Search results for: metal active gas welding
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5979

Search results for: metal active gas welding

4719 Application of Host Factors as Biomarker in Early Diagnosis of Pulmonary Tuberculosis

Authors: Ambrish Tiwari, Sudhasini Panda, Archana Singh, Kalpana Luthra, S. K. Sharma

Abstract:

Introduction: On the basis of available literature we know that various host factors play a role in outcome of Tuberculosis (TB) infection by modulating innate immunity. One such factor is Inducible Nitric Oxide Synthase enzyme (iNOS) which help in the production of Nitric Oxide (NO), an antimicrobial agent. Expression of iNOS is in control of various host factors in which Vitamin D along with its nuclear receptor Vitamin D receptor (VDR) is one of them. Vitamin D along with its receptor also produces cathelicidin (antimicrobicidal agent). With this background, we attempted to investigate the levels of Vitamin D and NO along with their associated molecules in tuberculosis patients and household contacts as compared to healthy controls and assess the implication of these findings in susceptibility to tuberculosis (TB). Study subjects and methods: 100 active TB patients, 75 household contacts, and 70 healthy controls were taken. VDR and iNOS mRNA levels were studied using real-time PCR. Serum VDR, cathelicidin, iNOS levels were measured using ELISA. Serum Vitamin D levels were measured in serum samples using chemiluminescence based immunoassay. NO was measured using colorimetry based kit. Results: VDR and iNOS mRNA levels were found to be lower in active TB group compared to household contacts and healthy controls (P=0.0001 and 0.005 respectively). The serum levels of Vitamin D were also found to be lower in active TB group as compared to healthy controls (P =0.001). Levels of cathelicidin and NO was higher in patient group as compared to other groups (p=0.01 and 0.5 respectively). However, the expression of VDR and iNOS and levels of vitamin D was significantly (P < 0.05) higher in household contacts compared to both active TB and healthy control groups. Inference: Higher levels of Vitamin D along with VDR and iNOS expression in household contacts as compared to patients suggest that vitamin D might have a protective role against TB which prevents activation of the disease. From our data, we can conclude that decreased vitamin D levels could be implicated in disease progression and we can use cathelicidin and NO as a biomarker for early diagnosis of pulmonary tuberculosis.

Keywords: vitamin D, VDR, iNOS, tuberculosis

Procedia PDF Downloads 303
4718 Adhesion Enhancement of Boron Carbide Coatings on Aluminum Substrates Utilizing an Intermediate Adhesive Layer

Authors: Sharon Waichman, Shahaf Froim, Ido Zukerman, Shmuel Barzilai, Shmual Hayun, Avi Raveh

Abstract:

Boron carbide is a ceramic material with superior properties such as high chemical and thermal stability, high hardness and high wear resistance. Moreover, it has a big cross section for neutron absorption and therefore can be employed in nuclear based applications. However, an efficient attachment of boron carbide to a metal such as aluminum can be very challenging, mainly because of the formation of aluminum-carbon bonds that are unstable in humid environment, the affinity of oxygen to the metal and the different thermal expansion coefficients of the two materials that may cause internal stresses and a subsequent failure of the bond. Here, we aimed to achieving a strong and a durable attachment between the boron carbide coating and the aluminum substrate. For this purpose, we applied Ti as a thin intermediate layer that provides a gradual change in the thermal expansion coefficients of the configured layers. This layer is continuous and therefore prevents the formation of aluminum-carbon bonds. Boron carbide coatings with a thickness of 1-5 µm were deposited on the aluminum substrate by pulse-DC magnetron sputtering. Prior to the deposition of the boron carbide layer, the surface was pretreated by energetic ion plasma followed by deposition of the Ti intermediate adhesive layer in a continuous process. The properties of the Ti intermediate layer were adjusted by the bias applied to the substrate. The boron carbide/aluminum bond was evaluated by various methods and complementary techniques, such as SEM/EDS, XRD, XPS, FTIR spectroscopy and Glow Discharge Spectroscopy (GDS), in order to explore the structure, composition and the properties of the layers and to study the adherence mechanism of the boron carbide/aluminum contact. Based on the interfacial bond characteristics, we propose a desirable solution for improved adhesion of boron carbide to aluminum using a highly efficient intermediate adhesive layer.

Keywords: adhesion, boron carbide coatings, ceramic/metal bond, intermediate layer, pulsed-DC magnetron sputtering

Procedia PDF Downloads 164
4717 Aryne Mediated, Transition-Metal Free Arylations of Quinolines for Medicinal and Materials Applications

Authors: Rakesh Kumar, Shashi Janeoo, Ankit Dhiman, Siddharth Chopra

Abstract:

Arynes are versatile reactive intermediates that offer broad opportunities in green organic synthesis. Arynes are potential aryl group surrogates for the transition metal-free environment friendly arylation reactions. Regioselective arylations of quinolines were achieved by the reactions of quinoline N-oxides with aryne intermediates generated in situ from the Kobayashi precursors. Various 2-substituted quinolines provided 3-arylated-2-substituted quinolines under ambient conditions. Acridine N-oxides also reacted well and provided unusual 4-arylacridines. Various fluorine containing 2,3-diarylquinaolines prepared using this approach were evaluated for antibacterial activity and two compounds inhibited the drug-resistant strains of S-aureus with a good selectivity index. Further, the 2,3-diarylquinolines as the potential optoelectronic materials were prepared by the aryne chemistry approach and their optical and electronic properties for such applications are under study. The aryne intermediates provide an effective Green Chemistry tool to achieve versatile arylated heteroarenes for diverse applications.

Keywords: arynes, arylation, quinolines, acridines.

Procedia PDF Downloads 92
4716 Ultrasonography of Low Extremities Veins Before and After Replacement of Knee Joint by Endoprosthesis

Authors: A. V. Alabut, V. D. Sikilinda, N. J. Nelasov, O. L. Eroshenko, M. N. Morgunov, I. V. Koroleva

Abstract:

We have analyzed the results of treatment of 204 patients with knee prosthetic arthroplasty. For the purpose of active delineation of vascular pathology triplex sonography of arterial and venous vessels of low extremities was performed in all cases in the preoperative period. When it was necessary, reconstructive vascular surgery was implemented to improve peripheral circulation and reduce the hazard of thrombosis after knee replacement. The combination of specific and nonspecific methods of thromboprophylaxis was used in perioperative period. On 7-10 day and 2.5-3 month after prosthetic arthroplasty, all patients iteratively underwent triple sonography. In case of detection of floating thrombus, urgent venous ligation was performed. Active diagnostics of venous thrombosis gave the opportunity to avoid fatal pulmonary embolism.

