Search results for: estimation of electricity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2877

Search results for: estimation of electricity

1617 Arsenic Removal by Membrane Technology, Adsorption and Ion Exchange: An Environmental Lifecycle Assessment

Authors: Karan R. Chavan, Paula Saavalainen, Kumudini V. Marathe, Riitta L. Keiski, Ganapati D. Yadav

Abstract:

Co-contamination of groundwaters by arsenic in different forms is often observed around the globe. Arsenic is introduced into the waters by several mechanisms and different technologies are proposed and practiced for effective removal. The assessment of three prominent technologies, namely, adsorption, ion exchange and nanofiltration was carried out in this study based on lifecycle methodology. The life of the technologies was divided into two stages: cradle to gate (C-G) and gate to gate (G-G), in order to find out the impacts in different categories of environmental burdens, human health and resource consumption. Life cycle inventory was estimated by use of models and design equations concerning with the different technologies. Regeneration was considered for each technology and over the course of its full lifetime. The impact values of adsorption technology for the C-G stage are greater by thousand times (103) and million times (106) compared to ion exchange and nanofiltration technologies, respectively. The impact of G-G stage of the lifecycle is the major contributor of the impact for all the 3 technologies due to electricity consumption during the operation. Overall, the ion Exchange technology fares well in this study of removal of As (V) only.

Keywords: arsenic, nanofiltration, lifecycle assessment, membrane technology

Procedia PDF Downloads 245
1616 Financial Literacy in Greek High-School Students

Authors: Vasiliki A. Tzora, Nikolaos D. Philippas

Abstract:

The paper measures the financial literacy of youth in Greece derived from the examined aspects of financial knowledge, behaviours, and attitudes that high school students performed. The findings reveal that less than half of participant high school students have an acceptable level of financial literacy. Also, students who are in the top of their class cohort exhibit higher levels of financial literacy. We also find that the father’s education level has a significant effect on financial literacy. Students who keep records of their income and expenses are likely to show better levels of financial literacy than students who do not. Students’ perception/estimation of their parents’ income changes is also related to their levels of financial literacy. We conclude that financial education initiatives should be embedded in schools in order to embrace the young generation.

Keywords: financial literacy, financial knowledge, financial behaviour, financial attitude, financial wellbeing, 15-year-old students

Procedia PDF Downloads 142
1615 Urban Design via Estimation Model for Traffic Index of Cities Based on an Artificial Intelligence

Authors: Seyed Sobhan Alvani, Mohammad Gohari

Abstract:

By developing cities and increasing the population, traffic congestion has become a vital problem. Due to this crisis, urban designers try to present solutions to decrease this difficulty. On the other hand, predicting the model with perfect accuracy is essential for solution-providing. The current study presents a model based on artificial intelligence which can predict traffic index based on city population, growth rate, and area. The accuracy of the model was evaluated, which is acceptable and it is around 90%. Thus, urban designers and planners can employ it for predicting traffic index in the future to provide strategies.

Keywords: traffic index, population growth rate, cities wideness, artificial neural network

Procedia PDF Downloads 41
1614 Predatory Pricing at Services Markets: Incentives, Mechanisms, Standards of Proving, and Remedies

Authors: Mykola G. Boichuk

Abstract:

The paper concerns predatory pricing incentives and mechanisms in the markets of services, as well as its anti-competitive effects. As cost estimation at services markets is more complex in comparison to markets of goods, predatory pricing is more difficult to detect in the provision of services. For instance, this is often the case for professional services, which is analyzed in the paper. The special attention is given to employment markets as de-facto main supply markets for professional services markets. Also, the paper concerns such instances as travel agents' services, where predatory pricing may have implications not only on competition but on a wider range of public interest as well. Thus, the paper develops on effective ways to apply competition law rules on predatory pricing to the provision of services.

