Search results for: coding complexity metric mccabe
1264 Investigation of Different Conditions to Detect Cycles in Linearly Implicit Quantized State Systems
Authors: Elmongi Elbellili, Ben Lauwens, Daan Huybrechs
Abstract:
The increasing complexity of modern engineering systems presents a challenge to the digital simulation of these systems which usually can be represented by differential equations. The Linearly Implicit Quantized State System (LIQSS) offers an alternative approach to traditional numerical integration techniques for solving Ordinary Differential Equations (ODEs). This method proved effective for handling discontinuous and large stiff systems. However, the inherent discrete nature of LIQSS may introduce oscillations that result in unnecessary computational steps. The current oscillation detection mechanism relies on a condition that checks the significance of the derivatives, but it could be further improved. This paper describes a different cycle detection mechanism and presents the outcomes using LIQSS order one in simulating the Advection Diffusion problem. The efficiency of this new cycle detection mechanism is verified by comparing the performance of the current solver against the new version as well as a reference solution using a Runge-Kutta method of order14.Keywords: numerical integration, quantized state systems, ordinary differential equations, stiffness, cycle detection, simulation
Procedia PDF Downloads 611263 Learning from Small Amount of Medical Data with Noisy Labels: A Meta-Learning Approach
Authors: Gorkem Algan, Ilkay Ulusoy, Saban Gonul, Banu Turgut, Berker Bakbak
Abstract:
Computer vision systems recently made a big leap thanks to deep neural networks. However, these systems require correctly labeled large datasets in order to be trained properly, which is very difficult to obtain for medical applications. Two main reasons for label noise in medical applications are the high complexity of the data and conflicting opinions of experts. Moreover, medical imaging datasets are commonly tiny, which makes each data very important in learning. As a result, if not handled properly, label noise significantly degrades the performance. Therefore, a label-noise-robust learning algorithm that makes use of the meta-learning paradigm is proposed in this article. The proposed solution is tested on retinopathy of prematurity (ROP) dataset with a very high label noise of 68%. Results show that the proposed algorithm significantly improves the classification algorithm's performance in the presence of noisy labels.Keywords: deep learning, label noise, robust learning, meta-learning, retinopathy of prematurity
Procedia PDF Downloads 1621262 Health Literacy for Self-Care by Female Patients Diagnosed with Diabetes at a Selected Hospital in Limpopo Province of South Africa
Authors: Nditsheni Ramakuela, Sonto Maputle, Base Khoza, Augustine Tugli
Abstract:
Inadequate health literacy can cause difficulties in understanding and compliance to treatment plan. With diabetic condition, self-care activities include behaviours of following a diet plan, avoiding high fat foods, increased exercise, self-glucose monitoring, and foot care. Patients with poor health literacy have difficulty interpreting medication warning labels, following directions on a prescription label and identifying their medications. Difficulties in understanding and performing self-care and health-related activities may ultimately lead to poor health outcomes. The study explored and described factors affecting health literacy and self-care to diabetic regimen by female patients at selected hospital in Limpopo Province of South Africa. Qualitative and explorative research design was used. Female patients who were admitted and diagnosed with diabetes in female medical ward constituted the study population. Non-probability, purposive sampling was used to select 20 female patients diagnosed with diabetes, who were above 18 years and admitted during April–November 2014. An in-depth face-to-face, unstructured interview was used to collect data. Data were analysed using open coding method. Measures to ensure trustworthiness and ethical considerations were adhered to. Findings revealed factors affecting health literacy for diabetic self-care activities amongst patients were; patient, family, disease and facility related. Proposed recommendations were; to strengthen diabetes education and patient-provider partnership. This is important and must be transferred to strengthen self-care activities to fully benefit the patient.Keywords: compliance, diabetes mellitus, diabetic regimen, health literacy, self activities
Procedia PDF Downloads 2871261 Applied Bayesian Regularized Artificial Neural Network for Up-Scaling Wind Speed Profile and Distribution