Keywords: knee replacement, venous thrombosis, pulmonary embolism, vascular surgery

Procedia PDF Downloads 368
4715 Evaluation of the Effects of Lead on Some Physiological and Hormonal Biomarkeurs among Workers

Authors: Mansouri Ouarda, Adbdennour Cherif, Boukarma Ziad

Abstract:

Environmental and biological monitoring are used for the evaluation of exposure to industrial chemicals, and provide a tool for assessing workers’ exposure to chemicals. The organs or tissues where the first biological effects can be observed with increasing amounts of lead toxicity. This study aims at evaluating the effect of the metal element-trace; lead, on the sex hormones in male workers, exposed to this metal on the level of the manufacturing plant of lead accumulators. The results indicate a significant reduction of the testosterone concentration in exposed workers compared to the control. However, the rate of LH was strongly increased at the individuals exposed to Pb. A significant difference concerning the rate of FSH, the hormone Prolactin and cortisol was recorded. The indicators of the lead poisoning indicate a very highly significant increase in the value of Pbs which vary between (142-796 µg/L) among which 50% of the workers present a high lead poisoning and the value of PPZ which vary between (43-554µg/L). The biochemical parameters show a significant increase in the rate of the créatinine, the urea and the acid urique. The hepatic results show no significant differentiation in the rate of TGO and TGP between both groups of study. However the rates of the enzyme phosphatase alkaline, triglyceride, and cholesterol a significant difference were registered.

Keywords: hormons, parameters, physilogical, Pbs, PPZ

Procedia PDF Downloads 377
4714 Adverse Effects of Natural Pesticides on Human and Animals: An Experimental Analysis

Authors: Abdel-Tawab H. Mossa

Abstract:

Synthetic pesticides are widely used in large-scale worldwide for control pests in agriculture and public health sectors in both developed and developing countries. Although the positive role of pesticides, they have many adverse toxic effects on humans, animals, and the ecosystem. Therefore, in the last few years, scientists have been searching for new active compounds from natural resources as an alternative to synthetic pesticides. Currently, many commercial natural pesticides are available commercially worldwide. These products are recommended for uses in organic farmers and considered as safe pesticides. This paper focuses on the adverse effects of natural pesticides on mammals. Available commercial pesticides in the market contain essential oils (e.g. pepper, cinnamon, and garlic), plant extracts, microorganism (e.g. bacteria, fungi or their toxin), mineral oils and some active compounds from natural recourses e.g. spinosad, neem, pyrethrum, rotenone, abamectin and other active compounds from essential oils (EOs). Some EOs components, e.g., thujone, pulegone, and thymol have high acute toxicity (LD50) is 87.5, 150 and 980 mg/kg. B.wt on mice, respectively. Natural pesticides such as spinosad, pyrethrum, neem, abamectin, and others have toxicological effects to mammals and ecosystem. These compounds were found to cause hematotoxicity, hepato-renal toxicity, biochemical alteration, reproductive toxicity, genotoxicity, and mutagenicity. It caused adverse effects on the ecosystem. Therefore, natural pesticides in general not safe and have high acute toxicity and can induce adverse effects at long-term exposure.

Keywords: natural pesticides, toxicity, safety, genotoxicity, ecosystem, biochemical

Procedia PDF Downloads 172
4713 Hazardous Effects of Metal Ions on the Thermal Stability of Hydroxylammonium Nitrate

Authors: Shweta Hoyani, Charlie Oommen

Abstract:

HAN-based liquid propellants are perceived as potential substitute for hydrazine in space propulsion. Storage stability for long service life in orbit is one of the key concerns for HAN-based monopropellants because of its reactivity with metallic and non-metallic impurities which could entrain from the surface of fuel tanks and the tubes. The end result of this reactivity directly affects the handling, performance and storability of the liquid propellant. Gaseous products resulting from the decomposition of the propellant can lead to deleterious pressure build up in storage vessels. The partial loss of an energetic component can change the ignition and the combustion behavior and alter the performance of the thruster. The effect of largely plausible metals- iron, copper, chromium, nickel, manganese, molybdenum, zinc, titanium and cadmium on the thermal decomposition mechanism of HAN has been investigated in this context. Studies involving different concentrations of metal ions and HAN at different preheat temperatures have been carried out. Effect of metal ions on the decomposition behavior of HAN has been studied earlier in the context of use of HAN as gun propellant. However the current investigation pertains to the decomposition mechanism of HAN in the context of use of HAN as monopropellant for space propulsion. Decomposition onset temperature, rate of weight loss, heat of reaction were studied using DTA- TGA and total pressure rise and rate of pressure rise during decomposition were evaluated using an in-house built constant volume batch reactor. Besides, reaction mechanism and product profile were studied using TGA-FTIR setup. Iron and copper displayed the maximum reaction. Initial results indicate that iron and copper shows sensitizing effect at concentrations as low as 50 ppm with 60% HAN solution at 80°C. On the other hand 50 ppm zinc does not display any effect on the thermal decomposition of even 90% HAN solution at 80°C.

Keywords: hydroxylammonium nitrate, monopropellant, reaction mechanism, thermal stability

Procedia PDF Downloads 422
4712 Control of Single Axis Magnetic Levitation System Using Fuzzy Logic Control

Authors: A. M. Benomair, M. O. Tokhi

Abstract:

This paper presents the investigation on a system model for the stabilization of a Magnetic Levitation System (Maglev’s). The magnetic levitation system is a challenging nonlinear mechatronic system in which an electromagnetic force is required to suspend an object (metal sphere) in air space. The electromagnetic force is very sensitive to the noise which can create acceleration forces on the metal sphere, causing the sphere to move into the unbalanced region. Maglev’s give the contribution in industry and this system has reduce the power consumption, has increase the power efficiency and reduce the cost maintenance. The common applications for Maglev’s Power Generation (e.g. wind turbine), Maglev’s trains and Medical Device (e.g. Magnetically suspended Artificial Heart Pump). This paper presents the comparison between dynamic response and robust characteristic for both conventional PD and Fuzzy PD controller. The main contribution of this paper is the proof of fuzzy PD type stabilization and robustness. By use of a method to tune the scaling factors of the linear PD type fuzzy controller from an equivalent tuned conventional PD.