Keywords: employment markets, predatory pricing, services markets, unfair competition

Procedia PDF Downloads 326
1613 Reduction of Energy Consumption Using Smart Home Techniques in the Household Sector

Authors: Ahmed Al-Adaileh, Souheil Khaddaj

Abstract:

Outcomes of exhaustion of natural resources started influencing each spirit on this planet. Energy is an essential factor in this aspect. To restore the circumstance to the appropriate track, all attempts must focus on two fundamental branches: producing electricity from clean and renewable reserves and decreasing the overall unnecessary consumption of energy. The focal point of this paper will be on lessening the power consumption in the household's segment. This paper is an attempt to give a clear understanding of a framework called Reduction of Energy Consumption in Household Sector (RECHS) and how it should help householders to reduce their power consumption by substituting their household appliances, turning-off the appliances when stand-by modus is detected, and scheduling their appliances operation periods. Technically, the framework depends on utilizing Z-Wave compatible plug-ins which will be connected to the usual house devices to gauge and control them remotely and semi-automatically. The suggested framework underpins numerous quality characteristics, for example, integrability, scalability, security and adaptability.

Keywords: smart energy management systems, internet of things, wireless mesh networks, microservices, cloud computing, big data

Procedia PDF Downloads 196
1612 Service Life Prediction of Tunnel Structures Subjected to Water Seepage

Authors: Hassan Baji, Chun-Qing Li, Wei Yang

Abstract:

Water seepage is one of the most common causes of damage in tunnel structures, which can cause direct and indirect e.g. reinforcement corrosion and calcium leaching damages. Estimation of water seepage or inflow is one of the main challenges in probabilistic assessment of tunnels. The methodology proposed in this study is an attempt for mathematically modeling the water seepage in tunnel structures and further predicting its service life. Using the time-dependent reliability, water seepage is formulated as a failure mode, which can be used for prediction of service life. Application of the formulated seepage failure mode to a case study tunnel is presented.

Keywords: water seepage, tunnels, time-dependent reliability, service life

Procedia PDF Downloads 483
1611 Models Comparison for Solar Radiation

Authors: Djelloul Benatiallah

Abstract:

Due to the current high consumption and recent industry growth, the depletion of fossil and natural energy supplies like oil, gas, and uranium is declining. Due to pollution and climate change, there needs to be a swift switch to renewable energy sources. Research on renewable energy is being done to meet energy needs. Solar energy is one of the renewable resources that can currently meet all of the world's energy needs. In most parts of the world, solar energy is a free and unlimited resource that can be used in a variety of ways, including photovoltaic systems for the generation of electricity and thermal systems for the generation of heatfor the residential sector's production of hot water. In this article, we'll conduct a comparison. The first step entails identifying the two empirical models that will enable us to estimate the daily irradiations on a horizontal plane. On the other hand, we compare it using the data obtained from measurements made at the Adrar site over the four distinct seasons. The model 2 provides a better estimate of the global solar components, with an absolute mean error of less than 7% and a correlation coefficient of more than 0.95, as well as a relative coefficient of the bias error that is less than 6% in absolute value and a relative RMSE that is less than 10%, according to a comparison of the results obtained by simulating the two models.

Keywords: solar radiation, renewable energy, fossil, photovoltaic systems

Procedia PDF Downloads 79
1610 Artificial Neural Network-Based Short-Term Load Forecasting for Mymensingh Area of Bangladesh

Authors: S. M. Anowarul Haque, Md. Asiful Islam

Abstract:

Electrical load forecasting is considered to be one of the most indispensable parts of a modern-day electrical power system. To ensure a reliable and efficient supply of electric energy, special emphasis should have been put on the predictive feature of electricity supply. Artificial Neural Network-based approaches have emerged to be a significant area of interest for electric load forecasting research. This paper proposed an Artificial Neural Network model based on the particle swarm optimization algorithm for improved electric load forecasting for Mymensingh, Bangladesh. The forecasting model is developed and simulated on the MATLAB environment with a large number of training datasets. The model is trained based on eight input parameters including historical load and weather data. The predicted load data are then compared with an available dataset for validation. The proposed neural network model is proved to be more reliable in terms of day-wise load forecasting for Mymensingh, Bangladesh.