Authors: Aghbalou Nihad, Charki Abderafi, Saida Rahali, Reklaoui Kamal
Abstract:
Maximize the benefit from the wind energy potential is the most interest of the wind power stakeholders. As a result, the wind tower size is radically increasing. Nevertheless, choosing an appropriate wind turbine for a selected site require an accurate estimate of vertical wind profile. It is also imperative from cost and maintenance strategy point of view. Then, installing tall towers or even more expensive devices such as LIDAR or SODAR raises the costs of a wind power project. Various models were developed coming within this framework. However, they suffer from complexity, generalization and lacks accuracy. In this work, we aim to investigate the ability of neural network trained using the Bayesian Regularization technique to estimate wind speed profile up to height of 100 m based on knowledge of wind speed lower heights. Results show that the proposed approach can achieve satisfactory predictions and proof the suitability of the proposed method for generating wind speed profile and probability distributions based on knowledge of wind speed at lower heights.Keywords: bayesian regularization, neural network, wind shear, accuracy
Procedia PDF Downloads 5041260 Decision Tree Model for the Recommendation of Digital and Alternate Payment Methods for SMEs
Authors: Arturo J. Anci Alméstar, Jose D. Fernandez Huapaya, David Mauricio
Abstract:
Companies make erroneous decisions by not evaluating the inherent difficulties of entering electronic commerce without a prior review of current digital and alternate means of payment. For this reason, it is very important for businesses to have reliable, complete and integrated information on the means of current digital and alternate payments that allow decisions to be made about which of these to use. However, there is no such consolidated information or criteria that companies use to make decisions about the means of payment according to their needs. In this paper, we propose a decision tree model based on a taxonomy that presents us with a categorization of digital and alternative means of payment, as well as the visualization of the flow of information at a high level from the company to obtain a recommendation. This will allow the company to make the most appropriate decision about the implementation of the digital means of payment or alternative ideal for their needs, which allows a reduction in costs and complexity of the payment process. Likewise, the efficiency of the proposed model was evaluated through a satisfaction survey presented to company personnel, confirming the satisfactory quality level of the recommendations obtained by the model.Keywords: digital payment medium, decision tree, decision making, digital payments taxonomy
Procedia PDF Downloads 1791259 Breast Cancer: The Potential of miRNA for Diagnosis and Treatment
Authors: Abbas Pourreza
Abstract:
MicroRNAs (miRNAs) are small single-stranded non-coding RNAs. They are almost 18-25 nucleotides long and very conservative through evolution. They are involved in adjusting the expression of numerous genes due to the existence of a complementary region, generally in the 3' untranslated regions (UTR) of target genes, against particular mRNAs in the cell. Also, miRNAs have been proven to be involved in cell development, differentiation, proliferation, and apoptosis. More than 2000 miRNAs have been recognized in human cells, and these miRNAs adjust approximately one-third of all genes in human cells. Dysregulation of miRNA originated from abnormal DNA methylation patterns of the locus, cause to down-regulated or overexpression of miRNAs, and it may affect tumor formation or development of it. Breast cancer (BC) is the most commonly identified cancer, the most prevalent cancer (23%), and the second-leading (14%) mortality in all types of cancer in females. BC can be classified based on the status (+/−) of the hormone receptors, including estrogen receptor (ER), progesterone receptor (PR), and the Receptor tyrosine-protein kinase erbB-2 (ERBB2 or HER2). Currently, there are four main molecular subtypes of BC: luminal A, approximately 50–60 % of BCs; luminal B, 10–20 %; HER2 positive, 15–20 %, and 10–20 % considered Basal (triple-negative breast cancer (TNBC)) subtype. Aberrant expression of miR-145, miR-21, miR-10b, miR-125a, and miR-206 was detected by Stem-loop real-time RT-PCR in BC cases. Breast tumor formation and development may result from down-regulation of a tumor suppressor miRNA such as miR-145, miR-125a, and miR-206 and/or overexpression of an oncogenic miRNA such as miR-21 and miR-10b. MiR-125a, miR-206, miR-145, miR-21, and miR-10b are hugely predicted to be new tumor markers for the diagnosis and prognosis of BC. MiR-21 and miR-125a could play a part in the treatment of HER-2-positive breast cancer cells, while miR-145 and miR-206 could speed up the evolution of cure techniques for TNBC. To conclude, miRNAs will be presented as hopeful molecules to be used in the primary diagnosis, prognosis, and treatment of BC and battle as opposed to its developed drug resistance.Keywords: breast cancer, HER2 positive, miRNA, TNBC