Keywords: magnetic levitation system, PD controller, Fuzzy Logic Control, Fuzzy PD

Procedia PDF Downloads 273
4711 Comparative Study of the Sensitivity of Two Freshwater Gastropods, Lymnaea Stagnalis and Planorbarius Corneus, to Silver Nanoparticles: Bioaccumulation and Toxicity

Authors: Ting Wang, Pierre Marle, Vera I. Slaveykova, Kristin Schirmer, Wei Liu

Abstract:

Metal-based nanoparticles (NPs) are considered detrimental to aquatic organisms due to their potential accumulation. However, little is known about the mechanisms underlying these effects and their species-specificity. Here, we used stable silver (Ag) NPs (20 nm, from 10 to 500 μg/L) with a low dissolution rate (≤2.4%) to study the bioaccumulation and biological impacts in two freshwater gastropods: Lymnaea stagnalis and Planorbarius corneus. No mortality was detected during the experiments. Ag bioaccumulation showed a dose-related increase with an enhanced concentration in both species after 7d exposure. L. stagnalis displayed a higher accumulation for AgNPs than P. corneus (e.g., up to 18- and 15-fold in hepatopancreas and hemolymph, respectively), which could be due to the more active L. stagnalis having greater contact with suspended AgNPs. Furthermore, the hepatopancreas and stomach were preferred organs for bioaccumulation compared to the kidney, mantle and foot. Regarding biological responses, the hemolymph rather than hepatopancreas appeared more susceptible to oxidative stress elicited by AgNPs, as shown by significantly increasing lipid peroxidation (i.e., formation of malondialdehyde). Neurotoxicity was detected in L. stagnalis when exposed to high concentrations (500 μg/L). Comparison with impacts elicited by dissolved Ag revealed that the effects observed on AgNPs exposure were mainly attributable to NPs. These results highlighted the relationship between the physiological traits, bioaccumulation, and toxicity responses of these two species to AgNPs and demonstrated the necessity of species-specificity considerations when assessing the toxicity of NPs.

Keywords: nanotoxicity, freshwater gastropods, species-specificity, metals, physiological traits

Procedia PDF Downloads 63
4710 A Creative Strategy to Functionalize TiN/CNC Composites as Cathode for High-Energy Zinc Ion Capacitors

Authors: Ye Ling, Jiang Yuting, Ruan Haihui

Abstract:

Zinc ion capacitors (ZICs) have garnered tremendous interest recently from researchers due to the perfect integration of batteries and supercapacitors (SC). However, ZICs are currently still facing two major challenges, one is low specific capacitance because of the limited capacity of capacitive cathode materials. In this work, TiN/CNC composites were obtained by a creative method composed of simple mixing and calcination treatment of tetrabutyl titanate (TBOT) and ZIF-8. The formed TiN particles are of ultra-small size and distributed uniformly on the nanoporous carbon matrix, which enhances the conductivity of the composites and the micropores caused by the evaporation of zinc during the calcination process and can serve as the reservoir of electrolytes; both are beneficial to zinc ion storage. When it was used as a cathode with zinc metal and 2M ZnSO₄ as the anode and electrolyte, respectively, in a ZIC device, the assembled device delivered a maximum energy density as high as 153 Wh kg-¹ at a power density of 269.4 W kg-¹, which is superior to many ZICs as reported. Also, it can maintain an energy density of 83.7 Wh kg-¹ at a peak power density of 8.6 kW kg-¹, exhibiting good rate performance. Moreover, when it was charged/discharged for 5000 cycles at a current density of 5 A g-¹, it remained at 85.8% of the initial capacity with a Coulombic efficiency (CE) of nearly 100%.

Keywords: zinc ion capacitor, metal nitride, zif-8, supercapacitor

Procedia PDF Downloads 44
4709 Effects of Milling Process Parameters on Cutting Forces and Surface Roughness When Finishing Ti6al4v Produced by Electron Beam Melting

Authors: Abdulmajeed Dabwan, Saqib Anwar, Ali Al-Samhan

Abstract:

Electron Beam Melting (EBM) is a metal powder bed-based Additive Manufacturing (AM) technology, which uses computer-controlled electron beams to create fully dense three-dimensional near-net-shaped parts from metal powder. It gives the ability to produce any complex parts directly from a computer-aided design (CAD) model without tools and dies, and with a variety of materials. However, the quality of the surface finish in EBM process has limitations to meeting the performance requirements of additively manufactured components. The aim of this study is to investigate the cutting forces induced during milling Ti6Al4V produced by EBM as well as the surface quality of the milled surfaces. The effects of cutting speed and radial depth of cut on the cutting forces, surface roughness, and surface morphology were investigated. The results indicated that the cutting speed was found to be proportional to the resultant cutting force at any cutting conditions while the surface roughness improved significantly with the increase in cutting speed and radial depth of cut.

Keywords: electron beam melting, additive manufacturing, Ti6Al4V, surface morphology

Procedia PDF Downloads 114
4708 Dehydration of Glycerol to Acrolein with Solid Acid Catalysts

Authors: Lin Huang, Bo Wang, Armando Borgna

Abstract:

Dehydration of glycerol to acrolein was conducted with solid acid catalysts in liquid phase in a batch reactor and in gas phase in a fix-bed reactor, respectively. In the liquid-phase reaction, ZSM-5, H3PO4-modified ZSM-5 and heteropolyacids including H3PW12O40•xH2O (HPW) and Cs2.5H0.5PW12O40 (CsPW) were studied as catalysts. High temperatures and high boiling point solvents such as sulfolane improved the selectivity to acrolein through suppressing the formation of polyglycerols and coke. Catalytic results and temperature-programmed desorption of ammonia showed that the yield of acrolein increased with increasing catalyst acidity within the range of weak acid strength. Weak acid sites favored the selectivity to acrolein whereas strong acid sites promoted the formation of coke. ZSM-5 possessing only acid sites led to a high acrolein yield, while heteropolyacid catalysts with strong acid sites produced a low acrolein yield. In the gas-phase reaction, HPW and CsPW supported on metal oxides such as SiO2, γ-Al2O3, SiO2-Al2O3, ZrO2 and silicate TUD-1 were studied as catalysts. HPW/TUD-1 was most active for the production of acrolein, followed by HPW/SiO2. An acrolein yield of 61 % was obtained over HPW/TUD-1. X-ray diffraction study suggested that HPW and CsPW were stable and more dispersed on SiO2, silicate TUD-1 and SiO2-Al2O3. It was found that the structures of HPW and CsPW were destroyed by interaction with γ-Al2O3 and ZrO2. Compared to CsPW/TUD-1, the higher acrolein yield with HPW/TUD-1 may be attributed to more Brønsted acid sites on HPW/TUD-1, based on preliminary pyridine adsorption IR study.