Keywords: load forecasting, artificial neural network, particle swarm optimization

Procedia PDF Downloads 171
1609 An Application-Driven Procedure for Optimal Signal Digitization of Automotive-Grade Ultrasonic Sensors

Authors: Mohamed Shawki Elamir, Heinrich Gotzig, Raoul Zoellner, Patrick Maeder

Abstract:

In this work, a methodology is presented for identifying the optimal digitization parameters for the analog signal of ultrasonic sensors. These digitization parameters are the resolution of the analog to digital conversion and the sampling rate. This is accomplished through the derivation of characteristic curves based on Fano inequality and the calculation of the mutual information content over a given dataset. The mutual information is calculated between the examples in the dataset and the corresponding variation in the feature that needs to be estimated. The optimal parameters are identified in a manner that ensures optimal estimation performance while preventing inefficiency in using unnecessarily powerful analog to digital converters.

Keywords: analog to digital conversion, digitization, sampling rate, ultrasonic

Procedia PDF Downloads 207
1608 A Fuzzy Nonlinear Regression Model for Interval Type-2 Fuzzy Sets

Authors: O. Poleshchuk, E. Komarov

Abstract:

This paper presents a regression model for interval type-2 fuzzy sets based on the least squares estimation technique. Unknown coefficients are assumed to be triangular fuzzy numbers. The basic idea is to determine aggregation intervals for type-1 fuzzy sets, membership functions of whose are low membership function and upper membership function of interval type-2 fuzzy set. These aggregation intervals were called weighted intervals. Low and upper membership functions of input and output interval type-2 fuzzy sets for developed regression models are considered as piecewise linear functions.

Keywords: interval type-2 fuzzy sets, fuzzy regression, weighted interval

Procedia PDF Downloads 373
1607 Block Matching Based Stereo Correspondence for Depth Calculation

Authors: G. Balakrishnan

Abstract:

Stereo Correspondence plays a major role in estimation of distance of an object from the stereo camera pair for various applications. In this paper, a stereo correspondence algorithm based on block-matching technique is presented. Initially, an energy matrix is calculated for every disparity obtained using modified Sum of Absolute Difference (SAD). Higher energy matrix errors are removed by using threshold value in order to reduce the mismatch errors. A smoothening filter is applied to eliminate unreliable disparity estimate across the object boundaries. The purpose is to improve the reliability of calculation of disparity map. The experimental results obtained shows that the final depth map produce better results and can be used to all the applications using stereo cameras.

Keywords: stereo matching, filters, energy matrix, disparity

Procedia PDF Downloads 215
1606 High-Quality Flavor of Black Belly Pork under Lightning Corona Discharge Using Tesla Coil for High Voltage Education

Authors: Kyung-Hoon Jang, Jae-Hyo Park, Kwang-Yeop Jang, Dongjin Kim

Abstract:

The Tesla coil is an electrical resonant transformer circuit designed by inventor Nikola Tesla in 1891. It is used to produce high voltage, low current and high frequency alternating current electricity. Tesla experimented with a number of different configurations consisting of two or sometimes three coupled resonant electric circuits. This paper focuses on development and high voltage education to apply a Tesla coil to cuisine for high quality flavor and taste conditioning as well as high voltage education under 50 kV corona discharge. The result revealed that the velocity of roasted black belly pork by Tesla coil is faster than that of conventional methods such as hot grill and steel plate etc. depending on applied voltage level and applied voltage time. Besides, carbohydrate and crude protein increased, whereas natrium and saccharides significantly decreased after lightning surge by Tesla coil. This idea will be useful in high voltage education and high voltage application.

Keywords: corona discharge, Tesla coil, high voltage application, high voltage education

Procedia PDF Downloads 328
1605 Information Communication Technology in Early Childhood Education: An Assessment of the Quality of ICT in the New Mega Primary Schools in Ondo State, Southwestern Nigeria

Authors: Oluyemi Christianah Ojo

Abstract:

This study seeks to investigate the quality of ICT provided in the new Caring Heart schools in Ondo State, Nigeria. The population for the study was all caring Heart Mega Schools in Ondo State, Nigeria. Research questions were generated; two instruments CCCMS and TQCUC were used to elicit information from the schools and the teachers. The study adopts descriptive survey approach. The studies revealed and concluded that ICT components were available and adequate in these schools, Charts showing ICT components and other forms of computer devices used as instructional materials were available but were not adequate; teachers teaching computer studies are competent in the delivery of instructions and in handling computer gadgets in the laboratory. The study recommended the provision of steady electricity, uninterrupted internet facilities and provision of adequate ICT components and charts for effective teaching delivery and learning.

