Search results for: network group behavior
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18236

Search results for: network group behavior

16976 Experimental Study on Weak Cohesion Less Soil Using Granular Piles with Geogrid Reinforcement

Authors: Sateesh Kumar Pisini, Swetha Priya Pisini

Abstract:

Granular piles are becoming popular as a technique of deep ground improvement not only in soft cohesive soils but also in loose cohesionless deposits. The present experimental study has been carried out on granular piles in sand (loose sand and medium dense sand i.e. relative density at 15% and 30%) with geogrid reinforcement. In this experimental study, a group of five piles installed in sand (at different spacing i.e s = 2d, 3d and 4d) the length and diameter of the pile (L = 0.4 m and d= 50 mm) kept as same for all series of experiments. Geogrid reinforcement is provided on granular piles with a limited number of laboratory tests. It has been conducted in laboratory to study the behavior of a granular pile with reinforced geogrid layers supporting a square footing at different s/d ratios. The influence of geogrid layers providing on granular piles investigated through model tests. In this paper the experimental study carried out results in significant increase in load carrying capacity and decrease in settlement reduction of the weak cohesionless soil. Also, the behavior of load carrying capacity and settlement with changing the s/d ratio has been carried out through a parametric study.

Keywords: granular piles, cohesionless soil, geogrid reinforcement, load carrying capacity

Procedia PDF Downloads 260
16975 A Twelve-Week Intervention Programme to Improve the Gross Motor Skills of Selected Children Diagnosed with Autism Spectrum Disorder

Authors: Eileen K. Africa, Karel J. van Deventer

Abstract:

Neuro-typical children develop the motor skills necessary to play, do schoolwork and interact with others. However, this is not observed in children who have learning or behavioural problems. Children with Autism Spectrum Disorder (ASD) are often referred to as clumsy because their body parts do not work well together in a sequence. Physical Activity (PA) has shown to be beneficial to the general population, therefore, providing children with ASD opportunities to take part in PA programmes, could prove to be beneficial in many ways and should be investigated. The purpose of this study was to design a specialised group intervention programme, to attempt to improve gross motor skills of selected children diagnosed with ASD between the ages of eight and 13 years. A government school for ASD learners was recruited to take part in this study, and a sample of convenience (N=7) was selected. Children in the experimental group (n=4) participated in a 12-week group intervention programme twice per week, while the control group continued with their normal daily routine. The Movement Assessment Battery for Children-Second Edition (MABC-2), was administered pre- and post-test to determine the children’s gross motor proficiency and to determine if the group intervention programme had an effect on the gross motor skills of the experimental group. Statistically significant improvements were observed in total motor skill proficiency (p < 0.05), of the experimental group. These results demonstrate the importance of gross motor skills interventions for children diagnosed with ASD. Future research should include more participants to ensure that the results can be generalised.

Keywords: autism spectrum disorder, children, gross motor skills, group intervention programme

Procedia PDF Downloads 295
16974 Study of the Effect of Seismic Behavior of Twin Tunnels Position on Each Other

Authors: M. Azadi, M. Kalhor

Abstract:

Excavation of shallow tunnels such as subways in urban areas plays a significant role as a life line and investigation of the soil behavior against tunnel construction is one of the vital subjects studied in the geotechnical scope. Nowadays, urban tunnels are mostly drilled by T.B.Ms and changing the applied forces to tunnel lining is one of the most risky matters while drilling tunnels by these machines. Variation of soil cementation can change the behavior of these forces in the tunnel lining. Therefore, this article is designed to assess the impact of tunnel excavation in different soils and several amounts of cementation on applied loads to tunnel lining under static and dynamic loads. According to the obtained results, changing the cementation of soil will affect the applied loadings to the tunnel envelope significantly. It can be determined that axial force in tunnel lining decreases considerably when soil cementation increases. Also, bending moment and shear force in tunnel lining decreases as the soil cementation increases and causes bending and shear behavior of the segments to improve. Based on the dynamic analyses, as cohesion factor in soil increases, bending moment, axial and shear forces of segments decrease but lining behavior of the tunnel is the same as static state. The results show that decreasing the overburden applied to lining caused by cementation is different in two static and dynamic states.

Keywords: seismic behavior, twin tunnels, tunnel positions, TBM, optimum distance

Procedia PDF Downloads 296
16973 Impact of Early Father Involvement on Middle Childhood Cognitive and Behavioral Outcomes

Authors: Jamel Slaughter

Abstract:

Father involvement across the development of a child has been linked to children’s psychological adjustment, fewer behavioral problems, and higher educational attainment. Conversely, there is much less research that highlights father involvement in relation to childhood development during early childhood period prior to preschool age (ages 1-3 years). Most research on fathers and child outcomes have been limited by its focus on the stages of adolescence, middle childhood, and infancy. This study examined the influence of father involvement, during the toddler stage, on 5th grade cognitive development, rule-breaking, and behavior outcomes measured by Child Behavior Checklist (CBCL) scores. Using data from the Early Head Start Research and Evaluation (EHSRE) Study, 1996-2010: United States, a total of 3,001 children and families were identified in 17 sites (cities), representing a diverse demographic sample. An independent samples t-test was run to compare cognitive development, aggressive, and rule-breaking behavior mean scores among children who had early continuous father involvement for the first 14 – 36 months to children who did not have early continuous father involvement for the first 14 – 36 months. Multiple linear regression was conducted to determine if continuous, or non-continuous father involvement (14 month-36 months), can be used to predict outcome scores on the Child Behavior Checklist in aggressive behavior, rule-breaking behavior, and cognitive development, at 5th grade. A statistically significant mean difference in cognitive development scores were found for children who had continuous father involvement (M=1.92, SD=2.41, t (1009) =2.81, p =.005, 95% CI=.146 to .828) compared to those who did not (M=2.60, SD=3.06, t (1009) =-2.38, p=.017, 95% CI= -1.08 to -.105). There was also a statistically significant mean difference in rule-breaking behavior scores between children who had early continuous father involvement (M=1.95, SD=2.33, t (1009) = 3.69, p <.001, 95% CI= .287 to .940), compared to those that did not (M=2.87, SD=2.93, t (1009) = -3.49, p =.001, 95% CI= -1.30 to -.364). No statistically significant difference was found in aggressive behavior scores. Multiple linear regression was performed using continuous father involvement to determine which has the largest relationship to rule-breaking behavior and cognitive development based on CBCL scores. Rule-breaking behavior was found to be significant (F (2, 1008) = 8.353, p<.001), with an R2 of .016. Cognitive development was also significant (F (2, 1008) = 4.44, p=.012), with an R2 of .009. Early continuous father involvement was a significant predictor of rule-breaking behavior and cognitive development at middle childhood. Findings suggest early continuous father involvement during the first 14 – 36 months of their children’s life, may lead to lower levels of rule-breaking behaviors and thought problems at 5th grade.

Keywords: cognitive development, early continuous father involvement, middle childhood, rule-breaking behavior

Procedia PDF Downloads 302
16972 Moral Decision-Making in the Criminal Justice System: The Influence of Gruesome Descriptions

Authors: Michel Patiño-Sáenz, Martín Haissiner, Jorge Martínez-Cotrina, Daniel Pastor, Hernando Santamaría-García, Maria-Alejandra Tangarife, Agustin Ibáñez, Sandra Baez

Abstract:

It has been shown that gruesome descriptions of harm can increase the punishment given to a transgressor. This biasing effect is mediated by negative emotions, which are elicited upon the presentation of gruesome descriptions. However, there is a lack of studies inquiring the influence of such descriptions on moral decision-making in people involved in the criminal justice system. Such populations are of special interest since they have experience dealing with gruesome evidence, but also formal education on how to assess evidence and gauge the appropriate punishment according to the law. Likewise, they are expected to be objective and rational when performing their duty, because their decisions can impact profoundly people`s lives. Considering these antecedents, the objective of this study was to explore the influence gruesome written descriptions on moral decision-making in this group of people. To that end, we recruited attorneys, judges and public prosecutors (Criminal justice group, CJ, n=30) whose field of specialty is criminal law. In addition, we included a control group of people who did not have a formal education in law (n=30), but who were paired in age and years of education with the CJ group. All participants completed an online, Spanish-adapted version of a moral decision-making task, which was previously reported in the literature and also standardized and validated in the Latin-American context. A series of text-based stories describing two characters, one inflicting harm on the other, were presented to participants. Transgressor's intentionality (accidental vs. intentional harm) and language (gruesome vs. plain) used to describe harm were manipulated employing a within-subjects and a between-subjects design, respectively. After reading each story, participants were asked to rate (a) the harmful action's moral adequacy, (b) the amount of punishment deserving the transgressor and (c) how damaging was his behavior. Results showed main effects of group, intentionality and type of language on all dependent measures. In both groups, intentional harmful actions were rated as significantly less morally adequate, were punished more severely and were deemed as more damaging. Moreover, control subjects deemed more damaging and punished more severely any type of action than the CJ group. In addition, there was an interaction between intentionality and group. People in the control group rated harmful actions as less morally adequate than the CJ group, but only when the action was accidental. Also, there was an interaction between intentionality and language on punishment ratings. Controls punished more when harm was described using gruesome language. However, that was not the case of people in the CJ group, who assigned the same amount of punishment in both conditions. In conclusion, participants with job experience in the criminal justice system or criminal law differ in the way they make moral decisions. Particularly, it seems that they are less sensitive to the biasing effect of gruesome evidence, which is probably explained by their formal education or their experience in dealing with such evidence. Nonetheless, more studies are needed to determine the impact this phenomenon has on the fulfillment of their duty.

Keywords: criminal justice system, emotions, gruesome descriptions, intentionality, moral decision-making

Procedia PDF Downloads 187
16971 Minimization of Denial of Services Attacks in Vehicular Adhoc Networking by Applying Different Constraints

Authors: Amjad Khan

Abstract:

The security of Vehicular ad hoc networking is of great importance as it involves serious life threats. Thus to provide secure communication amongst Vehicles on road, the conventional security system is not enough. It is necessary to prevent the network resources from wastage and give them protection against malicious nodes so that to ensure the data bandwidth availability to the legitimate nodes of the network. This work is related to provide a non conventional security system by introducing some constraints to minimize the DoS (Denial of services) especially data and bandwidth. The data packets received by a node in the network will pass through a number of tests and if any of the test fails, the node will drop those data packets and will not forward it anymore. Also if a node claims to be the nearest node for forwarding emergency messages then the sender can effectively identify the true or false status of the claim by using these constraints. Consequently the DoS(Denial of Services) attack is minimized by the instant availability of data without wasting the network resources.

