Search results for: export advantage
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1887

Search results for: export advantage

627 Development of Solar Energy Resources for Land along the Transportation Infrastructure: Taking the Lan-Xin Railway in the Silk Road Economic Belt as an Example

Authors: Dan Han, Yukun Zhang, Jie Zheng, Rui Zhang

Abstract:

Making full use of space along transportation infrastructure to develop renewable energy sources, especially solar energy resources, has become a research focus in relevant fields. In recent years, relevant international researches can be classified into three stages of theoretical and technical exploration, exploratory practice as well as planning implementation. Compared with traditional solar energy development mode, the development of solar energy resources in places along the transportation infrastructure has special advantages, which can also bring forth new opportunities for the development of green transportation. 'Road Integrated Photovoltaic', a development model of combining transport and new energy, has been actively studied and applied in developed countries, but it was still in its infancy in China. 'New Silk Road Economic Belt' has great advantage to carry out the 'Road Integrated Photovoltaic' because of the rich solar energy resources in its path, the shortages of renewable energy, the constraints of agricultural land and other reasons. Especially the massive amount of construction of transportation infrastructure brought by Silk Road Economic Belt, large area of developable land along the transportation line will be generated. Abundant solar energy recourses along the Silk Road will provide extremely superb practical opportunities to the land development along transportation infrastructure. We take PVsyst, GIS and Google map software for simulation of its potential by taking Lan-Xin Railway as an example, so potential electrical energy generation can be quantified and further analyzed. Research of 'New Silk Road Economic Belt' combined with 'Road Integrated Photovoltaic' is a creative development for the along transport and energy infrastructure. It not only can make full use of solar radiation and land in its path, but also bring more long-term advantages and benefits.

Keywords: land use, silk road economic belt, solar energy, transportation infrastructure

Procedia PDF Downloads 241
626 Bioelectronic System for Continuous Monitoring of Cardiac Activity of Benthic Invertebrates for the Assessment of a Surface Water Quality

Authors: Sergey Kholodkevich, Tatiana Kuznetsova

Abstract:

The objective assessment of ecological state of water ecosystems is impossible without the use of biological methods of the environmental monitoring capable in the integrated look to reveal negative for biota changes of quality of water as habitats. Considerable interest for the development of such methods of environmental quality control represents biomarker approach. Measuring systems, by means of which register cardiac activity characteristics, received the name of bioelectronic. Bioelectronic systems are information and measuring systems in which animals (namely, benthic invertebrates) are directly included in structure of primary converters, being an integral part of electronic system of registration of these or those physiological or behavioural biomarkers. As physiological biomarkers various characteristics of cardiac activity of selected invertebrates have been used in bioelectronic system.lChanges in cardiac activity are considered as integrative measures of the physiological condition of organisms, which reflect the state of the environment of their dwelling. Greatest successes in the development of tools of biological methods and technologies of an assessment of surface water quality in real time. Essential advantage of bioindication of water quality by such tool is a possibility of an integrated assessment of biological effects of pollution on biota and also the expressness of such method and used approaches. In the report the practical experience of authors in biomonitoring and bioindication of an ecological condition of sea, brackish- and freshwater areas is discussed. Authors note that the method of non-invasive cardiac activity monitoring of selected invertebrates can be used not only for the advancement of biomonitoring, but also is useful in decision of general problems of comparative physiology of the invertebrates.

Keywords: benthic invertebrates, physiological state, heart rate monitoring, water quality assessment

Procedia PDF Downloads 718
625 Advanced Biosensor Characterization of Phage-Mediated Lysis in Real-Time and under Native Conditions

Authors: Radka Obořilová, Hana Šimečková, Matěj Pastucha, Jan Přibyl, Petr Skládal, Ivana Mašlaňová, Zdeněk Farka

Abstract:

Due to the spreading of antimicrobial resistance, alternative approaches to combat superinfections are being sought, both in the field of lysing agents and methods for studying bacterial lysis. A suitable alternative to antibiotics is phage therapy and enzybiotics, for which it is also necessary to study the mechanism of their action. Biosensor-based techniques allow rapid detection of pathogens in real time, verification of sensitivity to commonly used antimicrobial agents, and selection of suitable lysis agents. The detection of lysis takes place on the surface of the biosensor with immobilized bacteria, which has the potential to be used to study biofilms. An example of such a biosensor is surface plasmon resonance (SPR), which records the kinetics of bacterial lysis based on a change in the resonance angle. The bacteria are immobilized on the surface of the SPR chip, and the action of phage as the mass loss is monitored after a typical lytic cycle delay. Atomic force microscopy (AFM) is a technique for imaging of samples on the surface. In contrast to electron microscopy, it has the advantage of real-time imaging in the native conditions of the nutrient medium. In our case, Staphylococcus aureus was lysed using the enzyme lysostaphin and phage P68 from the familyPodoviridae at 37 ° C. In addition to visualization, AFM was used to study changes in mechanical properties during lysis, which resulted in a reduction of Young’s modulus (E) after disruption of the bacterial wall. Changes in E reflect the stiffness of the bacterium. These advanced methods provide deeper insight into bacterial lysis and can help to fight against bacterial diseases.

Keywords: biosensors, atomic force microscopy, surface plasmon resonance, bacterial lysis, staphylococcus aureus, phage P68

Procedia PDF Downloads 134
624 Design of Low-Emission Catalytically Stabilized Combustion Chamber Concept

Authors: Annapurna Basavaraju, Andreas Marn, Franz Heitmeir

Abstract:

The Advisory Council for Aeronautics Research in Europe (ACARE) is cognizant for the overall reduction of NOx emissions by 80% in its vision 2020. Moreover small turbo engines have higher fuel specific emissions compared to large engines due to their limited combustion chamber size. In order to fulfill these requirements, novel combustion concepts are essential. This motivates to carry out the research on the current state of art, catalytic stabilized combustion chamber using hydrogen in small jet engines which are designed and investigated both numerically and experimentally during this project. Catalytic combustion concepts can also be adopted for low caloric fuels and are therefore not constrained to only hydrogen. However, hydrogen has high heating value and has the major advantage of producing only the nitrogen oxides as pollutants during the combustion, thus eliminating the interest on other emissions such as Carbon monoxides etc. In the present work, the combustion chamber is designed based on the ‘Rich catalytic Lean burn’ concept. The experiments are conducted for the characteristic operating range of an existing engine. This engine has been tested successfully at Institute of Thermal Turbomachinery and Machine Dynamics (ITTM), Technical University Graz. One of the facts that the efficient combustion is a result of proper mixing of fuel-air mixture, considerable significance is given to the selection of appropriate mixer. This led to the design of three diverse configurations of mixers and is investigated experimentally and numerically. Subsequently the best mixer would be equipped in the main combustion chamber and used throughout the experimentation. Furthermore, temperatures and pressures would be recorded at various locations inside the combustion chamber and the exhaust emissions will also be analyzed. The instrumented combustion chamber would be inspected at the engine relevant inlet conditions for nine different sets of catalysts at the Hot Flow Test Facility (HFTF) of the institute.