Keywords: facilities, information communication technology, mega primary school, primary education

Procedia PDF Downloads 295
1604 Experimental Verification of On-Board Power Generation System for Vehicle Application

Authors: Manish Kumar, Krupa Shah

Abstract:

The usage of renewable energy sources is increased day by day to overcome the dependency on fossil fuels. The wind energy is considered as a prominent source of renewable energy. This paper presents an approach for utilizing wind energy obtained from moving the vehicle for cell-phone charging. The selection of wind turbine, blades, generator, etc. is done to have the most efficient system. The calculation procedure for power generated and drag force is shown to know the effectiveness of the proposal. The location of the turbine is selected such that the system remains symmetric, stable and has the maximum induced wind. The calculation of the generated power at different velocity is presented. The charging is achieved for the speed 30 km/h and the system works well till 60 km/h. The model proposed seems very useful for the people traveling long distances in the absence of mobile electricity. The model is very economical and easy to fabricate. It has very less weight and area that makes it portable and comfortable to carry along. The practical results are shown by implementing the portable wind turbine system on two-wheeler.

Keywords: cell-phone charging, on-board power generation, wind energy, vehicle

Procedia PDF Downloads 295
1603 Assessing the Viability of Solar Water Pumps Economically, Socially and Environmentally in Soan Valley, Punjab

Authors: Zenab Naseem, Sadia Imran

Abstract:

One of the key solutions to the climate change crisis is to develop renewable energy resources, such as solar and wind power and biogas. This paper explores the socioeconomic and environmental viability of solar energy, based on a case study of the Soan Valley Development Program. Under this project, local farmers were provided solar water pumps at subsidized rates. These have been functional for the last seven years and have gained popularity among the local communities. The study measures the economic viability of using solar energy in agriculture, based on data from 36 households, of which 12 households each use diesel, electric and solar water pumps. Our findings are based on the net present value of each technology type. We also carry out a qualitative assessment of the social impact of solar water pumps relative to diesel and electric pumps. Finally, we conduct an environmental impact assessment, using the lifecycle assessment approach. All three analyses indicate that solar energy is a viable alternative to diesel and electricity.

Keywords: alternative energy sources, pollution control adoption and costs, solar energy pumps, sustainable development

Procedia PDF Downloads 255
1602 Estimation of Sediment Transport into a Reservoir Dam

Authors: Kiyoumars Roushangar, Saeid Sadaghian

Abstract:

Although accurate sediment load prediction is very important in planning, designing, operating and maintenance of water resources structures, the transport mechanism is complex, and the deterministic transport models are based on simplifying assumptions often lead to large prediction errors. In this research, firstly, two intelligent ANN methods, Radial Basis and General Regression Neural Networks, are adopted to model of total sediment load transport into Madani Dam reservoir (north of Iran) using the measured data and then applicability of the sediment transport methods developed by Engelund and Hansen, Ackers and White, Yang, and Toffaleti for predicting of sediment load discharge are evaluated. Based on comparison of the results, it is found that the GRNN model gives better estimates than the sediment rating curve and mentioned classic methods.

Keywords: sediment transport, dam reservoir, RBF, GRNN, prediction

Procedia PDF Downloads 496
1601 Identifying Protein-Coding and Non-Coding Regions in Transcriptomes

Authors: Angela U. Makolo

Abstract:

Protein-coding and Non-coding regions determine the biology of a sequenced transcriptome. Research advances have shown that Non-coding regions are important in disease progression and clinical diagnosis. Existing bioinformatics tools have been targeted towards Protein-coding regions alone. Therefore, there are challenges associated with gaining biological insights from transcriptome sequence data. These tools are also limited to computationally intensive sequence alignment, which is inadequate and less accurate to identify both Protein-coding and Non-coding regions. Alignment-free techniques can overcome the limitation of identifying both regions. Therefore, this study was designed to develop an efficient sequence alignment-free model for identifying both Protein-coding and Non-coding regions in sequenced transcriptomes. Feature grouping and randomization procedures were applied to the input transcriptomes (37,503 data points). Successive iterations were carried out to compute the gradient vector that converged the developed Protein-coding and Non-coding Region Identifier (PNRI) model to the approximate coefficient vector. The logistic regression algorithm was used with a sigmoid activation function. A parameter vector was estimated for every sample in 37,503 data points in a bid to reduce the generalization error and cost. Maximum Likelihood Estimation (MLE) was used for parameter estimation by taking the log-likelihood of six features and combining them into a summation function. Dynamic thresholding was used to classify the Protein-coding and Non-coding regions, and the Receiver Operating Characteristic (ROC) curve was determined. The generalization performance of PNRI was determined in terms of F1 score, accuracy, sensitivity, and specificity. The average generalization performance of PNRI was determined using a benchmark of multi-species organisms. The generalization error for identifying Protein-coding and Non-coding regions decreased from 0.514 to 0.508 and to 0.378, respectively, after three iterations. The cost (difference between the predicted and the actual outcome) also decreased from 1.446 to 0.842 and to 0.718, respectively, for the first, second and third iterations. The iterations terminated at the 390th epoch, having an error of 0.036 and a cost of 0.316. The computed elements of the parameter vector that maximized the objective function were 0.043, 0.519, 0.715, 0.878, 1.157, and 2.575. The PNRI gave an ROC of 0.97, indicating an improved predictive ability. The PNRI identified both Protein-coding and Non-coding regions with an F1 score of 0.970, accuracy (0.969), sensitivity (0.966), and specificity of 0.973. Using 13 non-human multi-species model organisms, the average generalization performance of the traditional method was 74.4%, while that of the developed model was 85.2%, thereby making the developed model better in the identification of Protein-coding and Non-coding regions in transcriptomes. The developed Protein-coding and Non-coding region identifier model efficiently identified the Protein-coding and Non-coding transcriptomic regions. It could be used in genome annotation and in the analysis of transcriptomes.

Keywords: sequence alignment-free model, dynamic thresholding classification, input randomization, genome annotation

Procedia PDF Downloads 68
1600 Design of Electric Ship Charging Station Considering Renewable Energy and Storage Systems

Authors: Jun Yuan

Abstract:

Shipping is a major transportation mode all over the world, and it has a significant contribution to global carbon emissions. Electrification of ships is one of the main strategies to reduce shipping carbon emissions. The number of electric ships has continued to grow in recent years. However, charging infrastructure is still scarce, which severely restricts the development of electric ships. Therefore, it is very important to design ship charging stations reasonably by comprehensively considering charging demand and investment costs. This study aims to minimize the full life cycle cost of charging stations, considering the uncertainty of charging demand. A mixed integer programming model is developed for this optimization problem. Based on the characteristics of the mathematical model, a simulation based optimization method is proposed to find the optimal number and rated power of chargers. In addition, the impact of renewable energy and storage systems is analyzed. The results can provide decision support and a reference basis for the design of ship charging stations.

Keywords: shipping emission, electricity ship, charging station, optimal design

Procedia PDF Downloads 63
1599 An Experimental and Numerical Study on the Pultruded GFRP I-Sections Beams

Authors: Parinaz Arashnia, Farzad Hatami, Saeed Ghaffarpour Jahromi

Abstract:

Using steel in bridges’ construction because of their desired tensile and compressive strength and light weight especially in large spans was widely popular. Disadvantages of steel such as corrosion, buckling and weaknesses in high temperature and unsuitable weld could be solve with using Fibres Reinforced Polymer (FRP) profiles. The FRP is a remarkable class of composite polymers that can improve structural elements behaviour like corrosion resistance, fir resistance with good proofing and electricity and magnetic non-conductor. Nowadays except FRP reinforced bars and laminates, FRP I-beams are made and studied. The main reason for using FRP profiles is, prevent of corrosion and increase the load carrying capacity and durability, especially in large spans in bridges’ deck. In this paper, behaviour of I-section glass fibres reinforced polymer (GFRP) beam is discussed under point loads with numerical models and results has been compared and verified with experimental tests.