Keywords: dehydration, glycerol, acrolein, solid acid catalysts, gas-phase, liquid-phase

Procedia PDF Downloads 265
4707 Reframing Physical Activity for Health

Authors: M. Roberts

Abstract:

We Are Undefeatable - is a mass marketing behaviour change campaign that aims to support the least active people living with long term health conditions to be more active. This is an important issue to address because people with long term conditions are an historically underserved community for the sport and physical activity sector and the least active of those with long term conditions have the most to gain in health and wellbeing benefits. The campaign has generated a significant change in the way physical activity is communicated and people with long term conditions are represented in the media and marketing. The goal is to create a social norm around being active. The campaign is led by a unique partnership of organisations: the Richmond Group of Charities (made up of Age UK, Alzheimer’s Society, Asthma + Lung UK, Breast Cancer Now, British Heart Foundation, British Red Cross, Diabetes UK, Macmillan Cancer Support, Rethink Mental Illness, Royal Voluntary Service, Stroke Association, Versus Arthritis) along with Mind, MS Society, Parkinson’s UK and Sport England, with National Lottery Funding. It is underpinned by the COM-B model of behaviour change. It draws on the lived experience of people with multiple long term conditions to shape the look and feel of the campaign and all the resources available. People with long term conditions are the campaign messengers, central to the ethos of the campaign by telling their individual stories of overcoming barriers to be active with their health conditions. The central messaging is about finding a way to be active that works for the individual. We Are Undefeatable is evaluated through a multi-modal approach, including regular qualitative focus groups and a quantitative evaluation tracker undertaken three times a year. The campaign has highlighted the significant barriers to physical activity for people with long term conditions. This has changed the way our partnership talks about physical activity but has also had an impact on the wider sport and physical activity sector, prompting an increasing departure from traditional messaging and marketing approaches for this audience of people with long term conditions. The campaign has reached millions of people since its launch in 2019, through multiple marketing and partnership channels including primetime TV advertising and promotion through health professionals and in health settings. Its diverse storytellers make it relatable to its target audience and the achievable activities highlighted and inclusive messaging inspire our audience to take action as a result of seeing the campaign. The We Are Undefeatable campaign is a blueprint for physical activity campaigns; it not only addresses individual behaviour change but plays a role in addressing systemic barriers to physical activity by sharing the lived experience insight to shape policy and professional practice.

Keywords: behaviour change, long term conditions, partnership, relatable

Procedia PDF Downloads 65
4706 Some Trace and Toxic Metal Content of Crude Ethanol Leaf Extract of Globimetula Oreophila (Hook. F) Danser Azadirachta Indica Using Atomic Absorption Spectroscopy

Authors: Dauda G., Bila Ha Sani Y. M., Magaji M. G., Musa A. M., Hassan H. S.

Abstract:

Introduction: Globimetula oreophila is a parasitic plant with a known therapeutic value that is widely used in the treatment of various ailments, including malaria, hypertension, cancer, diabetes, epilepsy and as a diuretic agent. Objectives: The present study is aimed at analyzing and documenting the level of trace and toxic metals in the crude ethanol leaf extract of G. oreophila. Methods: After collection and authentication, the leaves were air-dried, mashed into powder, weighed and extracted using aqueous ethanol (70%). The crude extract (0.5g) was digested with HNO₃: HCl (3:1); then heated to 2000C and analyzed for its metal content by atomic absorption spectroscopy (AAS). Results: Fe had the highest concentration (32.73mg/kg), while Pb was not detected. The concentrations of Co, Cu, Ni, Zn and Cd detected were 5.97, 10.8, 8.01 and 0.9mg/kg, respectively. The concentration of Cd, Fe and Ni were above the permissible limit of FAO/WHO. Conclusion: The results also show that the analyzed plant is a beneficial source of appropriate and essential trace metals. However, the leaf of G. oreophila in the present study was probably unsafe for long-term use because of the level of Fe, Ni, and Cd concentration.

Keywords: Globimetula oreophila, minerals, trace element, crude extract

Procedia PDF Downloads 151
4705 Structural and Electrical Properties of VO₂/ZnO Nanostructures

Authors: Sang-Wook Han, Zhenlan Jin, In-Hui Hwang, Chang-In Park

Abstract:

We examined structural and electrical properties of uniformly-oriented VO₂/ZnO nanostructures. VO₂ was deposited on ZnO templates by using a direct current-sputtering deposition. Scanning electron microscope and transmission electron microscope measurements indicated that b-oriented VO₂ were uniformly crystallized on ZnO templates with different lengths. VO₂/ZnO formed nanorods on ZnO nanorods with length longer than 250 nm. X-ray absorption fine structure at V K edge of VO₂/ZnO showed M1 and R phases of VO₂ at 30 and 100 ℃, respectively, suggesting structural phase transition between temperatures. Temperature-dependent resistance measurements of VO₂/ZnO nanostructures revealed metal-to-insulator transition at 65 ℃ and 55 ℃ during heating and cooling, respectively, regardless of ZnO length. The bond lengths of V-O and V-V pairs in VO₂/ZnO nanorods were somewhat distorted, and a substantial amount of structural disorder existed in the atomic pairs, compared to those of VO₂ films without ZnO. Resistance from VO₂/ZnO nanorods revealed a sharp MIT near 65 ℃ during heating and a hysteresis behavior. The resistance results suggest that microchannel for charge carriers exist nearly room temperature during cooling. VO₂/ZnO nanorods are quite stable and reproducible so that they can be widely used for practical applications to electronic devices, gas sensors, and ultra-fast switches, as examples.