Keywords: catalytic combustion, gas turbine, hydrogen, mixer, NOx emissions

Procedia PDF Downloads 305
623 A Study on the Different Components of a Typical Back-Scattered Chipless RFID Tag Reflection

Authors: Fatemeh Babaeian, Nemai Chandra Karmakar

Abstract:

Chipless RFID system is a wireless system for tracking and identification which use passive tags for encoding data. The advantage of using chipless RFID tag is having a planar tag which is printable on different low-cost materials like paper and plastic. The printed tag can be attached to different items in the labelling level. Since the price of chipless RFID tag can be as low as a fraction of a cent, this technology has the potential to compete with the conventional optical barcode labels. However, due to the passive structure of the tag, data processing of the reflection signal is a crucial challenge. The captured reflected signal from a tag attached to an item consists of different components which are the reflection from the reader antenna, the reflection from the item, the tag structural mode RCS component and the antenna mode RCS of the tag. All these components are summed up in both time and frequency domains. The effect of reflection from the item and the structural mode RCS component can distort/saturate the frequency domain signal and cause difficulties in extracting the desired component which is the antenna mode RCS. Therefore, it is required to study the reflection of the tag in both time and frequency domains to have a better understanding of the nature of the captured chipless RFID signal. The other benefits of this study can be to find an optimised encoding technique in tag design level and to find the best processing algorithm the chipless RFID signal in decoding level. In this paper, the reflection from a typical backscattered chipless RFID tag with six resonances is analysed, and different components of the signal are separated in both time and frequency domains. Moreover, the time domain signal corresponding to each resonator of the tag is studied. The data for this processing was captured from simulation in CST Microwave Studio 2017. The outcome of this study is understanding different components of a measured signal in a chipless RFID system and a discovering a research gap which is a need to find an optimum detection algorithm for tag ID extraction.

Keywords: antenna mode RCS, chipless RFID tag, resonance, structural mode RCS

Procedia PDF Downloads 200
622 YPFS Attenuating TH2 Cell-Mediated Allergic Inflammation by Regulating the TSLP Pathway

Authors: Xi Yu, Lili Gu, Huizhu Wang, Xiao Wei, Dandan Sheng, Xiaoyan Jiang, Min Hong

Abstract:

Introduction: Hypersensitivity disease is difficult to cure completely because of its recurrence, yupingfengsan (YPFS) is used to treat the diseases with the advantage of reducing the recurrence,but the precise mechanism is not clear. Previous studies of our laboratory have shown that the extract of YPFS can inhibit Th2-type allergic contact dermatitis(ACD) induced by FITC.Besides, thymic stromal lymphopoietin(TSLP) have been proved to be a master switch for allergic inflammation. Based on these studies, we want to establish a mouse model of TSLP production based on Th2 cell-mediated allergic inflammation to explore the regulating mechanisms of YPFS on TSLP in Th2 cell-mediated allergic inflammation. Methods: Th2-type ACD mouse model: The mice were topically sensitized on the abdomens (induction phase) and elicited on its ears skin 6 day later (excitation phase) with FITC solution, and the ear swelling was measured to evaluate the allergic inflammation;A mouse model of TSLP production based on Th2 cell-mediated allergic inflammation (TSLP production model): the skin of the ear was sensitized on two consecutive days with FITC solution causing the production of TSLP;Mice were treated with YPFS extract,ELISA、Real-time PCR and Western-blotting were using to examine the mRNA and protein levels of TSLP\TSLPR and TLRs ect. Results: YPFS extract can attenuates Th2-type allergic inflammatory in mice;in TSLP production model, YPFS can inhibit the expression of TSLP、 TSLPR、TLRs and MyD88, So we deduce the possible mechanisms of YPFS to play a role of intervention is through TLRs- MyD88 dependent and independent pathway to reduce TSLP production.

Keywords: YPFS, TSLP, TLRs, Th2-type allergic contact dermatitis

Procedia PDF Downloads 422
621 In Search for the 'Bilingual Advantage' in Immersion Education

Authors: M. E. Joret, F. Germeys, P. Van de Craen

Abstract:

Background: Previous studies have shown that ‘full’ bilingualism seems to enhance the executive functions in children, young adults and elderly people. Executive functions refer to a complex cognitive system responsible for self-controlled and planned behavior and seem to predict academic achievement. The present study aimed at investigating whether similar effects could be found in children learning their second language at school in immersion education programs. Methods: In this study, 44 children involved in immersion education for 4 to 5 years were compared to 48 children in traditional schools. All children were between 9 and 11 years old. To assess executive functions, the Simon task was used, a neuropsychological measure assessing executive functions with reaction times and accuracy on congruent and incongruent trials. To control for background measures, all children underwent the Raven’s coloured progressive matrices, to measure non-verbal intelligence and the Echelle de Vocabulaire en Images Peabody (EVIP), assessing verbal intelligence. In addition, a questionnaire was given to the parents to control for other confounding variables, such as socio-economic status (SES), home language, developmental disorders, etc. Results: There were no differences between groups concerning non-verbal intelligence and verbal intelligence. Furthermore, the immersion learners showed overall faster reaction times on both congruent and incongruent trials compared to the traditional learners, but only after 5 years of training, not before. Conclusion: These results show that the cognitive benefits found in ‘full’ bilinguals also appear in children involved in immersion education, but only after a sufficient exposure to the second language. Our results suggest that the amount of second language training needs to be sufficient before these cognitive effects may emerge.