Keywords: black hole attack, grey hole attack, intransient traffic tempering, networking

Procedia PDF Downloads 284
16970 Oil Reservoir Asphalting Precipitation Estimating during CO2 Injection

Authors: I. Alhajri, G. Zahedi, R. Alazmi, A. Akbari

Abstract:

In this paper, an Artificial Neural Network (ANN) was developed to predict Asphaltene Precipitation (AP) during the injection of carbon dioxide into crude oil reservoirs. In this study, the experimental data from six different oil fields were collected. Seventy percent of the data was used to develop the ANN model, and different ANN architectures were examined. A network with the Trainlm training algorithm was found to be the best network to estimate the AP. To check the validity of the proposed model, the model was used to predict the AP for the thirty percent of the data that was unevaluated. The Mean Square Error (MSE) of the prediction was 0.0018, which confirms the excellent prediction capability of the proposed model. In the second part of this study, the ANN model predictions were compared with modified Hirschberg model predictions. The ANN was found to provide more accurate estimates compared to the modified Hirschberg model. Finally, the proposed model was employed to examine the effect of different operating parameters during gas injection on the AP. It was found that the AP is mostly sensitive to the reservoir temperature. Furthermore, the carbon dioxide concentration in liquid phase increases the AP.

Keywords: artificial neural network, asphaltene, CO2 injection, Hirschberg model, oil reservoirs

Procedia PDF Downloads 364
16969 Changes in Serum Neopterin in Workers Exposed to Different Mineral Dust

Authors: Gospodinka Prakova, Pavlina Gidikova, Gergana Sandeva, Kamelia Haracherova, Emil Slavov

Abstract:

Neopterin was demonstrated to be a sensitive marker of cell-mediated immune reactions which plays a key role in the interaction of monocyte / macrophage activation. The purpose of this work was to investigate changes in serum neopterin in workers exposed to different composition of mineral dust. Material and Methods: Serum neopterin was studied in 193 exposed workers, divided into three groups, depending on the mineral dust and content of the quartz in the respirable fraction. The I-st group-coal dust containing less than 2% free crystalline silica (n=44), II-nd group-coal dust containing over 2% free crystalline silica (n=94) and the III-rd group-mixed dust with corundum and carborundum (n=55). The control group was composed of 21 individuals without exposure to dust. Serum neopterin was investigated by Elisa method in ng/ml according to the instructions of the manufacturer. Results and Discussion: It was found significantly higher level of serum neopterin in exposed workers of mineral dust (2,10 ± 0,62 ng / ml), compared with that of the control group (1,10 ± 0,85 ng/ml; p < 0,05). Neopterin levels in workers exposed to coal dust (1,87 ± 0,42 ng / ml-I-st and 3,32 ± 0,77 ng / ml-II-nd group) were significantly higher compared with those exposed to a mixed dust (1,31±0,68 mg / ml-third) and control group (p < 0,05). No significant difference in serum neopterin when exposed to a mixed dust composed of corundum and carborundum (III-rd) and a control group. Conclusion: The results of this study indicate activates a cell-mediated immune response when exposed to a mineral dust. The level of that activation depends mainly on the composition of the dust and is significantly highest in workers exposed to coal dust.

Keywords: mineral dust, neopterin, occupational exposure, respirable crystalline silica

Procedia PDF Downloads 266
16968 Personality Predispositions to Higher Order Motivations of Morality and Frugality for Pro-environmental Behavior

Authors: Sepase K. Ivande

Abstract:

Morality and frugality are two of the strongest motivations for pro-environmental behavior. However, formulating interventions based on these motivations requires knowledge of who is likely to be motivated by morality and who by frugality. This study investigated which personality traits make someone predisposed to morality motivation and which to frugality motivation for pro-environmental behavior. Results from a series of multiple regression analyses indicated that openness and agreeableness had a positive association with morality motivation, while conscientiousness had a positive association with frugality motivation. The link of agreeableness to morality motivation was stronger when the individuals were also higher on openness. Furthermore, a pair of Wilcoxon signed-rank tests revealed that individuals high on openness and agreeableness but low on conscientiousness scored higher on morality than frugality motivation. On the other hand, individuals low on openness and agreeableness but high on conscientiousness scored higher on frugality than morality motivation. The results of this study could inform the formulation of personalized interventions based on people’s personal predisposition to morality and frugality motivation for pro-environmental behavior, which could be more effective in getting them to be pro-environmental.

Keywords: agreeableness, conscientiousness, frugality, higher order motivations, morality, openness to experience, personality traits, pro-environmental behavior

Procedia PDF Downloads 107
16967 Hematologic Inflammatory Markers and Inflammation-Related Hepatokines in Pediatric Obesity

Authors: Mustafa Metin Donma, Orkide Donma

Abstract:

Obesity in children particularly draws attention because it may threaten the individual’s future life due to many chronic diseases it may lead to. Most of these diseases, including obesity itself altogether are related to inflammation. For this reason, inflammation-related parameters gain importance. Within this context, complete blood cell counts, ratios or indices derived from these counts have recently found some platform to be used as inflammatory markers. So far, mostly adipokines were investigated within the field of obesity. The liver is at the center of the metabolic pathways network. Metabolic inflammation is closely associated with cellular dysfunction. In this study, hematologic inflammatory markers and two major hepatokines, cytokines produced predominantly by the liver, fibroblast growth factor-21 (FGF-21) and fetuin A were investigated in pediatric obesity. Two groups were constituted from seventy-six obese children based on World Health Organization criteria. Group 1 was composed of children whose age- and sex-adjusted body mass index (BMI) percentiles were between 95 and 99. Group 2 consists of children who are above the 99ᵗʰ percentile. The first and the latter groups were defined as obese (OB) and morbid obese (MO). Anthropometric measurements of the children were performed. Informed consent forms and the approval of the institutional ethics committee were obtained. Blood cell counts and ratios were determined by an automated hematology analyzer. The related ratios and indexes were calculated. Statistical evaluation of the data was performed by the SPSS program. There was no statistically significant difference in terms of neutrophil-to lymphocyte ratio, monocyte-to-high density lipoprotein cholesterol ratio and the platelet-to-lymphocyte ratio between the groups. Mean platelet volume and platelet distribution width values were decreased (p<0.05), total platelet count, red cell distribution width (RDW) and systemic immune inflammation index values were increased (p<0.01) in MO group. Both hepatokines were increased in the same group; however, increases were not statistically significant. In this group, also a strong correlation was calculated between FGF-21 and RDW when controlled by age, hematocrit, iron and ferritin (r=0.425; p<0.01). In conclusion, the association between RDW, a hematologic inflammatory marker, and FGF-21, an inflammation-related hepatokine, found in MO group is an important finding discriminating between OB and MO children. This association is even more powerful when controlled by age and iron-related parameters.

Keywords: childhood obesity, fetuin A , fibroblast growth factor-21, hematologic markers, red cell distribution width

Procedia PDF Downloads 198
16966 A Comparative Study of the Effectiveness of Narrative Therapy in Individual and Group Counseling on Promoting Hope in With Breast Cancer’s Women

Authors: Sajadian Akram, Tavasoli F.

Abstract:

Breast cancer is the second most common cancer in the world and certainly the most frequent cancer mostly among women. This study was aimed to compare the effectiveness of individual counseling and group narrative therapy on female patients' life expectancy afflicted by breast cancer. The present study is a pre-test-post-test clinical trial. Fifty-five patients with breast cancer were randomly selected in the follow-up period and after their active medical treatment completion. Then, they were randomly divided into two groups: individual counseling and group counseling. Herth hope index (HHI) was used to measure the patients' hope level. Data were analyzed using t-test and SPSS software. hope rate was statistically significant in both groups receiving individual and group narrative therapy in the post-test compared to the pre-test (P <00000). Moreover, the comparative evaluation of hope in both groups (individual & group counseling) in the post-test showed that group narrative counseling is more effective than individual narrative counseling (P <00000). Conclusion: Narrative therapy promotes hope in breast cancer patients effectively. Due to the nature of breast cancer and its psychological effects in the post-treatment period, providing narrative group therapy can improve life quality. Patients' life quality changes in tandem with changes in hope.

Keywords: hope, narrative therapy, counseling, breast cancer

Procedia PDF Downloads 123
16965 A Fast Community Detection Algorithm

Authors: Chung-Yuan Huang, Yu-Hsiang Fu, Chuen-Tsai Sun

Abstract:

Community detection represents an important data-mining tool for analyzing and understanding real-world complex network structures and functions. We believe that at least four criteria determine the appropriateness of a community detection algorithm: (a) it produces useable normalized mutual information (NMI) and modularity results for social networks, (b) it overcomes resolution limitation problems associated with synthetic networks, (c) it produces good NMI results and performance efficiency for Lancichinetti-Fortunato-Radicchi (LFR) benchmark networks, and (d) it produces good modularity and performance efficiency for large-scale real-world complex networks. To our knowledge, no existing community detection algorithm meets all four criteria. In this paper, we describe a simple hierarchical arc-merging (HAM) algorithm that uses network topologies and rule-based arc-merging strategies to identify community structures that satisfy the criteria. We used five well-studied social network datasets and eight sets of LFR benchmark networks to validate the ground-truth community correctness of HAM, eight large-scale real-world complex networks to measure its performance efficiency, and two synthetic networks to determine its susceptibility to resolution limitation problems. Our results indicate that the proposed HAM algorithm is capable of providing satisfactory performance efficiency and that HAM-identified communities were close to ground-truth communities in social and LFR benchmark networks while overcoming resolution limitation problems.

Keywords: complex network, social network, community detection, network hierarchy

Procedia PDF Downloads 227
16964 Decision Support System for Diagnosis of Breast Cancer

Authors: Oluwaponmile D. Alao

Abstract:

In this paper, two models have been developed to ascertain the best network needed for diagnosis of breast cancer. Breast cancer has been a disease that required the attention of the medical practitioner. Experience has shown that misdiagnose of the disease has been a major challenge in the medical field. Therefore, designing a system with adequate performance for will help in making diagnosis of the disease faster and accurate. In this paper, two models: backpropagation neural network and support vector machine has been developed. The performance obtained is also compared with other previously obtained algorithms to ascertain the best algorithms.

Keywords: breast cancer, data mining, neural network, support vector machine

Procedia PDF Downloads 347
16963 Classifying Students for E-Learning in Information Technology Course Using ANN

Authors: Sirilak Areerachakul, Nat Ployong, Supayothin Na Songkla

Abstract:

This research’s objective is to select the model with most accurate value by using Neural Network Technique as a way to filter potential students who enroll in IT course by electronic learning at Suan Suanadha Rajabhat University. It is designed to help students selecting the appropriate courses by themselves. The result showed that the most accurate model was 100 Folds Cross-validation which had 73.58% points of accuracy.