Keywords: metal-to-insulator transition, VO₂, ZnO, XAFS, structural-phase transition

Procedia PDF Downloads 483
4704 User Perceptions Deviation from the Producers’ Intended Meaning of a Healthcare Innovation

Authors: Helle Nissen

Abstract:

Physical objects surrounding people in healthcare environments are carriers of institutional logics materialized into the objects by its producers. However, institutional logics research lacks to inform us how logics become materialized and are perceived by producers vs. users of an object. The study is based on a 3-year longitudinal case study of a Danish Public Private Innovation project aiming to co-create an innovative healthcare bed commercialized to public psychiatric hospitals. The producers are a private metal firm and industrial designers from two Danish regions. The findings demonstrate that the metal firm and designers, as producers, negotiate about materializing different logics into the bed throughout the innovation process. An aesthetic logic is prioritized most, and the producers encode it with the intention to develop a bed that looks homely and less hospital-like compared to previous and existing healthcare beds. After the bed is put into use, the aesthetic logic is decoded by the users. Their perception of it differs significantly from the producers’ intended meaning, as the healthcare bed is perceived as sterile. The study has theoretical implications: It demonstrates how logics become materialized ‘here and now’, and it reveals logics as less governed by stable and clear meanings but rather as subject to changeable perceptions.

Keywords: co-creation, healthcare innovation, commercialization, institutional logics

Procedia PDF Downloads 86
4703 Computational Insight into a Mechanistic Overview of Water Exchange Kinetics and Thermodynamic Stabilities of Bis and Tris-Aquated Complexes of Lanthanides

Authors: Niharika Keot, Manabendra Sarma

Abstract:

A thorough investigation of Ln3+ complexes with more than one inner-sphere water molecule is crucial for designing high relaxivity contrast agents (CAs) used in magnetic resonance imaging (MRI). This study accomplished a comparative stability analysis of two hexadentate (H3cbda and H3dpaa) and two heptadentate (H4peada and H3tpaa) ligands with Ln3+ ions. The higher stability of the hexadentate H3cbda and heptadentate H4peada ligands has been confirmed by the binding affinity and Gibbs free energy analysis in aqueous solution. In addition, energy decomposition analysis (EDA) reveals the higher binding affinity of the peada4− ligand than the cbda3− ligand towards Ln3+ ions due to the higher charge density of the peada4− ligand. Moreover, a mechanistic overview of water exchange kinetics has been carried out based on the strength of the metal–water bond. The strength of the metal–water bond follows the trend Gd–O47 (w) > Gd–O39 (w) > Gd–O36 (w) in the case of the tris-aquated [Gd(cbda)(H2O)3] and Gd–O43 (w) > Gd–O40 (w) for the bis-aquated [Gd(peada)(H2O)2]− complex, which was confirmed by bond length, electron density (ρ), and electron localization function (ELF) at the corresponding bond critical points. Our analysis also predicts that the activation energy barrier decreases with the decrease in bond strength; hence kex increases. The 17O and 1H hyperfine coupling constant values of all the coordinated water molecules were different, calculated by using the second-order Douglas–Kroll–Hess (DKH2) approach. Furthermore, the ionic nature of the bonding in the metal–ligand (M–L) bond was confirmed by the Quantum Theory of Atoms-In-Molecules (QTAIM) and ELF along with energy decomposition analysis (EDA). We hope that the results can be used as a basis for the design of highly efficient Gd(III)-based high relaxivity MRI contrast agents for medical applications.

Keywords: MRI contrast agents, lanthanide chemistry, thermodynamic stability, water exchange kinetics

Procedia PDF Downloads 83
4702 Experimental Proof of Concept for Piezoelectric Flow Harvesting for In-Pipe Metering Systems

Authors: Sherif Keddis, Rafik Mitry, Norbert Schwesinger

Abstract:

Intelligent networking of devices has rapidly been gaining importance over the past years and with recent advances in the fields of microcontrollers, integrated circuits and wireless communication, low power applications have emerged, enabling this trend even more. Connected devices provide a much larger database thus enabling highly intelligent and accurate systems. Ensuring safe drinking water is one of the fields that require constant monitoring and can benefit from an increased accuracy. Monitoring is mainly achieved either through complex measures, such as collecting samples from the points of use, or through metering systems typically distant to the points of use which deliver less accurate assessments of the quality of water. Constant metering near the points of use is complicated due to their inaccessibility; e.g. buried water pipes, locked spaces, which makes system maintenance extremely difficult and often unviable. The research presented here attempts to overcome this challenge by providing these systems with enough energy through a flow harvester inside the pipe thus eliminating the maintenance requirements in terms of battery replacements or containment of leakage resulting from wiring such systems. The proposed flow harvester exploits the piezoelectric properties of polyvinylidene difluoride (PVDF) films to convert turbulence induced oscillations into electrical energy. It is intended to be used in standard water pipes with diameters between 0.5 and 1 inch. The working principle of the harvester uses a ring shaped bluff body inside the pipe to induce pressure fluctuations. Additionally the bluff body houses electronic components such as storage, circuitry and RF-unit. Placing the piezoelectric films downstream of that bluff body causes their oscillation which generates electrical charge. The PVDF-film is placed as a multilayered wrap fixed to the pipe wall leaving the top part to oscillate freely inside the flow. The warp, which allows for a larger active, consists of two layers of 30µm thick and 12mm wide PVDF layered alternately with two centered 6µm thick and 8mm wide aluminum foil electrodes. The length of the layers depends on the number of windings and is part of the investigation. Sealing the harvester against liquid penetration is achieved by wrapping it in a ring-shaped LDPE-film and welding the open ends. The fabrication of the PVDF-wraps is done by hand. After validating the working principle using a wind tunnel, experiments have been conducted in water, placing the harvester inside a 1 inch pipe at water velocities of 0.74m/s. To find a suitable placement of the wrap inside the pipe, two forms of fixation were compared regarding their power output. Further investigations regarding the number of windings required for efficient transduction were made. Best results were achieved using a wrap with 3 windings of the active layers which delivers a constant power output of 0.53µW at a 2.3MΩ load and an effective voltage of 1.1V. Considering the extremely low power requirements of sensor applications, these initial results are promising. For further investigations and optimization, machine designs are currently being developed to automate the fabrication and decrease tolerance of the prototypes.