Keywords: bilingualism, executive functions, immersion education, Simon task

Procedia PDF Downloads 442
620 Techno-Economic Optimization and Evaluation of an Integrated Industrial Scale NMC811 Cathode Active Material Manufacturing Process

Authors: Usama Mohamed, Sam Booth, Aliysn J. Nedoma

Abstract:

As part of the transition to electric vehicles, there has been a recent increase in demand for battery manufacturing. Cathodes typically account for approximately 50% of the total lithium-ion battery cell cost and are a pivotal factor in determining the viability of new industrial infrastructure. Cathodes which offer lower costs whilst maintaining or increasing performance, such as nickel-rich layered cathodes, have a significant competitive advantage when scaling up the manufacturing process. This project evaluates the techno-economic value proposition of an integrated industrial scale cathode active material (CAM) production process, closing the mass and energy balances, and optimizing the operation conditions using a sensitivity analysis. This is done by developing a process model of a co-precipitation synthesis route using Aspen Plus software and validated based on experimental data. The mechanism chemistry and equilibrium conditions were established based on previous literature and HSC-Chemistry software. This is then followed by integrating the energy streams, adding waste recovery and treatment processes, as well as testing the effect of key parameters (temperature, pH, reaction time, etc.) on CAM production yield and emissions. Finally, an economic analysis estimating the fixed and variable costs (including capital expenditure, labor costs, raw materials, etc.) to calculate the cost of CAM ($/kg and $/kWh), total plant cost ($) and net present value (NPV). This work sets the foundational blueprint for future research into sustainable industrial scale processes for CAM manufacturing.

Keywords: cathodes, industrial production, nickel-rich layered cathodes, process modelling, techno-economic analysis

Procedia PDF Downloads 100
619 LAMOS - Layered Amorphous Metal Oxide Gas Sensors: New Interfaces for Gas Sensing Applications

Authors: Valentina Paolucci, Jessica De Santis, Vittorio Ricci, Giacomo Giorgi, Carlo Cantalini

Abstract:

Despite their potential in gas sensing applications, the major drawback of 2D exfoliated metal dichalcogenides (MDs) is that they suffer from spontaneous oxidation in air, showing poor chemical stability under dry/wet conditions even at room temperature, limiting their practical exploitation. The aim of this work is to validate a synthesis strategy allowing microstructural and electrical stabilization of the oxides that inevitably form on the surface of 2D dichalcogenides. Taking advantage of spontaneous oxidation of MDs in air, we report on liquid phase exfoliated 2D-SnSe2 flakes annealed in static air at a temperature below the crystallization temperature of the native a-SnO2 oxide. This process yields a new class of 2D Layered Amorphous Metal Oxides Sensors (LAMOS), specifically few-layered amorphous a-SnO2, showing excellent gas sensing properties. Sensing tests were carried out at low operating temperature (i.e. 100°C) by exposing a-SnO2 to both oxidizing and reducing gases (i.e. NO2, H2S and H2) and different relative humidities ranging from 40% to 80% RH. The formation of stable nanosheets of amorphous a-SnO2 guarantees excellent reproducibility and stability of the response over one year. These results pave the way to new interesting research perspectives out considering the opportunity to synthesize homogeneous amorphous textures with no grain boundaries, no grains, no crystalline planes with different orientations, etc., following gas sensing mechanisms that likely differ from that of traditional crystalline metal oxide sensors. Moreover, the controlled annealing process could likely be extended to a large variety of Transition Metal Dichalcogenides (TMDs) and Metal Chalcogenides (MCs), where sulfur, selenium, or tellurium atoms can be easily displaced by O2 atoms (ΔG < 0), enabling the synthesis of a new family of amorphous interfaces.

Keywords: layered 2D materials, exfoliation, lamos, amorphous metal oxide sensors

Procedia PDF Downloads 124
618 Development and Characterization of Sandwich Bio-Composites Based on Short Alfa Fiber and Jute Fabric

Authors: Amine Rezzoug, Selsabil Rokia Laraba, Mourad Ancer, Said Abdi

Abstract:

Composite materials are taking center stage in different fields thanks to their mechanical characteristics and their ease of preparation. Environmental constraints have led to the development of composite with natural reinforcements. The sandwich structure has the advantage to have good flexural proprieties for low density, which is why it was chosen in this work. The development of these materials is related to an energy saving strategy and environmental protection. The present work refers to the study of the development and characterization of sandwiches composites based on hybrids laminates with natural reinforcements (Alfa and Jute), a metal fabric was introduced into composite in order to have a compromise between weight and properties. We use different configurations of reinforcements (jute, metallic fabric) to develop laminates in order to use them as thin facings for sandwiches materials. While the core was an epoxy matrix reinforced with Alfa short fibers, a chemical treatment sodium hydroxide was cared to improve the adhesion of the Alfa fibers. The mechanical characterization of our materials was made by the tensile and bending test, to highlight the influence of jute and Alfa. After testing, the fracture surfaces are observed by scanning electron microscopy (SEM). Optical microscopy allowed us to calculate the degree of porosity and to observe the morphology of the individual layers. Laminates based on jute fabric have shown better results in tensile test as well as to bending, compared to those of the metallic fabric (100%, 65%). Sandwich Panels were also characterized in terms of bending test. Results we had provide, shows that this composite has sufficient properties for possible replacing conventional composite materials by considering the environmental factors.

Keywords: bending test, bio-composites, sandwiches, tensile test

Procedia PDF Downloads 435
617 Expert System: Debugging Using MD5 Process Firewall

Authors: C. U. Om Kumar, S. Kishore, A. Geetha

Abstract:

An Operating system (OS) is software that manages computer hardware and software resources by providing services to computer programs. One of the important user expectations of the operating system is to provide the practice of defending information from unauthorized access, disclosure, modification, inspection, recording or destruction. Operating system is always vulnerable to the attacks of malwares such as computer virus, worm, Trojan horse, backdoors, ransomware, spyware, adware, scareware and more. And so the anti-virus software were created for ensuring security against the prominent computer viruses by applying a dictionary based approach. The anti-virus programs are not always guaranteed to provide security against the new viruses proliferating every day. To clarify this issue and to secure the computer system, our proposed expert system concentrates on authorizing the processes as wanted and unwanted by the administrator for execution. The Expert system maintains a database which consists of hash code of the processes which are to be allowed. These hash codes are generated using MD5 message-digest algorithm which is a widely used cryptographic hash function. The administrator approves the wanted processes that are to be executed in the client in a Local Area Network by implementing Client-Server architecture and only the processes that match with the processes in the database table will be executed by which many malicious processes are restricted from infecting the operating system. The add-on advantage of this proposed Expert system is that it limits CPU usage and minimizes resource utilization. Thus data and information security is ensured by our system along with increased performance of the operating system.