Keywords: artificial neural network, classification, students, e-learning

Procedia PDF Downloads 426
16962 Effects of Waist-to-Hip Ratio and Visceral Fat Measurements Improvement on Offshore Petrochemical Company Shift Employees' Work Efficiency

Authors: Essam Amerian

Abstract:

The aim of this study was to investigate the effects of improving waist-to-hip ratio (WHR) and visceral fat components on the health of shift workers in an offshore petrochemical company. A total of 100 male shift workers participated in the study, with an average age of 40.5 years and an average BMI of 28.2 kg/m². The study employed a randomized controlled trial design, with participants assigned to either an intervention group or a control group. The intervention group received a 12-week program that included dietary counseling, physical activity recommendations, and stress management techniques. The control group received no intervention. The outcomes measured were changes in WHR, visceral fat components, blood pressure, and lipid profile. The results showed that the intervention group had a statistically significant improvement in WHR (p<0.001) and visceral fat components (p<0.001) compared to the control group. Furthermore, there were statistically significant improvements in systolic blood pressure (p=0.015) and total cholesterol (p=0.034) in the intervention group compared to the control group. These findings suggest that implementing a 12-week program that includes dietary counseling, physical activity recommendations, and stress management techniques can effectively improve WHR, visceral fat components, and cardiovascular health among shift workers in an offshore petrochemical company.

Keywords: body composition, waist-hip-ratio, visceral fat, shift worker, work efficiency

Procedia PDF Downloads 79
16961 Profit-Based Artificial Neural Network (ANN) Trained by Migrating Birds Optimization: A Case Study in Credit Card Fraud Detection

Authors: Ashkan Zakaryazad, Ekrem Duman

Abstract:

A typical classification technique ranks the instances in a data set according to the likelihood of belonging to one (positive) class. A credit card (CC) fraud detection model ranks the transactions in terms of probability of being fraud. In fact, this approach is often criticized, because firms do not care about fraud probability but about the profitability or costliness of detecting a fraudulent transaction. The key contribution in this study is to focus on the profit maximization in the model building step. The artificial neural network proposed in this study works based on profit maximization instead of minimizing the error of prediction. Moreover, some studies have shown that the back propagation algorithm, similar to other gradient–based algorithms, usually gets trapped in local optima and swarm-based algorithms are more successful in this respect. In this study, we train our profit maximization ANN using the Migrating Birds optimization (MBO) which is introduced to literature recently.

Keywords: neural network, profit-based neural network, sum of squared errors (SSE), MBO, gradient descent

Procedia PDF Downloads 475
16960 The Role of Group Interaction and Managers’ Risk-willingness for Business Model Innovation Decisions: A Thematic Analysis

Authors: Sarah Müller-Sägebrecht

Abstract:

Today’s volatile environment challenges executives to make the right strategic decisions to gain sustainable success. Entrepreneurship scholars postulate mainly positive effects of environmental changes on entrepreneurship behavior, such as developing new business opportunities, promoting ingenuity, and the satisfaction of resource voids. A strategic solution approach to overcome threatening environmental changes and catch new business opportunities is business model innovation (BMI). Although this research stream has gained further importance in the last decade, BMI research is still insufficient. Especially BMI barriers, such as inefficient strategic decision-making processes, need to be identified. Strategic decisions strongly impact organizational future and are, therefore, usually made in groups. Although groups draw on a more extensive information base than single individuals, group-interaction effects can influence the decision-making process - in a favorable but also unfavorable way. Decisions are characterized by uncertainty and risk, whereby their intensity is perceived individually differently. The individual risk-willingness influences which option humans choose. The special nature of strategic decisions, such as in BMI processes, is that these decisions are not made individually but in groups due to their high organizational scope. These groups consist of different personalities whose individual risk-willingness can vary considerably. It is known from group decision theory that these individuals influence each other, observable in different group-interaction effects. The following research questions arise: i) How does group interaction shape BMI decision-making from managers’ perspective? ii) What are the potential interrelations among managers’ risk-willingness, group biases, and BMI decision-making? After conducting 26 in-depth interviews with executives from the manufacturing industry, applied Gioia methodology reveals the following results: i) Risk-averse decision-makers have an increased need to be guided by facts. The more information available to them, the lower they perceive uncertainty and the more willing they are to pursue a specific decision option. However, the results also show that social interaction does not change the individual risk-willingness in the decision-making process. ii) Generally, it could be observed that during BMI decisions, group interaction is primarily beneficial to increase the group’s information base for making good decisions, less than for social interaction. Further, decision-makers mainly focus on information available to all decision-makers in the team but less on personal knowledge. This work contributes to strategic decision-making literature twofold. First, it gives insights into how group-interaction effects influence an organization’s strategic BMI decision-making. Second, it enriches risk-management research by highlighting how individual risk-willingness impacts organizational strategic decision-making. To date, it was known in BMI research that risk aversion would be an internal BMI barrier. However, with this study, it becomes clear that it is not risk aversion that inhibits BMI. Instead, the lack of information prevents risk-averse decision-makers from choosing a riskier option. Simultaneously, results show that risk-averse decision-makers are not easily carried away by the higher risk-willingness of their team members. Instead, they use social interaction to gather missing information. Therefore, executives need to provide sufficient information to all decision-makers to catch promising business opportunities.