Keywords: maintenance-free sensors, measurements at point of use, piezoelectric flow harvesting, universal micro generator, wireless metering systems

Procedia PDF Downloads 193
4701 Metal-Organic Chemical Vapor Deposition (MOCVD) Process Investigation for Co Thin Film as a TSV Alternative Seed Layer

Authors: Sajjad Esmaeili, Robert Krause, Lukas Gerlich, Alireza Mohammadian Kia, Benjamin Uhlig

Abstract:

This investigation aims to develop the feasible and qualitative process parameters for the thin films fabrication into ultra-large through-silicon-vias (TSVs) as vertical interconnections. The focus of the study is on TSV metallization and its challenges employing new materials for the purpose of rapid signal propagation in the microsystems technology. Cobalt metal-organic chemical vapor deposition (Co-MOCVD) process enables manufacturing an adhesive and excellent conformal ultra-thin film all the way through TSVs in comparison with the conventional non-conformal physical vapor deposition (PVD) process of copper (Cu) seed layer. Therefore, this process provides a Cu seed-free layer which is capable of direct Cu electrochemical deposition (Cu-ECD) on top of it. The main challenge of this metallization module is to achieve the proper alternative seed layer with less roughness, sheet resistance and granular organic contamination (e.g. carbon) which intensify the Co corrosion under the influence of Cu electrolyte.

Keywords: Cobalt MOCVD, direct Cu electrochemical deposition (ECD), metallization technology, through-silicon-via (TSV)

Procedia PDF Downloads 158
4700 Dynamic Analysis and Vibration Response of Thermoplastic Rolling Elements in a Rotor Bearing System

Authors: Nesrine Gaaliche

Abstract:

This study provides a finite element dynamic model for analyzing rolling bearing system vibration response. The vibration responses of polypropylene bearings with and without defects are studied using FE analysis and compared to experimental data. The viscoelastic behavior of thermoplastic is investigated in this work to evaluate the influence of material flexibility and damping viscosity. The vibrations are detected using 3D dynamic analysis. Peak vibrations are more noticeable in an inner ring defect than in an outer ring defect, according to test data. The performance of thermoplastic bearings is compared to that of metal parts using vibration signals. Both the test and numerical results show that Polypropylene bearings exhibit less vibration than steel counterparts. Unlike bearings made from metal, polypropylene bearings absorb vibrations and handle shaft misalignments. Following validation of the overall vibration spectrum data, Von Mises stresses inside the rings are assessed under high loads. Stress is significantly high under the balls, according to the simulation findings. For the test cases, the computational findings correspond closely to the experimental results.

Keywords: viscoelastic, FE analysis, polypropylene, bearings

Procedia PDF Downloads 104
4699 An Introduction to the Radiation-Thrust Based on Alpha Decay and Spontaneous Fission

Authors: Shiyi He, Yan Xia, Xiaoping Ouyang, Liang Chen, Zhongbing Zhang, Jinlu Ruan

Abstract:

As the key system of the spacecraft, various propelling system have been developing rapidly, including ion thrust, laser thrust, solar sail and other micro-thrusters. However, there still are some shortages in these systems. The ion thruster requires the high-voltage or magnetic field to accelerate, resulting in extra system, heavy quantity and large volume. The laser thrust now is mostly ground-based and providing pulse thrust, restraint by the station distribution and the capacity of laser. The thrust direction of solar sail is limited to its relative position with the Sun, so it is hard to propel toward the Sun or adjust in the shadow.In this paper, a novel nuclear thruster based on alpha decay and spontaneous fission is proposed and the principle of this radiation-thrust with alpha particle has been expounded. Radioactive materials with different released energy, such as 210Po with 5.4MeV and 238Pu with 5.29MeV, attached to a metal film will provides various thrust among 0.02-5uN/cm2. With this repulsive force, radiation is able to be a power source. With the advantages of low system quantity, high accuracy and long active time, the radiation thrust is promising in the field of space debris removal, orbit control of nano-satellite array and deep space exploration. To do further study, a formula lead to the amplitude and direction of thrust by the released energy and decay coefficient is set up. With the initial formula, the alpha radiation elements with the half life period longer than a hundred days are calculated and listed. As the alpha particles emit continuously, the residual charge in metal film grows and affects the emitting energy distribution of alpha particles. With the residual charge or extra electromagnetic field, the emitting of alpha particles performs differently and is analyzed in this paper. Furthermore, three more complex situations are discussed. Radiation element generating alpha particles with several energies in different intensity, mixture of various radiation elements, and cascaded alpha decay are studied respectively. In combined way, it is more efficient and flexible to adjust the thrust amplitude. The propelling model of the spontaneous fission is similar with the one of alpha decay, which has a more complex angular distribution. A new quasi-sphere space propelling system based on the radiation-thrust has been introduced, as well as the collecting and processing system of excess charge and reaction heat. The energy and spatial angular distribution of emitting alpha particles on unit area and certain propelling system have been studied. As the alpha particles are easily losing energy and self-absorb, the distribution is not the simple stacking of each nuclide. With the change of the amplitude and angel of radiation-thrust, orbital variation strategy on space debris removal is shown and optimized.

Keywords: alpha decay, angular distribution, emitting energy, orbital variation, radiation-thruster

Procedia PDF Downloads 207
4698 The Effect of Taking Heavy Metal on Gastrointestinal Peptides

Authors: Nurgul Senol, Melda Azman

Abstract:

In this study, the rate of release of gastrointestinal peptides heavy metal compounds applied to a certain extent (gastrin/CCK) on immunohistochemical aimed to determine the effect. This study was supported by TÜBİTAK. Subjects were randomly grouped into three. Group I; iron (Fe), Group II; zinc (Zn), Group III; control; gavage technique was applied to each group once a day throughout 30 days. At the end of the experiment, rats were decapitated and their stomach-intestine tissues removed, Peroxidase anti peroxidase method was applied following the routine histological follow-ups. According to the control group, in the stomach, had more positive cell density of gastrin in Fe groups, it was observed that group followed by Zn. It was found between the groups in the stomach and intestinal gastrin, gastrin-positive cell density decreases towards the intestines from the stomach. Although CCK differences in staining were observed in the control group, the intensity of staining intensity between the two groups in positive cells was determined to be more than the stomach. The group in the intestines, there is no change in terms of positivity CCK. Consequently, there is no significant effect on gastrointestinal peptides in Zn application. It has been identified Fe application has a significant effect on the releasing of CCK/gastrin peptides.