Keywords: virus, worm, Trojan horse, back doors, Ransomware, Spyware, Adware, Scareware, sticky software, process table, MD5, CPU usage and resource utilization

Procedia PDF Downloads 427
616 Multi-Particle Finite Element Modelling Simulation Based on Cohesive Zone Method of Cold Compaction Behavior of Laminar Al and NaCl Composite Powders

Authors: Yanbing Feng, Deqing Mei, Yancheng Wang, Zichen Chen

Abstract:

With the advantage of low volume density, high specific surface area, light weight and good permeability, porous aluminum material has the potential to be used in automotive, railway, chemistry and construction industries, etc. A layered powder sintering and dissolution method were developed to fabricate the porous surface Al structure with high efficiency. However, the densification mechanism during the cold compaction of laminar composite powders is still unclear. In this study, multi particle finite element modelling (MPFEM) based on the cohesive zone method (CZM) is used to simulate the cold compaction behavior of laminar Al and NaCl composite powders. To obtain its densification mechanism, the macro and micro properties of final compacts are characterized and analyzed. The robustness and accuracy of the numerical model is firstly verified by experimental results and data fitting. The results indicate that the CZM-based multi particle FEM is an effective way to simulate the compaction of the laminar powders and the fracture process of the NaCl powders. In the compaction of the laminar powders, the void is mainly filled by the particle rearrangement, plastic deformation of Al powders and brittle fracture of NaCl powders. Large stress is mainly concentrated within the NaCl powers and the contact force network is formed. The Al powder near the NaCl powder or the mold has larger stress distribution on its contact surface. Therefore, the densification process of cold compaction of laminar Al and NaCl composite powders is successfully analyzed by the CZM-based multi particle FEM.

Keywords: cold compaction, cohesive zone, multi-particle FEM, numerical modeling, powder forming

Procedia PDF Downloads 152
615 Effect of Treated Grey Water on Bacterial Concrete

Authors: Deepa T., Inchara S. R., Venkatesh S. V., Seema Tharannum

Abstract:

Concrete is the most widely used structural material. It is usually made using locally available materials. However, concrete has low tensile strength and may crack in the early days with exothermic hydration, for which water is essential. To address the increased construction water demand, treated greywater may be used. Bacillus subtilis bacteria that form endospores is the biological agent considered in this study for biomineralization or Microbially Induced Calcite Precipitation (MICP) technique to heal cracks. Treated grey water which is obtained from STP of PES University, opted in place of Potable water, which had qualities within the standard range as per codal provisions. In this work, M30 grade conventional concrete is designed using OPC 53-grade cement, manufactured sand, natural coarse aggregates, and potable water. Conventional concrete (CC), bacterial concrete with potable water (BS), and treated grey water concrete (TGWBS) are the three different concrete specimens cast. Experimental studies such as the strength test and the surface hardness test are performed on conventional and bacterial concrete samples after 7, 28, and 56 days of curing. Concrete cubes are subjected to a temperature of 50° C to investigate the effect of higher temperature. Cracked cube specimens are observed for self-healing -as well as microstructure analysis with Scanning Electron Microscope (SEM), Energy Dispersive X-Ray Analysis (EDAX), and X-Ray Diffraction Analysis (XRD). Noticeable calcium salt deposition is observed on the surface of the BS and TGWBS cracked specimen. Surface hardness and the EDAX test gave promising results on the advantage of using spore-forming bacteria in concrete. This is followed by the strength gained in compression and flexure. Results also indicate that treated grey water can be a substitute for potable water in concrete.

Keywords: Bacillus subtilis concrete, microstructure, temperature, treated greywater

Procedia PDF Downloads 99
614 A Study on Al-Riba Al-Hukmi and Its Instances from View of Islam

Authors: Abolfazl Alishahi Ghalehjoughi, Bi Bi Zeinab Hoseni

Abstract:

Islam is a comprehensive religion, and has rules for any thing. Islam attaches respect and importance to properties as well, and outlaws some types of transaction. A type of transaction that is strictly forbidden by the Islam is riba (usury), for which special punishments is considered in the Qur’an and hadiths. Usury is divided into (riba qarzi) loan usury and riba muamili (transaction usury); sometimes, in transaction and interest free loan contracts, ziyadah aini (interest in kind and of the same kind as that of the object of transaction) is not stipulated, but performance of work, provision of an advantage or a service, or a respite is stipulated, in which case although no ziyadah aini is in place, the transaction still constitutes usury and is outlaw. For instance, if a bank stipulates in an interest free loan contract that it pays a person the interest free loan only if he/she deposits a sum in the bank, this is an instance of riba hukmi. Or, for muamilah sarfi (transaction is which object of transaction and consideration is gold or silver) to be legitimate, it necessary that both the object of transaction and the consideration be handed over between the parties, because if a party takes delivery of the considered or object of transaction while the other party does not, the party who has taken delivery will accrue a benefit, as he/she wins time until he/she makes delivery to the other party, and this tantamount to usury in muamilah sarfi. Or, if a person lends a sum to another person, while the lender is indebted to the borrower, if the lender stipulates that he/she lends such amount only if the borrower postpones the maturity date of the lender’s debt to borrower, which is in one month, for a particular period of time, such loan will constitute usury. This research first provides views on riba hukmi, and then proceeds to analysis of views, trying to study fundamentals and proof regarding prohibition of riba hukmi, and to analyze instances of riba hukmi according to religious and hadith books.

Keywords: Islam, riba, prohibition, riba hukmi

Procedia PDF Downloads 371
613 Low-Complex, High-Fidelity Two-Grades Cyclo-Olefin Copolymer (COC) Based Thermal Bonding Technique for Sealing a Thermoplastic Microfluidic Biosensor

Authors: Jorge Prada, Christina Cordes, Carsten Harms, Walter Lang

Abstract:

The development of microfluidic-based biosensors over the last years has shown an increasing employ of thermoplastic polymers as constitutive material. Their low-cost production, high replication fidelity, biocompatibility and optical-mechanical properties are sought after for the implementation of disposable albeit functional lab-on-chip solutions. Among the range of thermoplastic materials on use, the Cyclo-Olefin Copolymer (COC) stands out due to its optical transparency, which makes it a frequent choice as manufacturing material for fluorescence-based biosensors. Moreover, several processing techniques to complete a closed COC microfluidic biosensor have been discussed in the literature. The reported techniques differ however in their implementation, and therefore potentially add more or less complexity when using it in a mass production process. This work introduces and reports results on the application of a purely thermal bonding process between COC substrates, which were produced by the hot-embossing process, and COC foils containing screen-printed circuits. The proposed procedure takes advantage of the transition temperature difference between two COC grades foils to accomplish the sealing of the microfluidic channels. Patterned heat injection to the COC foil through the COC substrate is applied, resulting in consistent channel geometry uniformity. Measurements on bond strength and bursting pressure are shown, suggesting that this purely thermal bonding process potentially renders a technique which can be easily adapted into the thermoplastic microfluidic chip production workflow, while enables a low-cost as well as high-quality COC biosensor manufacturing process.