Keywords: glass fibres reinforced polymer, composite, I-section beam, durability, finite element method, numerical model

Procedia PDF Downloads 257
1598 Statistical Estimation of Ionospheric Energy Dissipation Using ØStgaard's Empirical Relation

Authors: M. A. Ahmadu, S. S. Rabia

Abstract:

During the past few decades, energy dissipation in the ionosphere resulting from the geomagnetic activity has caused an increasing number of major disruptions of important power and communication services, malfunctions and loss of expensive facilities. Here, the electron precipitation energy, w(ep) and joule heating energy, w(jh) was used in the computation of this dissipation using Østgaard’s empirical relation from hourly geomagnetic indices of 2012, under the assumption that the magnetosphere does not store any energy, so that at the beginning of the activity t1=0 and end at t2=t, the statistical results obtained show that ionospheric dissipation varies month to month, day to day and hour to hour and estimated with a value ~3.6 w(ep), which is in agreement with experimental result.

Keywords: Ostgaard's, ionospheric dissipation, joule heating, electron precipitation, geomagnetic indices, empirical relation

Procedia PDF Downloads 294
1597 Economic Forecasting Analysis for Solar Photovoltaic Application

Authors: Enas R. Shouman

Abstract:

Economic development with population growth is leading to a continuous increase in energy demand. At the same time, growing global concern for the environment is driving to decrease the use of conventional energy sources and to increase the use of renewable energy sources. The objective of this study is to present the market trends of solar energy photovoltaic technology over the world and to represent economics methods for PV financial analyzes on the basis of expectations for the expansion of PV in many applications. In the course of this study, detailed information about the current PV market was gathered and analyzed to find factors influencing the penetration of PV energy. The paper methodology depended on five relevant economic financial analysis methods that are often used for investment decisions maker. These methods are payback analysis, net benefit analysis, saving-to-investment ratio, adjusted internal rate of return, and life-cycle cost. The results of this study may be considered as a marketing guide that helps diffusion of using PV Energy. The study showed that PV cost is economically reliable. The consumers will pay higher purchase prices for PV system installation but will get lower electricity bill.

Keywords: photovoltaic, financial methods, solar energy, economics, PV panel

Procedia PDF Downloads 109
1596 Advertising Incentives of National Brands against Private Labels: The Case of OTC Heartburn Drugs

Authors: Lu Liao

Abstract:

The worldwide expansion of private labels over the past two decades not only transformed the choice sets of consumers but also forced manufacturers of national brands to design new marketing strategies to maintain their market positions. This paper empirically analyzes the impact of private labels on advertising incentives of national brands. The paper first develops a consumer demand model that incorporates spillover effects of advertising and finds positive spillovers of national brands’ advertising on demand for private label products. With the demand estimates, the researcher simulates the equilibrium prices and advertising levels for leading national brands in a counterfactual where private labels are eliminated to quantify the changes in national brands’ advertising incentives in response to the rise of private labels.

Keywords: advertising, demand estimation, spillover effect, structural model

Procedia PDF Downloads 25
1595 A Bayesian Model with Improved Prior in Extreme Value Problems

Authors: Eva L. Sanjuán, Jacinto Martín, M. Isabel Parra, Mario M. Pizarro

Abstract:

In Extreme Value Theory, inference estimation for the parameters of the distribution is made employing a small part of the observation values. When block maxima values are taken, many data are discarded. We developed a new Bayesian inference model to seize all the information provided by the data, introducing informative priors and using the relations between baseline and limit parameters. Firstly, we studied the accuracy of the new model for three baseline distributions that lead to a Gumbel extreme distribution: Exponential, Normal and Gumbel. Secondly, we considered mixtures of Normal variables, to simulate practical situations when data do not adjust to pure distributions, because of perturbations (noise).

Keywords: bayesian inference, extreme value theory, Gumbel distribution, highly informative prior

Procedia PDF Downloads 198
1594 Short Term Distribution Load Forecasting Using Wavelet Transform and Artificial Neural Networks

Authors: S. Neelima, P. S. Subramanyam

Abstract:

The major tool for distribution planning is load forecasting, which is the anticipation of the load in advance. Artificial neural networks have found wide applications in load forecasting to obtain an efficient strategy for planning and management. In this paper, the application of neural networks to study the design of short term load forecasting (STLF) Systems was explored. Our work presents a pragmatic methodology for short term load forecasting (STLF) using proposed two-stage model of wavelet transform (WT) and artificial neural network (ANN). It is a two-stage prediction system which involves wavelet decomposition of input data at the first stage and the decomposed data with another input is trained using a separate neural network to forecast the load. The forecasted load is obtained by reconstruction of the decomposed data. The hybrid model has been trained and validated using load data from Telangana State Electricity Board.

