc. Among these fields, manipulation of microparticles and cells in microfluidic device, especially separation, have aroused general concern. In magnetic field, the separation methods include positive and negative magnetophoresis. By comparison, negative magnetophoresis is a label-free technology. It has many advantages, e.g., easy operation, low cost, and simple design. Before the separation of particles or cells, focusing them into a single tight stream is usually a necessary upstream operation. In this work, the focusing of diamagnetic particles in ferrofluid microflows with a single set of overhead permanent magnets is investigated numerically. The geometric model of the simulation is based on the configuration of previous experiments. The straight microchannel is 24mm long and has a rectangular cross-section of 100μm in width and 50μm in depth. The spherical diamagnetic particles of 10μm in diameter are suspended into ferrofluid. The initial concentration of the ferrofluid c₀ is 0.096%, and the flow rate of the ferrofluid is 1.8mL/h. The magnetic field is induced by five identical rectangular neodymium−iron− boron permanent magnets (1/8 × 1/8 × 1/8 in.), and it is calculated by equivalent charge source (ECS) method. The flow of the ferrofluid is governed by the Navier–Stokes equations. The trajectories of particles are solved by the discrete phase model (DPM) in the ANSYS FLUENT program. The positions of diamagnetic particles are recorded by transient simulation. Compared with the results of the mentioned experiments, our simulation shows consistent results that diamagnetic particles are gradually focused in ferrofluid under magnetic field. Besides, the diamagnetic particle focusing is studied by varying the flow rate of the ferrofluid. It is in agreement with the experiment that the diamagnetic particle focusing is better with the increase of the flow rate. Furthermore, it is investigated that the diamagnetic particle focusing is affected by other factors, e.g., the width and depth of the microchannel, the concentration of the ferrofluid and the diameter of diamagnetic particles.Keywords: diamagnetic particle, focusing, microfluidics, permanent magnet
Procedia PDF Downloads 1305150 Competitiveness and Pricing Policy Assessment for Resilience Surface Access System at Airports
Authors: Dimitrios J. Dimitriou
Abstract:
Considering a worldwide tendency, air transports are growing very fast and many changes have taken place in planning, management and decision making process. Given the complexity of airport operation, the best use of existing capacity is the key driver of efficiency and productivity. This paper deals with the evaluation framework for the ground access at airports, by using a set of mode choice indicators providing key messages towards airport’s ground access performance. The application presents results for a sample of 12 European airports, illustrating recommendations to define policy and improve service for the air transport access chain.Keywords: airport ground access, air transport chain, airport access performance, airport policy
Procedia PDF Downloads 3705149 Total Arterial Coronary Revascularization with Aorto-Bifemoral Bipopliteal Bypass: A Case Report
Authors: Nuruddin Mohammod Zahangir, Syed Tanvir Ahmady, Firoz Ahmed, Mainul Kabir, Tamjid Mohammad Najmus Sakib Khan, Nazmul Hossain, Niaz Ahmed, Madhava Janardhan Naik
Abstract:
The management of combined Coronary Artery Disease and Peripheral Vascular Disease is a challenge and brings with it numerous clinical dilemmas.The 56 year old gentleman presented to our department with significant triple vessel disease with occluded lower end of aorta just before bifurcation and bilateral superficial femoral arteries. Operation was done on 11.03.14. The The Left Internal Mammary Artery (LIMA) and the Right Internal Mammary Artery (RIMA) were harvested in skeletonized manner. The free RIMA was then anastomosed with LIMA to make LIMA-RIMA Y. Cardio Pulmonary Bypass was then established and coronary artery bypass grafts performed. LIMA was anastomosed to the Left Anterior Descending artery. RIMA was anastomosed to Posterior Descending Artery, 1st and 2nd Obtuse Marginal arteries in a sequential manner. Abdomen was opened by midline incision. The infrarenal aorta exposed and was found to be severely diseased. A Vascular Clamp was applied infrarenally, aortotomy done and limited endarterectomy performed. An end-to-side anastomosis was done with upper end of PTFE synthetic Y-graft (14/7 mm) to the infarenal Aorta and the Clamp released. Good flow noted in both limbs of the graft. Patient was then slowly weaned off from Cardio Pulmonary Bypass without difficulty. The distal two limbs of the Y graft were passed to the groin through retroperitoneal tunnels and anastomosed end-to-side with the common femoral arteries. Saphenous vein was interposed between common femoral and popliteal arteries bilaterally through subfascial tunnels in both thigh. On 12th postoperative day he was discharged from hospital in good general condition. Follow up after 3 months of operation the patient is doing good and free of chest pain and claudication pain.Keywords: total arterial, coronary revascularization, aorto-bifemoral bypass, bifemoro-bipopliteal bypass