Keywords: biosensor, cyclo-olefin copolymer, hot embossing, thermal bonding, thermoplastics

Procedia PDF Downloads 240
612 Kenaf MDF Panels with Soy Based Adhesive. The Influence of Preparation Parameters on Physciomechanical Properties

Authors: Imtiaz Ali, Krishnan Jayaraman, Debes Bhattacharyya

Abstract:

Soybean concentrate is abundant material and renewable product that is recently been explored as an alternative to conventional formaldehyde based resins in wood based products. The main goal of this study is to evaluate the technical feasibility of manufacturing environment friendly MDF panels from renewable resources. The panels are made by using kenaf bast fibers (KB) as wood substitute and soy based adhesive as bonding material. Second order response surface regression models are used to understand the effects and interactions of resin content (RC) and pressing time (PT) on the mechanical and water soaking properties of kenaf panels. The mechanical and water soaking properties are significantly improved as the RC increased and reached at the highest level at maximum resin loading (12%). The effect of pressing time is significant in the first phase when the pressing time increased from 4 to 6 min; however the effect was not as significant when pressing time further increased to 8 min. The second order regression equations further confirm that the variation in process parameters has strong relationship with the physciomechanical properties. The MDF panels the minimum requirements of internal bond strength, modulus of rupture and modulus of elasticity as recommended by US wood MDF standard specifications for G110, G120, G130 and G140 grade MDF panels. However, the thickness swelling results are considerably poorer than the recommended values of general purpose standard requirements. This deficiency can be counterbalanced by the advantage of being formaldehyde free panels made from renewable sources and by making them suitable alternative for less humid environment applications.

Keywords: kenaf, Medium density fibreboard, soy adhesive, mechanical properties, water soaking properties

Procedia PDF Downloads 377
611 Vital Pulp Therapy: The Minimally Invasive Endodontic Therapy for Mature Permanent Teeth

Authors: Fadwa Chtioui

Abstract:

Vital Pulp Therapy (VPT) is nowadays challenging the deep-rooted dogma of root canal treatment, being the only therapeutic option for permanent teeth diagnosed with irreversible pulpitis or carious pulp exposure. Histologic and clinical research has shown that compromised dental pulp can be treated without the full removal or excavation of all healthy pulp, and the outcome of the partial or full pulpotomy followed by a Tricalcium-Silicate-based dressing seems to show promising results in maintaining pulp vitality and preserving affected teeth in the long term. By reviewing recent advances in the techniques of VPT and their clinical effectiveness and safety in permanent teeth with irreversible Pulpitis, this work provides a new understanding of pulp pathophysiology and defense mechanisms and will reform dental practitioners' decision-making in treating irreversible pulpits from root canal therapy to vital pulp therapy by taking advantage of the biological effects of Tricalcium Silicate materials. Biography of presenting author: Fadwa Chitoui graduated from the school of Dental Medicine of Monastir, Tunisia, in 2015. After getting her DDS degree with honors, she earned her Postgraduate master's Degree in Endodontics and Restorative Dentistry from her Faculty. Since 2021, she has Started her own private and specialized practice based in the capital Tunis. She enjoys the sphere of associative life, worked with national and international associations, and got engaged in scientific dental research, whereby she tailored her passion for her field of specialty towards broadening her knowledge and ambitions, holding conferences and workshops nationally and internationally and publishing scientific articles in several journals.

Keywords: irreversible pulpitis, permanenet teeth, vital pulp therapy, pulpotomy

Procedia PDF Downloads 68
610 Educational Turn towards Digitalization by Changing Leadership, Networks and Qualification Concepts

Authors: Patricia Girrbach

Abstract:

Currently, our society is facing a new and incremental upheaval technological revolution named digitalization. In order to face the relating challenges organizations have to be prepared. They need appropriate circumstances in order to cope with current issues concerning digital transformation processes. Nowadays digitalization emerged as top issues for companies and business leaders. In this context, it is a pressure on companies to have a positive, productive digital culture. And indeed, Organizations realize that they need to address this important issue. In this context 87 percent of organizations quote culture and engagement as one of their top challenges in terms of any change process, but especially in terms of the digital turn. Executives can give their company a competitive advantage and attract top talent by having a strong workplace culture that supports digitalization. Many current studies attest that fact. Digital-oriented companies can hire more easily, they have the lowest voluntary turnover rates, deliver better customer service, and are more profitable over the long run. Based on this background it is important to provide companies starting points and practical measurements how to reach this goal. The major findings are that firms need to make sense out of digitalization. In this context, they should focus on internal but also on external stakeholders. Furthermore, they should create certain working conditions and they should support the qualification of employees, e.g. by Virtual Reality. These measurements can create positive experiences in terms of digitalization in order to ensure the support of stuff in terms of the digital turn. Based on several current studies and literature research this paper provides concrete measurements for companies in order to enable the digital turn. Therefore, the aim of this paper is providing possible practical starting points which support both the education of employees by digitalization as well as the digital turn itself within the organization.

Keywords: digitalization, industry 4.0, education 4.0, virtual reality

Procedia PDF Downloads 159
609 Category-Base Theory of the Optimum Signal Approximation Clarifying the Importance of Parallel Worlds in the Recognition of Human and Application to Secure Signal Communication with Feedback

Authors: Takuro Kida, Yuichi Kida

Abstract:

We show a base of the new trend of algorithm mathematically that treats a historical reason of continuous discrimination in the world as well as its solution by introducing new concepts of parallel world that includes an invisible set of errors as its companion. With respect to a matrix operator-filter bank that the matrix operator-analysis-filter bank H and the matrix operator-sampling-filter bank S are given, firstly, we introduce the detailed algorithm to derive the optimum matrix operator-synthesis-filter bank Z that minimizes all the worst-case measures of the matrix operator-error-signals E(ω) = F(ω) − Y(ω) between the matrix operator-input-signals F(ω) and the matrix operator-output signals Y(ω) of the matrix operator-filter bank at the same time. Further, feedback is introduced to the above approximation theory and it is indicated that introducing conversations with feedback does not superior automatically to the accumulation of existing knowledge of signal prediction. Secondly, the concept of category in the field of mathematics is applied to the above optimum signal approximation and is indicated that the category-based approximation theory is applied to the set-theoretic consideration of the recognition of humans. Based on this discussion, it is shown naturally why the narrow perception that tends to create isolation shows an apparent advantage in the short term and, often, why such narrow thinking becomes intimate with discriminatory action in a human group. Throughout these considerations, it is presented that, in order to abolish easy and intimate discriminatory behavior, it is important to create a parallel world of conception where we share the set of invisible error signals, including the words and the consciousness of both worlds.