Keywords: electrical distribution systems, wavelet transform (WT), short term load forecasting (STLF), artificial neural network (ANN)

Procedia PDF Downloads 437
1593 Spare Part Carbon Footprint Reduction with Reman Applications

Authors: Enes Huylu, Sude Erkin, Nur A. Özdemir, Hatice K. Güney, Cemre S. Atılgan, Hüseyin Y. Altıntaş, Aysemin Top, Muammer Yılman, Özak Durmuş

Abstract:

Remanufacturing (reman) applications allow manufacturers to contribute to the circular economy and help to introduce products with almost the same quality, environment-friendly, and lower cost. The objective of this study is to present that the carbon footprint of automotive spare parts used in vehicles could be reduced by reman applications based on Life Cycle Analysis which was framed with ISO 14040 principles. In that case, it was aimed to investigate reman applications for 21 parts in total. So far, research and calculations have been completed for the alternator, turbocharger, starter motor, compressor, manual transmission, auto transmission, and DPF (diesel particulate filter) parts, respectively. Since the aim of Ford Motor Company and Ford OTOSAN is to achieve net zero based on Science-Based Targets (SBT) and the Green Deal that the European Union sets out to make it climate neutral by 2050, the effects of reman applications are researched. In this case, firstly, remanufacturing articles available in the literature were searched based on the yearly high volume of spare parts sold. Paper review results related to their material composition and emissions released during incoming production and remanufacturing phases, the base part has been selected to take it as a reference. Then, the data of the selected base part from the research are used to make an approximate estimation of the carbon footprint reduction of the relevant part used in Ford OTOSAN. The estimation model is based on the weight, and material composition of the referenced paper reman activity. As a result of this study, it was seen that remanufacturing applications are feasible to apply technically and environmentally since it has significant effects on reducing the emissions released during the production phase of the vehicle components. For this reason, the research and calculations of the total number of targeted products in yearly volume have been completed to a large extent. Thus, based on the targeted parts whose research has been completed, in line with the net zero targets of Ford Motor Company and Ford OTOSAN by 2050, if remanufacturing applications are preferred instead of recent production methods, it is possible to reduce a significant amount of the associated greenhouse gas (GHG) emissions of spare parts used in vehicles. Besides, it is observed that remanufacturing helps to reduce the waste stream and causes less pollution than making products from raw materials by reusing the automotive components.

Keywords: greenhouse gas emissions, net zero targets, remanufacturing, spare parts, sustainability

Procedia PDF Downloads 82
1592 Estimation of Soil Nutrient Content Using Google Earth and Pleiades Satellite Imagery for Small Farms

Authors: Lucas Barbosa Da Silva, Jun Okamoto Jr.

Abstract:

Precision Agriculture has long being benefited from crop fields’ aerial imagery. This important tool has allowed identifying patterns in crop fields, generating useful information to the production management. Reflectance intensity data in different ranges from the electromagnetic spectrum may indicate presence or absence of nutrients in the soil of an area. Different relations between the different light bands may generate even more detailed information. The knowledge of the nutrients content in the soil or in the crop during its growth is a valuable asset to the farmer that seeks to optimize its yield. However, small farmers in Brazil often lack the resources to access this kind information, and, even when they do, it is not presented in a comprehensive and/or objective way. So, the challenges of implementing this technology ranges from the sampling of the imagery, using aerial platforms, building of a mosaic with the images to cover the entire crop field, extracting the reflectance information from it and analyzing its relationship with the parameters of interest, to the display of the results in a manner that the farmer may take the necessary decisions more objectively. In this work, it’s proposed an analysis of soil nutrient contents based on image processing of satellite imagery and comparing its outtakes with commercial laboratory’s chemical analysis. Also, sources of satellite imagery are compared, to assess the feasibility of using Google Earth data in this application, and the impacts of doing so, versus the application of imagery from satellites like Landsat-8 and Pleiades. Furthermore, an algorithm for building mosaics is implemented using Google Earth imagery and finally, the possibility of using unmanned aerial vehicles is analyzed. From the data obtained, some soil parameters are estimated, namely, the content of Potassium, Phosphorus, Boron, Manganese, among others. The suitability of Google Earth Imagery for this application is verified within a reasonable margin, when compared to Pleiades Satellite imagery and to the current commercial model. It is also verified that the mosaic construction method has little or no influence on the estimation results. Variability maps are created over the covered area and the impacts of the image resolution and sample time frame are discussed, allowing easy assessments of the results. The final results show that easy and cheaper remote sensing and analysis methods are possible and feasible alternatives for the small farmer, with little access to technological and/or financial resources, to make more accurate decisions about soil nutrient management.