Keywords: alimentary canal, CCK, iron, gastrin, zinc

Procedia PDF Downloads 214
4697 Breakdown Voltage Measurement of High Voltage Transformers Oils Using an Active Microwave Resonator Sensor

Authors: Ahmed A. Al-Mudhafar, Ali A. Abduljabar, Hayder Jawad Albattat

Abstract:

This work suggests a new microwave resonator sensor (MRS) device for measuring the oil’s breakdown voltage of high voltage transformers. A precise high-sensitivity sensor is designed and manufactured based on a microstrip split ring resonator (SRR). To improve the sensor sensitivity, a RF amplifier of 30 dB gain is linked through a transmission line of 50Ω.The sensor operates at a microwave band (L) with a quality factor of 1.35x105 when it is loaded with an empty tube. In this work, the sensor has been tested with three samples of high voltage transformer oil of different ages (new, middle, and damaged) where the quality factor differs with each sample. A mathematical model was built to calculate the breakdown voltage of the transformer oils and the accuracy of the results was higher than 90%.

Keywords: active resonator sensor, oil breakdown voltage, transformers oils, quality factor

Procedia PDF Downloads 269
4696 Micromechanism of Ionization Effects on Metal/Gas Mixing Instabilty at Extreme Shock Compressing Conditions

Authors: Shenghong Huang, Weirong Wang, Xisheng Luo, Xinzhu Li, Xinwen Zhao

Abstract:

Understanding of material mixing induced by Richtmyer-Meshkov instability (RMI) at extreme shock compressing conditions (high energy density environment: P >> 100GPa, T >> 10000k) is of great significance in engineering and science, such as inertial confinement fusion(ICF), supersonic combustion, etc. Turbulent mixing induced by RMI is a kind of complex fluid dynamics, which is closely related with hydrodynamic conditions, thermodynamic states, material physical properties such as compressibility, strength, surface tension and viscosity, etc. as well as initial perturbation on interface. For phenomena in ordinary thermodynamic conditions (low energy density environment), many investigations have been conducted and many progresses have been reported, while for mixing in extreme thermodynamic conditions, the evolution may be very different due to ionization as well as large difference of material physical properties, which is full of scientific problems and academic interests. In this investigation, the first principle based molecular dynamic method is applied to study metal Lithium and gas Hydrogen (Li-H2) interface mixing in micro/meso scale regime at different shock compressing loading speed ranging from 3 km/s to 30 km/s. It's found that, 1) Different from low-speed shock compressing cases, in high-speed shock compresing (>9km/s) cases, a strong acceleration of metal/gas interface after strong shock compression is observed numerically, leading to a strong phase inverse and spike growing with a relative larger linear rate. And more specially, the spike growing rate is observed to be increased with shock loading speed, presenting large discrepancy with available empirical RMI models; 2) Ionization is happened in shock font zone at high-speed loading cases(>9km/s). An additional local electric field induced by the inhomogeneous diffusion of electrons and nuclei after shock font is observed to occur near the metal/gas interface, leading to a large acceleration of nuclei in this zone; 3) In conclusion, the work of additional electric field contributes to a mechanism of RMI in micro/meso scale regime at extreme shock compressing conditions, i.e., a Rayleigh-Taylor instability(RTI) is induced by additional electric field during RMI mixing process and thus a larger linear growing rate of interface spike.

Keywords: ionization, micro/meso scale, material mixing, shock

Procedia PDF Downloads 227
4695 Two Coordination Polymers Synthesized from Various N-Donor Clusters Spaced by Terephtalic Acid for Efficient Photocatalytic Degradation of Ibuprofen in Water under Solar and Artificial Irradiation

Authors: Amina Adala, Nadra Debbache, Tahar Sehili

Abstract:

Coordination polymers and uniformly {[Zn(II)(BIPY)(Pht)]n} (1), {[Zn (HYD)(Pht)]n} (2) (BIPY = 4,4’ bipyridine, Pht = terephtalic acid, HYD = 8-hydroxyquinoline) have been successfully synthesized by a hydrothermal process using aqueous zinc solution. The as-prepared compounds phases were characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy, UV-visible spectroscopy, thermogravimetric analysis (TGA), and the electrochemistry study by the voltammetry cyclic. The results showed a crystalline phase for CP1 however, CP2 requires recrystallization; the FTIR showed the presence of characteristic bands of all ligands; besides that, TGA shows thermal stability up to 300°C. The electrochemistry study showed a good charge transfer between the ligands and Zn metal for the two components. UV-Vis measurement showed strong absorption in a wide range from UV to visible light with a band gap of 2.69 eV for CP1 and 2.56 eV for CP2, smaller than that of ZnO. This represents an alternative to using ZnO. The Ibuprofen IBP decomposition kinetics of 5.10⁻⁵ mol.L⁻¹ under solar and artificial light were studied for different irradiation conditions. Good photocatalytic properties were observed due to their high surface area.

Keywords: metal-organic frameworks, photocatalysis, photodegradation, organic pollutant, ibuprofen

Procedia PDF Downloads 83
4694 Remote Training with Self-Assessment in Electrical Engineering

Authors: Zoja Raud, Valery Vodovozov

Abstract:

The paper focuses on the distance laboratory organisation for training the electrical engineering staff and students in the fields of electrical drive and power electronics. To support online knowledge acquisition and professional enhancement, new challenges in remote education based on an active learning approach with self-assessment have been emerged by the authors. Following the literature review and explanation of the improved assessment methodology, the concept and technological basis of the labs arrangement are presented. To decrease the gap between the distance study of the up-to-date equipment and other educational activities in electrical engineering, the improvements in the following-up the learners’ progress and feedback composition are introduced. An authoring methodology that helps to personalise knowledge acquisition and enlarge Web-based possibilities is described. Educational management based on self-assessment is discussed.