Keywords: signal prediction, pseudo inverse matrix, artificial intelligence, conditional optimization

Procedia PDF Downloads 156
608 Relationship between Employee Welfare Practices and Performance of Non-Governmental Organizations in Kenya

Authors: Protus A. Lumiti, Susan O. Wekesa, Mary Omondi

Abstract:

Performance is a key pillar to the accomplishment of the goals of all organizations, whether private, public or non- profit. Employees are the intellectual assets of the organization and they are an avenue to the achievement of competitive advantage. An employee welfare service in an organization is vital in fostering employee motivation and improving their productivity. In view of this, the main goal of this research was to determine the relationship between employee welfare practices and the performance of non-governmental organizations in Kenya. The study was guided by four objectives, namely: to establish, determine, evaluate and assess the relationship between employee welfare practices and the performance of non-governmental organizations in Kenya. The study utilized a survey design using both qualitative and quantitative approaches. In this study, a purposive, stratified and simple random sampling technique was used to arrive at a sample of 355 respondents who comprised senior managers, middle level managers and operational employees out of the targeted population of 14,283 employees of non-governmental organizations working in Nairobi County. The primary data collection tools were questionnaires supplemented by an interview schedule, while secondary data was obtained from reviewed journals, published books and articles. Data analysis was done using Statistical Packages for Social Sciences Software version 23. The study utilized multiple linear regression and a structural equation model. The findings of the study were that: employee welfare practices had a positive and significant relationship with the performance of Non-governmental organizations in Kenya. In addition, there was also a linear relationship between the independent variables and the dependent variable and the study concluded that there was a relationship between the predictor variable and the dependent variable of the study. The study recommended that management of No-governmental organization boards in Kenya should come up with a comprehensive policy document on employee welfare practices in order to enhance the performance of non-governmental organizations in Kenya.

Keywords: employee, economic, performance, welfare

Procedia PDF Downloads 180
607 Building Transparent Supply Chains through Digital Tracing

Authors: Penina Orenstein

Abstract:

In today’s world, particularly with COVID-19 a constant worldwide threat, organizations need greater visibility over their supply chains more than ever before, in order to find areas for improvement and greater efficiency, reduce the chances of disruption and stay competitive. The concept of supply chain mapping is one where every process and route is mapped in detail between each vendor and supplier. The simplest method of mapping involves sourcing publicly available data including news and financial information concerning relationships between suppliers. An additional layer of information would be disclosed by large, direct suppliers about their production and logistics sites. While this method has the advantage of not requiring any input from suppliers, it also doesn’t allow for much transparency beyond the first supplier tier and may generate irrelevant data—noise—that must be filtered out to find the actionable data. The primary goal of this research is to build data maps of supply chains by focusing on a layered approach. Using these maps, the secondary goal is to address the question as to whether the supply chain is re-engineered to make improvements, for example, to lower the carbon footprint. Using a drill-down approach, the end result is a comprehensive map detailing the linkages between tier-one, tier-two, and tier-three suppliers super-imposed on a geographical map. The driving force behind this idea is to be able to trace individual parts to the exact site where they’re manufactured. In this way, companies can ensure sustainability practices from the production of raw materials through the finished goods. The approach allows companies to identify and anticipate vulnerabilities in their supply chain. It unlocks predictive analytics capabilities and enables them to act proactively. The research is particularly compelling because it unites network science theory with empirical data and presents the results in a visual, intuitive manner.

Keywords: data mining, supply chain, empirical research, data mapping

Procedia PDF Downloads 175
606 Improving Early Detection, Diagnosis And Intervention For Children With Autism Spectrum Disorder: A Cross-sectional Survey In China

Authors: Yushen Dai, Tao Deng, Miaoying Chen, Baoqin Huang, Yan Ji, Yongshen Feng, Shaofei Liu, Dongmei Zhong, Tao Zhang, Lifeng Zhang

Abstract:

Background: Detection and diagnosis are prerequisites for early interventions in the care of children with Autism Spectrum Disorder (ASD). However, few studies have focused on this topic. Aim: This study aims to characterize the timing from symptom detection to intervention in children with ASD and to identify the potential predictors of early detection, diagnosis, and intervention. Methods and procedures: A cross-sectional survey was conducted with 314 parents of children with ASD in Guangzhou, China. Outcomes and Results: This study found that most children (76.24%) were diagnosed within one year after detection, and 25.8% of them did not receive the intervention after diagnosis. Predictors to ASD diagnosis included ASD-related symptoms identified at a younger age, more serious symptoms, and initial symptoms with abnormal development and sensory anomalies. ASD-related symptoms observed at an older age, initial symptoms with the social deficit, sensory anomalies, and without language impairment, parents as the primary caregivers, family with lower income and less social support utilization increased the odds of the time lag between detection and diagnosis. Children whose fathers had a lower level of education were less likely to receive the intervention. Conclusions and Implications: The study described the time for detection, diagnosis, and interventions of children with ASD. Findings suggest that the ASD-related symptoms, the timing at which symptoms first become a concern, primary caregivers’ roles, father’s educational level, and the family economic status should be considered when offering support to improve early detection, diagnosis, and intervention. Helping children and their families take full advantage of support is also important.

Keywords: autism spectrum disorder, child, detection, diagnosis, intervention, social support

Procedia PDF Downloads 90
605 Assessing the Impact of Industry 4.0 Implementation on Carbon Neutrality in industries

Authors: Sepinoud Hamedi

Abstract:

The ponder points to observationally look at the impact of carbon-neutrality approaches on the key assets required for Industry 4.0 driven savvy fabricating and how these assets can give a economical competitive advantage. The hypothetical system is coordinates with the regulation hypothesis and the resource-based see (RBV). The observational strategy is utilized for collecting information through studies and assist covariance-based auxiliary condition modeling is utilized to test the theories. Discoveries demonstrate that carbon–neutral-based government arrangements have a more grounded impact on unmistakable assets and human aptitudes than intangible assets related to Industry 4.0 driven shrewd fabricating. Moment, carbon–neutral arrangement arrangement with the firm’s maintainability destinations plays a directing impact on the relationship between carbon–neutral-based government arrangements and assets (substantial, intangible assets and human abilities) for Industry 4.0 driven shrewd fabricating. Finally, the three assets (substantial, intangible assets and human abilities) for Industry 4.0 driven savvy fabricating play a basic part in creating firms’ carbon–neutral capability and assist improving operational execution. Administrative suggestions incorporate venture in progressed advanced innovations, creating a solid mentality among workers and supply chain partners, and planning preparing programs for upgrading shrewd fabricating execution to create carbon-neutrality capability. This think about proposes a crossover hypothesis within the setting of carbon nonpartisanship by coordination institutional theory and RBV. Typically the primary think about that looks at the impact of carbon neutrality-based government arrangements on crucial Industry 4.0-driven savvy fabricating assets and the circuitous impact on carbon nonpartisanship capability and operational execution.