Keywords: remote sensing, precision agriculture, mosaic, soil, nutrient content, satellite imagery, aerial imagery

Procedia PDF Downloads 175
1591 The Analysis of TRACE/PARCS in the Simulation of Ultimate Response Guideline for Lungmen ABWR

Authors: J. R. Wang, W. Y. Li, H. T. Lin, B. H. Lee, C. Shih, S. W. Chen

Abstract:

In this research, the TRACE/PARCS model of Lungmen ABWR has been developed for verification of ultimate response guideline (URG) efficiency. This ultimate measure was named as DIVing plan, abbreviated from system depressurization, water injection and containment venting. The simulation initial condition is 100% rated power/100% rated core flow. This research focuses on the estimation of the time when the fuel might be damaged with no water injection by using TRACE/PARCS first. Then, the effect of the reactor core isolation system (RCIC), control depressurization and ac-independent water addition system (ACIWA), which can provide the injection with 950 gpm are also estimated for the station blackout (SBO) transient.

Keywords: ABWR, TRACE, safety analysis, PARCS

Procedia PDF Downloads 455
1590 Copula-Based Estimation of Direct and Indirect Effects in Path Analysis Models

Authors: Alam Ali, Ashok Kumar Pathak

Abstract:

Path analysis is a statistical technique used to evaluate the direct and indirect effects of variables in path models. One or more structural regression equations are used to estimate a series of parameters in path models to find the better fit of data. However, sometimes the assumptions of classical regression models, such as ordinary least squares (OLS), are violated by the nature of the data, resulting in insignificant direct and indirect effects of exogenous variables. This article aims to explore the effectiveness of a copula-based regression approach as an alternative to classical regression, specifically when variables are linked through an elliptical copula.

Keywords: path analysis, copula-based regression models, direct and indirect effects, k-fold cross validation technique

Procedia PDF Downloads 43
1589 Economic Assessment Methodology to Support Decisions for Transport Infrastructure Development

Authors: Dimitrios J. Dimitriou

Abstract:

The decades after the end of the second War provide evidence that infrastructures investments contibute to economic development, on terms of productivity and income growth. In order to force productivity and increase competitiveness the financing of large transport infrastructure projects are on the top of the agenda in strategic planning process. Such a decision may take form some days to some decades and stakeholders as well as decision makers need tools in order to estimate the economic impact on natioanl economy of such an investment. The key question in such decisions is if the effects caused by the new infrastructure could be able to boost economic development on one hand, and create new jobs and activities on the other. This paper deals with the review of estimation of the mega transport infrastructure projects economic effects in economy.

Keywords: economic impact, transport infrastructure, strategic planning, decision making

Procedia PDF Downloads 290
1588 Applying Sequential Pattern Mining to Generate Block for Scheduling Problems

Authors: Meng-Hui Chen, Chen-Yu Kao, Chia-Yu Hsu, Pei-Chann Chang

Abstract:

The main idea in this paper is using sequential pattern mining to find the information which is helpful for finding high performance solutions. By combining this information, it is defined as blocks. Using the blocks to generate artificial chromosomes (ACs) could improve the structure of solutions. Estimation of Distribution Algorithms (EDAs) is adapted to solve the combinatorial problems. Nevertheless many of these approaches are advantageous for this application, but only some of them are used to enhance the efficiency of application. Generating ACs uses patterns and EDAs could increase the diversity. According to the experimental result, the algorithm which we proposed has a better performance to solve the permutation flow-shop problems.

Keywords: combinatorial problems, sequential pattern mining, estimationof distribution algorithms, artificial chromosomes

Procedia PDF Downloads 611