Procedia PDF Downloads 4725148 Ophthalmic Self-Medication Practices and Associated Factors among Adult Ophthalmic Patients
Authors: Sarah Saad Alamer, Shujon Mohammed Alazzam, Amjad Khater Alanazi, Mohamed Ahmed Sankari, Jana Sameer Sendy, Saleh Al-Khaldi, Khaled Allam, Amani Badawi
Abstract:
Background: Self-medication is defined as the selection of medicines by individuals to treat self-diagnosed. There are a lot of concerns about the safety of long-term use of nonprescription ophthalmic drugs, which may lead to a variety of serious ocular complications. Topical steroids can produce severe eye-threatening complications, including the elevation of intraocular pressure (IOP) with possible development of glaucoma and infrequent optic nerve damage. In recent times, many OTC ophthalmic preparations have been possible without a prescription. Objective: In our study, we aimed to determine the prevalence of self-medication ocular topical steroid practice and associated factors among adult ophthalmic patients attending King Saud medical city. Methods: This study was conducted as a cross-sectional study, targeting participants aged 18 years old or above who had used topical steroids eye drops to determine the prevalence of self-medication ocular topical steroid practice and associated factors among adult patients attending ophthalmology clinic in King Saud Medical City (KSMC) in the central region. Results: A total of 308 responses, 92(29.8%) were using ocular topical, 58(18.8%) with prescription, 5(1.6%) without prescription, 29(9.4%) with and without prescription while 216(70.1%) did not use it. The frequency of using ocular topical steroids without a prescription among participants was 11(12%) once and 33 (35%) many times. 26(28.3%) were having complication, mostly 11(12.4%) eye infection, 8(9%) Glaucoma, 6 (6.7%) Cataracts. Reasons for self-medication ocular topical steroid practice among participants were 14 (15.2%) repeated symptoms, 11(15.2%) had heard an advice from a friend, 11 (15.2%) thought they had enough knowledge. Conclusion: Our study reveals that, even though detecting a high level of knowledge and acceptable practices and attitudes among participants, the incidence of self-medication with steroid eye drops was observed. This practice is mainly due to participants having repeated symptoms and thinking they have enough knowledge. Increasing the education level of patients on self-medication steroid eye drops practice and it is associated complications would help reduce the incidence of self-medication steroid eye drops practice.Keywords: self-medication, ophthalmic medicine, steroid eye drop, over the counter
Procedia PDF Downloads 895147 Investigation of a Novel Dual Band Microstrip/Waveguide Hybrid Antenna Element
Authors: Raoudane Bouziyan, Kawser Mohammad Tawhid
Abstract:
Microstrip antennas are low in profile, light in weight, conformable in structure and are now developed for many applications. The main difficulty of the microstrip antenna is its narrow bandwidth. Several modern applications like satellite communications, remote sensing, and multi-function radar systems will find it useful if there is dual-band antenna operating from a single aperture. Some applications require covering both transmitting and receiving frequency bands which are spaced apart. Providing multiple antennas to handle multiple frequencies and polarizations becomes especially difficult if the available space is limited as with airborne platforms and submarine periscopes. Dual band operation can be realized from a single feed using slot loaded or stacked microstrip antenna or two separately fed antennas sharing a common aperture. The former design, when used in arrays, has certain limitations like complicated beam forming or diplexing network and difficulty to realize good radiation patterns at both the bands. The second technique provides more flexibility with separate feed system as beams in each frequency band can be controlled independently. Another desirable feature of a dual band antenna is easy adjustability of upper and lower frequency bands. This thesis presents investigation of a new dual-band antenna, which is a hybrid of microstrip and waveguide radiating elements. The low band radiator is a Shorted Annular Ring (SAR) microstrip antenna and the high band radiator is an aperture antenna. The hybrid antenna is realized by forming a waveguide radiator in the shorted region of the SAR microstrip antenna. It is shown that the upper to lower frequency ratio can be controlled by the proper choice of various dimensions and dielectric material. Operation in both linear and circular polarization is possible in either band. Moreover, both broadside and conical beams can be generated in either band from this antenna element. Finite Element Method based software, HFSS and Method of Moments based software, FEKO were employed to perform parametric studies of the proposed dual-band antenna. The antenna was not tested physically. Therefore, in most cases, both HFSS and FEKO were employed to corroborate the simulation results.Keywords: FEKO, HFSS, dual band, shorted annular ring patch
Procedia PDF Downloads 402