Keywords: business model innovation, cognitive biases, group-interaction effects, strategic decision-making, risk-willingness

Procedia PDF Downloads 78
16959 A Summary-Based Text Classification Model for Graph Attention Networks

Authors: Shuo Liu

Abstract:

In Chinese text classification tasks, redundant words and phrases can interfere with the formation of extracted and analyzed text information, leading to a decrease in the accuracy of the classification model. To reduce irrelevant elements, extract and utilize text content information more efficiently and improve the accuracy of text classification models. In this paper, the text in the corpus is first extracted using the TextRank algorithm for abstraction, the words in the abstract are used as nodes to construct a text graph, and then the graph attention network (GAT) is used to complete the task of classifying the text. Testing on a Chinese dataset from the network, the classification accuracy was improved over the direct method of generating graph structures using text.

Keywords: Chinese natural language processing, text classification, abstract extraction, graph attention network

Procedia PDF Downloads 100
16958 A Type-2 Fuzzy Model for Link Prediction in Social Network

Authors: Mansoureh Naderipour, Susan Bastani, Mohammad Fazel Zarandi

Abstract:

Predicting links that may occur in the future and missing links in social networks is an attractive problem in social network analysis. Granular computing can help us to model the relationships between human-based system and social sciences in this field. In this paper, we present a model based on granular computing approach and Type-2 fuzzy logic to predict links regarding nodes’ activity and the relationship between two nodes. Our model is tested on collaboration networks. It is found that the accuracy of prediction is significantly higher than the Type-1 fuzzy and crisp approach.

Keywords: social network, link prediction, granular computing, type-2 fuzzy sets

Procedia PDF Downloads 326
16957 Fault Detection of Pipeline in Water Distribution Network System

Authors: Shin Je Lee, Go Bong Choi, Jeong Cheol Seo, Jong Min Lee, Gibaek Lee

Abstract:

Water pipe network is installed underground and once equipped; it is difficult to recognize the state of pipes when the leak or burst happens. Accordingly, post management is often delayed after the fault occurs. Therefore, the systematic fault management system of water pipe network is required to prevent the accident and minimize the loss. In this work, we develop online fault detection system of water pipe network using data of pipes such as flow rate or pressure. The transient model describing water flow in pipelines is presented and simulated using Matlab. The fault situations such as the leak or burst can be also simulated and flow rate or pressure data when the fault happens are collected. Faults are detected using statistical methods of fast Fourier transform and discrete wavelet transform, and they are compared to find which method shows the better fault detection performance.

Keywords: fault detection, water pipeline model, fast Fourier transform, discrete wavelet transform

Procedia PDF Downloads 512
16956 Corporate Social Media: Understanding the Impact of Service Quality and Social Value on Customer Behavior

Authors: Regina Connolly, Murray Scott, William DeLone

Abstract:

Social media are revolutionary technologies that are transforming the way we communicate, the way we collaborate and the way we influence. Companies are making major investments in platforms such as Facebook and Twitter because they realize that social media are an influential force on customer perceptions and behavior. However, to date there is little guidance on what constitutes an effective deployment of social media and there is no empirical evidence that social medial investments are yielding positive returns. This research develops and validates the components of an effective corporate social media platform in order to examine the impact of effective social media on customer intentions and behavior.

Keywords: service quality, social value, social media, IS success, Web 2.0, customer behaviour

Procedia PDF Downloads 559
16955 The Effectiveness of Group Counseling of Mindfulness-Based Cognitive Therapy on Cognitive Emotion Regulation in High School Students

Authors: Hossein Ilanloo, Sedigheh Ahmadi, Kianoosh Zahrakar

Abstract:

The present study aims at investigating the effectiveness of group counseling of mindfulness-based cognitive therapy on cognitive emotion regulation in high school students. The research design was quasi-experimental and pre-test-post-test type and a two-month follow-up with a control group. The statistical population of the study consisted of all-male high school students in Takestan city in the Academic Year 2020-2021. The sample comprised 30 high school male students selected through the convenience sampling method and randomly assigned to experimental (n=15) and control (n=15) groups. The experimental group then received ten sessions of 90-minute group counseling of mindfulness-based cognitive therapy, and the control group did not receive any intervention. In order to collect data, the author used the Cognitive Emotion Regulation Questionnaire (CERQ). The researcher also used multivariate analysis of covariance, repeated measures, LSD post hoc test, and SPSS-26 software for data analysis.

Keywords: mindfulness-based cognitive therapy, cognitive emotion regulation, students, high schools

Procedia PDF Downloads 123
16954 A General Iterative Nonlinear Programming Method to Synthesize Heat Exchanger Network

Authors: Rupu Yang, Cong Toan Tran, Assaad Zoughaib

Abstract:

The work provides an iterative nonlinear programming method to synthesize a heat exchanger network by manipulating the trade-offs between the heat load of process heat exchangers (HEs) and utilities. We consider for the synthesis problem two cases, the first one without fixed cost for HEs, and the second one with fixed cost. For the no fixed cost problem, the nonlinear programming (NLP) model with all the potential HEs is optimized to obtain the global optimum. For the case with fixed cost, the NLP model is iterated through adding/removing HEs. The method was applied in five case studies and illustrated quite well effectiveness. Among which, the approach reaches the lowest TAC (2,904,026$/year) compared with the best record for the famous Aromatic plants problem. It also locates a slightly better design than records in literature for a 10 streams case without fixed cost with only 1/9 computational time. Moreover, compared to the traditional mixed-integer nonlinear programming approach, the iterative NLP method opens a possibility to consider constraints (such as controllability or dynamic performances) that require knowing the structure of the network to be calculated.