Keywords: carbon, industry 4.0, neutrality, RBV, nonpartisanship

Procedia PDF Downloads 75
604 Delineating Concern Ground in Block Caving – Underground Mine Using Ground Penetrating Radar

Authors: Eric Sitorus, Septian Prahastudhi, Turgod Nainggolan, Erwin Riyanto

Abstract:

Mining by block or panel caving is a mining method that takes advantage of fractures within an ore body, coupled with gravity, to extract material from a predetermined column of ore. The caving column is weakened from beneath through the use of undercutting, after which the ore breaks up and is extracted from below in a continuous cycle. The nature of this method induces cyclical stresses on the pillars of excavations as stress is built up and released over time, which has a detrimental effect on both the installed ground support and the rock mass itself. Ground support capacity, especially on the production where excavation void ratio is highest, is subjected to heavy loading. Strain above threshold of the elongation of support capacity can yield resulting in damage to excavations. Geotechnical engineers must evaluate not only the remnant capacity of ground support systems but also investigate depth of rock mass yield within pillars, backs and floors. Ground Penetrating Radar (GPR) is a geophysical method that has the ability to evaluate rock mass damage using electromagnetic waves. This paper illustrates a case study from the Grasberg mining complex where non-invasive information on the depth of damage and condition of the remaining rock mass was required. GPR with 100 MHz antenna resolution was used to obtain images of the subsurface to determine rehabilitation requirements prior to recommencing production activities. The GPR surveys were used to calibrate the reflection coefficient response of varying rock mass conditions to known Rock Quality Designation (RQD) parameters observed at the mine. The calibrated GPR survey allowed site engineers to map subsurface conditions and plan rehabilitation accordingly.

Keywords: block caving, ground penetrating radar, reflectivity, RQD

Procedia PDF Downloads 134
603 Study of Laminar Convective Heat Transfer, Friction Factor, and Pumping Power Advantage of Aluminum Oxide-Water Nanofluid through a Channel

Authors: M. Insiat Islam Rabby, M. Mahbubur Rahman, Eshanul Islam, A. K. M. Sadrul Islam

Abstract:

The numerical and simulative analysis of laminar heat exchange convection of aluminum oxide (Al₂O₃) - water nanofluid for the developed region through two parallel plates is presented in this present work. The second order single phase energy equation, mass and momentum equation are solved by using finite volume method with the ANSYS FLUENT 16 software. The distance between two parallel plates is 4 mm and length is 600 mm. Aluminum oxide (Al₂O₃) is used as nanoparticle and water is used as the base/working fluid for the investigation. At the time of simulation 1% to 5% volume concentrations of the Al₂O₃ nanoparticles are used for mixing with water to produce nanofluid and a wide range of interval of Reynolds number from 500 to 1100 at constant heat flux 500 W/m² at the channel wall has also been introduced. The result reveals that for increasing the Reynolds number the Nusselt number and heat transfer coefficient are increased linearly and friction factor decreased linearly in the developed region for both water and Al₂O₃-H₂O nanofluid. By increasing the volume fraction of Al₂O₃-H₂O nanofluid from 1% to 5% the value of Nusselt number increased rapidly from 0.7 to 7.32%, heat transfer coefficient increased 7.14% to 31.5% and friction factor increased very little from 0.1% to 4% for constant Reynolds number compared to pure water. At constant heat transfer coefficient 700 W/m2-K the pumping power advantages have been achieved 20% for 1% volume concentration and 62% for 3% volume concentration of nanofluid compared to pure water.

Keywords: convective heat transfer, pumping power, constant heat flux, nanofluid, nanoparticles, volume concentration, thermal conductivity

Procedia PDF Downloads 160
602 An Analysis on Clustering Based Gene Selection and Classification for Gene Expression Data

Authors: K. Sathishkumar, V. Thiagarasu

Abstract:

Due to recent advances in DNA microarray technology, it is now feasible to obtain gene expression profiles of tissue samples at relatively low costs. Many scientists around the world use the advantage of this gene profiling to characterize complex biological circumstances and diseases. Microarray techniques that are used in genome-wide gene expression and genome mutation analysis help scientists and physicians in understanding of the pathophysiological mechanisms, in diagnoses and prognoses, and choosing treatment plans. DNA microarray technology has now made it possible to simultaneously monitor the expression levels of thousands of genes during important biological processes and across collections of related samples. Elucidating the patterns hidden in gene expression data offers a tremendous opportunity for an enhanced understanding of functional genomics. However, the large number of genes and the complexity of biological networks greatly increase the challenges of comprehending and interpreting the resulting mass of data, which often consists of millions of measurements. A first step toward addressing this challenge is the use of clustering techniques, which is essential in the data mining process to reveal natural structures and identify interesting patterns in the underlying data. This work presents an analysis of several clustering algorithms proposed to deals with the gene expression data effectively. The existing clustering algorithms like Support Vector Machine (SVM), K-means algorithm and evolutionary algorithm etc. are analyzed thoroughly to identify the advantages and limitations. The performance evaluation of the existing algorithms is carried out to determine the best approach. In order to improve the classification performance of the best approach in terms of Accuracy, Convergence Behavior and processing time, a hybrid clustering based optimization approach has been proposed.