Keywords: advanced training, active learning, distance learning, electrical engineering, remote laboratory, self-assessment

Procedia PDF Downloads 327
4693 Development of Metal-Organic Frameworks-Type Hybrid Functionalized Materials for Selective Uranium Extraction

Authors: Damien Rinsant, Eugen Andreiadis, Michael Carboni, Daniel Meyer

Abstract:

Different types of materials have been developed for the solid/liquid uranium extraction processes, such as functionalized organic polymers, hybrid silica or inorganic adsorbents. In general, these materials exhibit a moderate affinity for uranyl ions and poor selectivity against impurities like iron, vanadium or molybdenum. Moreover, the structural organization deficiency of these materials generates ion diffusion issues inside the material. Therefore, the aim of our study is to developed efficient and organized materials, stable in the acid media encountered in uranium extraction processes. Metal organic frameworks (MOFs) are hybrid crystalline materials consisting of an inorganic part (cluster or metal ions) and tailored organic linkers connected via coordination bonds. These hierarchical materials have exceptional surface area, thermal stability and a large variety of tunable structures. However, due to the reversibility of constitutive coordination bonds, MOFs have moderate stability in strongly complexing or acidic media. Only few of them are known to be stable in aqueous media and only one example is described in strong acidic media. However, these conditions are very often encountered in the environmental pollution remediation of mine wastewaters. To tackle the challenge of developing MOFs adapted for uranium extraction from acid mine waters, we have investigated the stability of several materials. To ensure a good stability we have synthetized and characterized different materials based on highly coordinated metal clusters, such as LnOFs and Zirconium based materials. Among the latter, the UiO family shows a great stability in sulfuric acid media even in the presence of 1.4 M sodium sulfate at pH 2. However, the stability in phosphoric media is reduced due to the high affinity between zirconium and phosphate ligand. Based on these results, we have developed a tertiary amine functionalized MOF denoted UiO-68-NMe2 particularly adapted for the extraction of anionic uranyl (VI) sulfate complexes mainly present in the acid mine solutions. The adsorption capacity of the material has been determined upon varying total sulfate concentration, contact time and uranium concentration. The extraction tests put in evidence different phenomena due to the complexity of the extraction media and the interaction between the MOF and sulfate anion. Finally, the extraction mechanisms and the interaction between uranyl and the MOF structure have been investigated. The functionalized material UiO-68-NMe2 has been characterized in the presence and absence of uranium by FT-IR, UV and Raman techniques. Moreover, the stability of the protonated amino functionalized MOF has been evaluated. The synthesis, characterization and evaluation of this type of hybrid material, particularly adapted for uranium extraction in sulfuric acid media by an anionic exchange mechanism, paved the way for the development of metal organic frameworks functionalized by different other chelating motifs, such as bifunctional ligands showing an enhanced affinity and selectivity for uranium in acid and complexing media. Work in this direction is currently in progress.

Keywords: extraction, MOF, ligand, uranium

Procedia PDF Downloads 160
4692 Ambidentate Ligands as Platforms for Efficient Synthesis of Pd-based Metallosupramolecular Cages

Authors: Wojcieh Drożdż, Artur R. Stefankiewicz

Abstract:

Ambidentate ligands can be described as organic structures possessing two different types of coordination units within a single molecule. These features enable the coordination of two different metal ions, which can directly affect the properties of obtained complexes as well as further application. In the current research, we focused on a β-diketone ligand containing terminally located pyridine units in order to assemble cage-like architectures. This will be possible due to the peculiar geometry of the proposed ligands, called "banana-shape", widely used in the synthesis of sophisticated metallosupramolecular architectures. Each of the coordination units plays an important role in cage assembly. Pyridine units enable the coordination of square-planar metal ions (Pd²⁺, Pt²⁺), forming a positively charged cage. On the other hand, the β-diketone group provides the possibility of post-modification, including the introduction of additional functional groups with specific properties (sensing, catalytic, etc.). Such obtained cages are of great interest due to their application potential, including storage or transport of guest molecules, selective detection/separation of analytes as well as efficient catalytic processes.

Keywords: metalloligands, coordination cages, nanoreactors, β-diketonate complexes

Procedia PDF Downloads 73
4691 Experimental Procedure of Identifying Ground Type by Downhole Test: A Case Study

Authors: Seyed Abolhassan Naeini, Maedeh Akhavan Tavakkoli

Abstract:

Evaluating the shear wave velocity (V_s) and primary wave velocity (Vₚ) is necessary to identify the ground type of the site. Identifying the soil type based on different codes can affect the dynamic analysis of geotechnical properties. This study aims to separate the underground layers at the project site based on the shear wave and primary wave velocity (Sₚ) in different depths and determine dynamic elastic modulus based on the shear wave velocity. Bandar Anzali is located in a tectonically very active area. Several active faults surround the study site. In this case, a field investigation of downhole testing is conducted as a geophysics method to identify the ground type.

Keywords: downhole, geophysics, shear wave velocity, case-study

Procedia PDF Downloads 138
4690 Toxicity and Larvicidal Activity of Cholesta-β-D-Glucopyranoside Isolated from Combretum molle R.

Authors: Abdu Zakari, Sai’d Jibril, Adoum A. Omar

Abstract:

The leaves of Combretum molle was selected on the basis of its uses in folk medicine as insecticides. The leave extracts of Combretum molle was tested against the larvae of Artemia salina, i.e. Brine Shrimp Lethality Test (BST), Culex quinquefasciatus Say (Filaria disease vector) i.e. Larvicidal Test, using crude ethanol, n-hexane, chloroform, ethyl acetate, and methanol extracts. The methanolic extract proved to be the most effective in inducing complete lethality at minimum doses both in the BST and the Larvicidal activity test. The LC50¬ values obtained are 24.85 µg/ml and 0.4µg/ml respectively. The bioactivity-guided column chromatography afforded the pure compound ACM–3. ACM-3 was not active in the BST with LC50 value >1000µg/ml, but was active in the Larvicidal activity test with LC50 value 4.0µg/ml. ACM-3 was proposed to have the structure I, (Cholesta-β-D-Glucopyranoside).

Keywords: toxicity, larvicidal, Combretum molle, Artemia salina, Culex quinquefasciatus Say.

Procedia PDF Downloads 398