Keywords: heat exchanger network, synthesis, NLP, optimization

Procedia PDF Downloads 162
16953 The Effect of Geographical Differentials of Epidemiological Transition on Health-Seeking Behavior in India

Authors: Sumit Kumar Das, Laishram Ladusingh

Abstract:

Aim: The aim of the study is to examine the differential of epidemiological transition across fifteen agro-climatic zones of India and its effect on health-seeking behavior. Data and Methods: Unit level data on consumption expenditure on health of India from three decadal rounds conducted by National Sample Survey Organization are used for the analysis. These three rounds are 52nd (1995-96), 60th (2004-05) and 71st (2014-15). The age-adjusted prevalence rate for communicable diseases and non-communicable diseases are estimated for fifteen agro-climatic zones of India for three time periods. Bivariate analysis is used to find out determinants of health-seeking behavior. Multilevel logistic regression is used to examine factors effecting on household health-seeking behavior. Result: The prevalence of communicable diseases is increasing in most of the zones of India. Every South Indian zones, Gujarat plains, and lower Gangetic plain are facing the severe attack of dual burden of diseases. Demand for medical advice has increased in southern zones, and east zones, reliance on private healthcare facilities are increasing in most of the zone. Demographic characteristics of the household head have a significant impact on health-seeking behavior. Conclusion: Proper program implementation is required considering the disease prevalence and differential in the pattern of health seeking behavior. Along with initiation and strengthening of programs for non-communicable, existing programs for communicable diseases need to monitor and supervised strictly.

Keywords: agro-climatic zone, epidemiological transition, health-seeking behavior, multilevel regression

Procedia PDF Downloads 183
16952 Scaling Siamese Neural Network for Cross-Domain Few Shot Learning in Medical Imaging

Authors: Jinan Fiaidhi, Sabah Mohammed

Abstract:

Cross-domain learning in the medical field is a research challenge as many conditions, like in oncology imaging, use different imaging modalities. Moreover, in most of the medical learning applications, the sample training size is relatively small. Although few-shot learning (FSL) through the use of a Siamese neural network was able to be trained on a small sample with remarkable accuracy, FSL fails to be effective for use in multiple domains as their convolution weights are set for task-specific applications. In this paper, we are addressing this problem by enabling FSL to possess the ability to shift across domains by designing a two-layer FSL network that can learn individually from each domain and produce a shared features map with extra modulation to be used at the second layer that can recognize important targets from mix domains. Our initial experimentations based on mixed medical datasets like the Medical-MNIST reveal promising results. We aim to continue this research to perform full-scale analytics for testing our cross-domain FSL learning.

Keywords: Siamese neural network, few-shot learning, meta-learning, metric-based learning, thick data transformation and analytics

Procedia PDF Downloads 56
16951 Hierarchy and Weight of Influence Factors on Labor Productivity in the Construction Industry of the Nepal

Authors: Shraddha Palikhe, Sunkuk Kim

Abstract:

The construction industry is the most labor intensive in Nepal. It is obvious that construction is a major sector and any productivity enhancement activity in this sector will have a positive impact in the overall improvement of the national economy. Previous studies have stated that Nepal has poor labor productivity among other south Asian countries. Though considerable research has been done on productivity factors in other countries, no study has addressed labor productivity issues in Nepal. Therefore, the main objective of this study is to identify and hierarchy the influence factors for poor labor productivity. In this study, a questionnaire approach is chosen as a method of the survey from thirty experts involved in the construction industry, such as Architects, Civil Engineers, Project Engineers and Site Engineers. A survey was conducted in Nepal, to identify the major factors impacting construction labor productivity. Analytic Hierarchy Process (AHP) analysis method was used to understand the underlying relationships among the factors, categorized into five groups, namely (1) Labor-management group; (2) Material management group; (3) Human labor group; (4) Technological group and (5) External group and was divided into 33 subfactors. AHP was used to establish the relative importance of the criteria. The AHP makes pairwise comparisons of relative importance between hierarchy elements grouped by labor productivity decision criteria. Respondents were asked to answer based on their experience of construction works. On the basis of the respondent’s response, weight of all the factors were calculated and ranked it. The AHP results were tabulated based on weight and ranking of influence factors. AHP model consists of five main criteria and 33 sub-criteria. Among five main criteria, the scenario assigns a weight of highest influential factor i.e. 26.15% to human labor group followed by 23.01% to technological group, 22.97% to labor management group, 17.61% material management group and 10.25% to external group. While in 33 sub-criteria, the most influential factor for poor productivity in Nepal are lack of monetary incentive (20.53%) for human labor group, unsafe working condition (17.55%) for technological group, lack of leadership (18.43%) for labor management group, unavailability of tools at site (25.03%) for material management group and strikes (35.01%) for external group. The results show that AHP model associated criteria are helpful to predict the current situation of labor productivity. It is essential to consider these influence factors to improve the labor productivity in the construction industry of Nepal.