Keywords: microarray technology, gene expression data, clustering, gene Selection

Procedia PDF Downloads 323
601 J-Integral Method for Assessment of Structural Integrity of a Pressure Vessel

Authors: Karthik K. R, Viswanath V, Asraff A. K

Abstract:

The first stage of a new-generation launch vehicle of ISRO makes use of large pressure vessels made of Aluminium alloy AA2219 to store fuel and oxidizer. These vessels have many weld joints that may contain cracks or crack-like defects during their fabrication. These defects may propagate across the vessel during pressure testing or while in service under the influence of tensile stresses leading to catastrophe. Though ductile materials exhibit significant stable crack growth prior to failure, it is not generally acceptable for an aerospace component. There is a need to predict the initiation of stable crack growth. The structural integrity of the vessel from fracture considerations can be studied by constructing the Failure Assessment Diagram (FAD) that accounts for both brittle fracture and plastic collapse. Critical crack sizes of the pressure vessel may be highly conservative if it is predicted from FAD alone. If the J-R curve for material under consideration is available apriori, the critical crack sizes can be predicted to a certain degree of accuracy. In this paper, a novel approach is proposed to predict the integrity of a weld in a pressure vessel made of AA2219 material. Fracture parameter ‘J-integral’ at the crack front, evaluated through finite element analyses, is used in the new procedure. Based on the simulation of tension tests carried out on SCT specimens by NASA, a cut-off value of J-integral value (J?ᵤₜ_ₒ??) is finalised. For the pressure vessel, J-integral at the crack front is evaluated through FE simulations incorporating different surface cracks at long seam weld in a cylinder and in dome petal welds. The obtained J-integral, at vessel level, is compared with a value of J?ᵤₜ_ₒ??, and the integrity of vessel weld in the presence of the surface crack is firmed up. The advantage of this methodology is that if SCT test data of any metal is available, the critical crack size in hardware fabricated using that material can be predicted to a better level of accuracy.

Keywords: FAD, j-integral, fracture, surface crack

Procedia PDF Downloads 187
600 A Framework on Data and Remote Sensing for Humanitarian Logistics

Authors: Vishnu Nagendra, Marten Van Der Veen, Stefania Giodini

Abstract:

Effective humanitarian logistics operations are a cornerstone in the success of disaster relief operations. However, for effectiveness, they need to be demand driven and supported by adequate data for prioritization. Without this data operations are carried out in an ad hoc manner and eventually become chaotic. The current availability of geospatial data helps in creating models for predictive damage and vulnerability assessment, which can be of great advantage to logisticians to gain an understanding on the nature and extent of the disaster damage. This translates into actionable information on the demand for relief goods, the state of the transport infrastructure and subsequently the priority areas for relief delivery. However, due to the unpredictable nature of disasters, the accuracy in the models need improvement which can be done using remote sensing data from UAVs (Unmanned Aerial Vehicles) or satellite imagery, which again come with certain limitations. This research addresses the need for a framework to combine data from different sources to support humanitarian logistic operations and prediction models. The focus is on developing a workflow to combine data from satellites and UAVs post a disaster strike. A three-step approach is followed: first, the data requirements for logistics activities are made explicit, which is done by carrying out semi-structured interviews with on field logistics workers. Second, the limitations in current data collection tools are analyzed to develop workaround solutions by following a systems design approach. Third, the data requirements and the developed workaround solutions are fit together towards a coherent workflow. The outcome of this research will provide a new method for logisticians to have immediately accurate and reliable data to support data-driven decision making.

Keywords: unmanned aerial vehicles, damage prediction models, remote sensing, data driven decision making

Procedia PDF Downloads 379
599 Electrospun Conducting Polymer/Graphene Composite Nanofibers for Gas Sensing Applications

Authors: Aliaa M. S. Salem, Soliman I. El-Hout, Amira Gaber, Hassan Nageh

Abstract:

Nowadays, the development of poisonous gas detectors is considered to be an urgent matter to secure human health and the environment from poisonous gases, in view of the fact that even a minimal amount of poisonous gas can be fatal. Of these concerns, various inorganic or organic sensing materials have been used. Among these are conducting polymers, have been used as the active material in the gassensorsdue to their low-cost,easy-controllable molding, good electrochemical properties including facile fabrication process, inherent physical properties, biocompatibility, and optical properties. Moreover, conducting polymer-based chemical sensors have an amazing advantage compared to the conventional one as structural diversity, facile functionalization, room temperature operation, and easy fabrication. However, the low selectivity and conductivity of conducting polymers motivated the doping of it with varied materials, especially graphene, to enhance the gas-sensing performance under ambient conditions. There were a number of approaches proposed for producing polymer/ graphene nanocomposites, including template-free self-assembly, hard physical template-guided synthesis, chemical, electrochemical, and electrospinning...etc. In this work, we aim to prepare a novel gas sensordepending on Electrospun nanofibers of conducting polymer/RGO composite that is the effective and efficient expectation of poisonous gases like ammonia, in different application areas such as environmental gas analysis, chemical-,automotive- and medical industries. Moreover, our ultimate objective is to maximize the sensing performance of the prepared sensor and to check its recovery properties.

Keywords: electro spinning process, conducting polymer, polyaniline, polypyrrole, polythiophene, graphene oxide, reduced graphene oxide, functionalized reduced graphene oxide, spin coating technique, gas sensors

Procedia PDF Downloads 187
598 Knowledge Management Strategies within a Corporate Environment of Papers

Authors: Daniel J. Glauber

Abstract:

Knowledge transfer between personnel could benefit an organization’s improved competitive advantage in the marketplace from a strategic approach to knowledge management. The lack of information sharing between personnel could create knowledge transfer gaps while restricting the decision-making processes. Knowledge transfer between personnel can potentially improve information sharing based on an implemented knowledge management strategy. An organization’s capacity to gain more knowledge is aligned with the organization’s prior or existing captured knowledge. This case study attempted to understand the overall influence of a KMS within the corporate environment and knowledge exchange between personnel. The significance of this study was to help understand how organizations can improve the Return on Investment (ROI) of a knowledge management strategy within a knowledge-centric organization. A qualitative descriptive case study was the research design selected for this study. The lack of information sharing between personnel may create knowledge transfer gaps while restricting the decision-making processes. Developing a knowledge management strategy acceptable at all levels of the organization requires cooperation in support of a common organizational goal. Working with management and executive members to develop a protocol where knowledge transfer becomes a standard practice in multiple tiers of the organization. The knowledge transfer process could be measurable when focusing on specific elements of the organizational process, including personnel transition to help reduce time required understanding the job. The organization studied in this research acknowledged the need for improved knowledge management activities within the organization to help organize, retain, and distribute information throughout the workforce. Data produced from the study indicate three main themes including information management, organizational culture, and knowledge sharing within the workforce by the participants. These themes indicate a possible connection between an organizations KMS, the organizations culture, knowledge sharing, and knowledge transfer.

Keywords: knowledge transfer, management, knowledge management strategies, organizational learning, codification

Procedia PDF Downloads 442