Keywords: construction, hierarchical analysis, influence factors, labor productivity

Procedia PDF Downloads 404
16950 Optimization of a Convolutional Neural Network for the Automated Diagnosis of Melanoma

Authors: Kemka C. Ihemelandu, Chukwuemeka U. Ihemelandu

Abstract:

The incidence of melanoma has been increasing rapidly over the past two decades, making melanoma a current public health crisis. Unfortunately, even as screening efforts continue to expand in an effort to ameliorate the death rate from melanoma, there is a need to improve diagnostic accuracy to decrease misdiagnosis. Artificial intelligence (AI) a new frontier in patient care has the ability to improve the accuracy of melanoma diagnosis. Convolutional neural network (CNN) a form of deep neural network, most commonly applied to analyze visual imagery, has been shown to outperform the human brain in pattern recognition. However, there are noted limitations with the accuracy of the CNN models. Our aim in this study was the optimization of convolutional neural network algorithms for the automated diagnosis of melanoma. We hypothesized that Optimal selection of the momentum and batch hyperparameter increases model accuracy. Our most successful model developed during this study, showed that optimal selection of momentum of 0.25, batch size of 2, led to a superior performance and a faster model training time, with an accuracy of ~ 83% after nine hours of training. We did notice a lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone. Training set image transformations did not result in a superior model performance in our study.

Keywords: melanoma, convolutional neural network, momentum, batch hyperparameter

Procedia PDF Downloads 101
16949 Effect of Delay on Supply Side on Market Behavior: A System Dynamic Approach

Authors: M. Khoshab, M. J. Sedigh

Abstract:

Dynamic systems, which in mathematical point of view are those governed by differential equations, are much more difficult to study and to predict their behavior in comparison with static systems which are governed by algebraic equations. Economical systems such as market are among complicated dynamic systems. This paper tries to adopt a very simple mathematical model for market and to study effect of supply and demand function on behavior of the market while the supply side experiences a lag due to production restrictions.

Keywords: dynamic system, lag on supply demand, market stability, supply demand model

Procedia PDF Downloads 295
16948 Platelet Transfusion Thresholds for Pediatrics; A Retrospective Study

Authors: Hessah Alsulami, Majedah Aldosari

Abstract:

Introduction: Platelet threshold of 10x109 /L is recommended for clinically stable thrombocytopenic pediatric patients. Transfusions at a higher level (given the absence of research evidence, as determined by clinical circumstances, generally at threshold of 40x109 /L) may be required for patients with signs of bleeding, high fever, hyper-leukocytosis, rapid fall in platelet count, concomitant coagulation abnormality, critically ill patients, and those with impaired platelet function (including drug induced). Transfusions at a higher level may be also required for patients undergoing invasive procedures. Method: This study is a retrospective observational analysis of platelet transfusion thresholds in a single secondary pediatric hospital in Riyadh. From the blood bank database, the list of the patients who received platelet transfusions in the second half of 2018 was retrieved. Patients were divided into two groups; group A, those belong to the category of high platelet level for transfusion (such as those with bleeding, high fever, rapid fall in platelet count, impaired platelet function or undergoing invasive procedures) and group B, those who were not. Then we looked at the pre and post transfusion platelet levels for each group. The data was analyzed using GraphPad software and the data expressed as Mean ± SD. Result: A total of 112 of transfusion episodes in 61 patients (38% female) were analyzed. The age ranged from 24 days to 8 years. The distribution of platelet transfusion episodes was 64% (n=72) for group A and 36% (n= 40) for group B. The mean pre-transfusion platelet count was 46x103 ± (11x 103) for group A and 28x103 ± (6x103) for group B. the post-transfusion mean platelet count was 61 x 103 ± (14 x 103) and 60 x103 ± (24 x 103) for group A and B respectively. Among the groups the rise in the mean platelet count after transfusion was significant among stable patients (group B) compared to unstable patients (group A) (P < 0.001). Conclusion: The platelet count threshold for transfusion varied with the clinical condition and is higher among unstable patients’ group which is expected. For stable patients the threshold was higher than what it should be which means that the clinicians don’t follow the guidelines in this regard. The rise of platelet count after transfusion was higher among stable patients.

Keywords: platelet, transfusion, threshold, pediatric

Procedia PDF Downloads 71
16947 A Neural Network Control for Voltage Balancing in Three-Phase Electric Power System

Authors: Dana M. Ragab, Jasim A. Ghaeb

Abstract:

The three-phase power system suffers from different challenging problems, e.g. voltage unbalance conditions at the load side. The voltage unbalance usually degrades the power quality of the electric power system. Several techniques can be considered for load balancing including load reconfiguration, static synchronous compensator and static reactive power compensator. In this work an efficient neural network is designed to control the unbalanced condition in the Aqaba-Qatrana-South Amman (AQSA) electric power system. It is designed for highly enhanced response time of the reactive compensator for voltage balancing. The neural network is developed to determine the appropriate set of firing angles required for the thyristor-controlled reactor to balance the three load voltages accurately and quickly. The parameters of AQSA power system are considered in the laboratory model, and several test cases have been conducted to test and validate the proposed technique capabilities. The results have shown a high performance of the proposed Neural Network Control (NNC) technique for correcting the voltage unbalance conditions at three-phase load based on accuracy and response time.

Keywords: three-phase power system, reactive power control, voltage unbalance factor, neural network, power quality

Procedia PDF Downloads 195