Procedia PDF Downloads 971258 An Accurate Computation of 2D Zernike Moments via Fast Fourier Transform
Authors: Mohammed S. Al-Rawi, J. Bastos, J. Rodriguez
Abstract:
Object detection and object recognition are essential components of every computer vision system. Despite the high computational complexity and other problems related to numerical stability and accuracy, Zernike moments of 2D images (ZMs) have shown resilience when used in object recognition and have been used in various image analysis applications. In this work, we propose a novel method for computing ZMs via Fast Fourier Transform (FFT). Notably, this is the first algorithm that can generate ZMs up to extremely high orders accurately, e.g., it can be used to generate ZMs for orders up to 1000 or even higher. Furthermore, the proposed method is also simpler and faster than the other methods due to the availability of FFT software and/or hardware. The accuracies and numerical stability of ZMs computed via FFT have been confirmed using the orthogonality property. We also introduce normalizing ZMs with Neumann factor when the image is embedded in a larger grid, and color image reconstruction based on RGB normalization of the reconstructed images. Astonishingly, higher-order image reconstruction experiments show that the proposed methods are superior, both quantitatively and subjectively, compared to the q-recursive method.Keywords: Chebyshev polynomial, fourier transform, fast algorithms, image recognition, pseudo Zernike moments, Zernike moments
Procedia PDF Downloads 2651257 Mobile App Architecture in 2023: Build Your Own Mobile App
Authors: Mounir Filali
Abstract:
Companies use many innovative ways to reach their customers to stay ahead of the competition. Along with the growing demand for innovative business solutions is the demand for new technology. The most noticeable area of demand for business innovations is the mobile application industry. Recently, companies have recognized the growing need to integrate proprietary mobile applications into their suite of services; Companies have realized that developing mobile apps gives them a competitive edge. As a result, many have begun to rapidly develop mobile apps to stay ahead of the competition. Mobile application development helps companies meet the needs of their customers. Mobile apps also help businesses to take advantage of every potential opportunity to generate leads that convert into sales. Mobile app download growth statistics with the recent rise in demand for business-related mobile apps, there has been a similar rise in the range of mobile app solutions being offered. Today, companies can use the traditional route of the software development team to build their own mobile applications. However, there are also many platform-ready "low-code and no-code" mobile apps available to choose from. These mobile app development options have more streamlined business processes. This helps them be more responsive to their customers without having to be coding experts. Companies must have a basic understanding of mobile app architecture to attract and maintain the interest of mobile app users. Mobile application architecture refers to the buildings or structural systems and design elements that make up a mobile application. It also includes the technologies, processes, and components used during application development. The underlying foundation of all applications consists of all elements of the mobile application architecture, developing a good mobile app architecture requires proper planning and strategic design. The technology framework or platform on the back end and user-facing side of a mobile application is part of the mobile architecture of the application. In-application development Software programmers loosely refer to this set of mobile architecture systems and processes as the "technology stack".Keywords: mobile applications, development, architecture, technology
Procedia PDF Downloads 1031256 Resequencing and Genomic Study of Wild Coffea Arabica Unveils Genetic Groups at Its Origin and Their Geographic Distribution
Authors: Zate Zewdneh Zana
Abstract:
Coffea arabica (Arabica coffee), a cornerstone of the global beverage industry, necessitates rigorous genetic conservation due to its economic significance and genetic complexity. In this study, we performed whole-genome resequencing of wild species collected from its birthplace, Ethiopia. Advanced Illumina sequencing technology facilitated the mapping of a high percentage of clean reads to the C. arabica reference genome, revealing a substantial number of genetic variants, predominantly SNPs. Our comprehensive analysis not only uncovered a notable distribution of genomic variants across the coffee genome but also identified distinct genetic groups through phylogenetic and population structure analyses. This genomic study provides invaluable insights into the genetic diversity of C. arabica, highlighting the potential of identified SNPs and InDels in enhancing our understanding of key agronomic traits. The findings contribute significantly to genetic studies and support strategic breeding and conservation efforts essential for sustaining the global coffee industry.Keywords: population genetics, wild species, evolutionary study, coffee plant
Procedia PDF Downloads 451255 Experimental Analysis of Advanced Multi-Axial Preforms Conformability to Complex Contours
Authors: Andrew Hardman, Alistair T. McIlhagger, Edward Archer
Abstract:
A degree of research has been undertaken in the determination of 3D textile preforms behaviour to compression with direct comparison to 2D counterparts. Multiscale simulations have been developed to try and accurately analyse the behaviour of varying architectures post-consolidation. However, further understanding is required to experimentally identify the mechanisms and deformations that exist upon conforming to a complex contour. Due to the complexity of 3D textile preforms, determination of yarn behaviour to a complex contour is assessed through consolidation by means of vacuum assisted resin transfer moulding (VARTM), and the resulting mechanisms are investigated by micrograph analysis. Varying architectures; with known areal densities, pic density and thicknesses are assessed for a cohesive study. The resulting performance of each is assessed qualitatively as well as quantitatively from the perspective of material in terms of the change in representative unit cell (RVE) across the curved beam contour, in crimp percentage, tow angle, resin rich areas and binder distortion. A novel textile is developed from the resulting analysis to overcome the observed deformations.Keywords: comformability, compression, binder architecture, 3D weaving, textile preform
Procedia PDF Downloads 1661254 The Diffusion of Telehealth: System-Level Conditions for Successful Adoption
Authors: Danika Tynes
Abstract:
Telehealth is a promising advancement in health care, though there are certain conditions under which telehealth has a greater chance of success. This research sought to further the understanding of what conditions compel the success of telehealth adoption at the systems level applying Diffusion of Innovations (DoI) theory (Rogers, 1962). System-level indicators were selected to represent four components of DoI theory (relative advantage, compatibility, complexity, and observability) and regressed on 5 types of telehealth (teleradiology, teledermatology, telepathology, telepsychology, and remote monitoring) using multiple logistic regression. The analyses supported relative advantage and compatibility as the strongest influencers of telehealth adoption, remote monitoring in particular. These findings help to quantitatively clarify the factors influencing the adoption of innovation and advance the ability to make recommendations on the viability of state telehealth adoption. In addition, results indicate when DoI theory is most applicable to the understanding of telehealth diffusion. Ultimately, this research may contribute to more focused allocation of scarce health care resources through consideration of existing state conditions available foster innovation.Keywords: adoption, diffusion of innovation theory, remote monitoring, system-level indicators
Procedia PDF Downloads 1371253 Elemental Graph Data Model: A Semantic and Topological Representation of Building Elements
Authors: Yasmeen A. S. Essawy, Khaled Nassar
Abstract:
With the rapid increase of complexity in the building industry, professionals in the A/E/C industry were forced to adopt Building Information Modeling (BIM) in order to enhance the communication between the different project stakeholders throughout the project life cycle and create a semantic object-oriented building model that can support geometric-topological analysis of building elements during design and construction. This paper presents a model that extracts topological relationships and geometrical properties of building elements from an existing fully designed BIM, and maps this information into a directed acyclic Elemental Graph Data Model (EGDM). The model incorporates BIM-based search algorithms for automatic deduction of geometrical data and topological relationships for each building element type. Using graph search algorithms, such as Depth First Search (DFS) and topological sortings, all possible construction sequences can be generated and compared against production and construction rules to generate an optimized construction sequence and its associated schedule. The model is implemented in a C# platform.Keywords: building information modeling (BIM), elemental graph data model (EGDM), geometric and topological data models, graph theory
Procedia PDF Downloads 3841252 An Assessment of Poland's Current Macroeconomic Conditions to Determine Whether It Is in a Middle Income Trap
Authors: Bozena Leven
Abstract:
The middle-income trap (MIT) describes a situation faced by countries at a relatively mature stage of development that often poses an obstacle to sustainable long-term growth. MIT is characterized by declining factor productivity from the exhaustion of labor intensive, import and Foreign Direct Investment (FDI) based strategies when middle-income status is achieved. In this paper, we focus on MIT and Poland. In the past two decades, Poland experienced steady growth based largely on imported technologies and low-cost labor. Recently, that economic growth has slowed, prompting economists to ask whether Poland is experiencing MIT. To answer this question, we analyze changes in investment in Poland; specifically- its growth and composition – as well as savings, FDI, educational attainments of the labor force, development of new technologies and products, the role of imports, diversification of exports, and product complexity. We also examine the development of modern infrastructure, institutions (including legal environment) and demographic changes in Poland that support growth. Our findings indicate that certain factors consistent with MIT are gaining importance in Poland, and represent a challenge to that country’s future growth rate.Keywords: engines of growth, factor productivity, middle income trap, sustainable development
Procedia PDF Downloads 2111251 Software Reliability Prediction Model Analysis
Authors: Lela Mirtskhulava, Mariam Khunjgurua, Nino Lomineishvili, Koba Bakuria
Abstract:
Software reliability prediction gives a great opportunity to measure the software failure rate at any point throughout system test. A software reliability prediction model provides with the technique for improving reliability. Software reliability is very important factor for estimating overall system reliability, which depends on the individual component reliabilities. It differs from hardware reliability in that it reflects the design perfection. Main reason of software reliability problems is high complexity of software. Various approaches can be used to improve the reliability of software. We focus on software reliability model in this article, assuming that there is a time redundancy, the value of which (the number of repeated transmission of basic blocks) can be an optimization parameter. We consider given mathematical model in the assumption that in the system may occur not only irreversible failures, but also a failure that can be taken as self-repairing failures that significantly affect the reliability and accuracy of information transfer. Main task of the given paper is to find a time distribution function (DF) of instructions sequence transmission, which consists of random number of basic blocks. We consider the system software unreliable; the time between adjacent failures has exponential distribution.Keywords: exponential distribution, conditional mean time to failure, distribution function, mathematical model, software reliability
Procedia PDF Downloads 4651250 A Thematic Analysis on the Drivers of Community Participation for River Restoration Projects, the Case of Kerala, India
Authors: Alvin Manuel Vazhayil, Chaozhong Tan, Karl M. Wantzen
Abstract:
As local community participation in river restoration projects is increasingly recognized to be crucial for sustainable outcomes, researchers are exploring factors that motivate community participation globally. In India, while there is consensus in literature on the importance of community engagement in river restoration projects, research on what drives local communities to participate is limited, especially given the societal and economic challenges common in the Global South. This study addresses this gap by exploring the drivers of community participation in the local river restoration initiatives of the "Now Let Me Flow" campaign in Kerala, India. The project aimed to restore 87,000 kilometers of streams through the middle-ground governance approach that integrated bottom-up community efforts with top-down governmental support. The fieldwork involved interviews with 26 key agents, including local leaders, policy practitioners, politicians, and environmental activists associated with the project, and the collection of secondary data from 12 documents including project reports and news articles. The data was analyzed in NVivo (NVivo 11 Plus for Windows, version 11.3.0.773) using thematic analysis which included two cycles of systematic coding. The findings reveal two main drivers influencing community participation: top-down actions from local governments, and bottom-up drivers within the community. The study highlights the importance of local stakeholder collaboration, support of local governments, and local community engagement in successful river restoration projects. These findings are consistent with other empirical studies on participatory environmental problem-solving globally. The results offer crucial insights for policymakers and governments to better design and implement effective and sustainable participatory river restoration projects.Keywords: community initiatives, drivers of participation, environmental governance, river restoration
Procedia PDF Downloads 301249 Exercise and Aging Process Related to Oxidative Stress
Authors: B. Dejanova, S. Petrovska, L. Todorovska, J. Pluncevic, S. Mancevska, V. Antevska, E. Sivevska, I. Karagjozova
Abstract:
Introduction: Aging process is mainly related to endothelial function which may be impaired by oxidative stress (OS). Exercise is known to be beneficial to aging process, which may improve health and prevent appearance of chronic diseases in elderly. The aim of the study was to investigate the OS markers related to exercise. Methods: A number of 80 subjects (healthy volunteers) were examined (38 male and 32 female), divided in 3 age groups: group I ≤ 30 years (n=24); group II – 31-50 years (n=24); group III - ≥ 51 year (n=32). Each group was divided to subgroups of sedentary subjects (SS) and subjects who exercise (SE). Group I: SS (n=11), SE (n=13); group II: SS (n=13), SE (n=10); group III: SS (n=23) SE (n=9). Lipid peroxidation (LP) as a fluorimetric method with thiobarbituric acid was used to estimate OS. Antioxidative status was determined by cell antioxidants such as enzymes - superoxide dismutase (SOD), glutathione peroxidase (GPx) and glucose 6 phosphate (G-6-PD); and by extra cell antioxidants such as glutathione reductase (GR), nitric oxide (NO) and total antioxidant capacity (TAC). Results: Increased values of LP were noticed along the aging process: group I – 3.30±0.3 µmol/L; group II – 3.91±0.2 µmol/L; group III – 3.94±0.8 µmol/L (p<0.05), while no statistical significance was found between male and female subjects. Statistical significance for OS was not found between SS and SE in group I as it was found in group II (p<0.05) and in group III (p<0.01). No statistical significance was found for all cell antioxidants and GR within the groups, while NO and TAC showed lower values in SS compared to SE in II (p<0.05) and in group III (p<0.05). Discussion and conclusion: Aging process showed increased OS which may be either due to impaired function of scavengers of free radicals or due to their enormous production. Well balanced exercise might be one of the factors that keep the integrity of blood vessel endothelium which slows down the aging process. Possible mechanism of exercise beneficial influence is shear stress by upregulation of genes coding for nitric oxide bioavailability. Thus, due to obtained results we may conclude that OS is found to be diminished in the subject groups who perform exercise.Keywords: oxidative stress, aging process, exercise, endothelial function
Procedia PDF Downloads 3871248 An Analysis of Non-Elliptic Curve Based Primality Tests
Authors: William Wong, Zakaria Alomari, Hon Ching Lai, Zhida Li
Abstract:
Modern-day information security depends on implementing Diffie-Hellman, which requires the generation of prime numbers. Because the number of primes is infinite, it is impractical to store prime numbers for use, and therefore, primality tests are indispensable in modern-day information security. A primality test is a test to determine whether a number is prime or composite. There are two types of primality tests, which are deterministic tests and probabilistic tests. Deterministic tests are adopting algorithms that provide a definite answer whether a given number is prime or composite. While in probabilistic tests, a probabilistic result would be provided, there is a degree of uncertainty. In this paper, we review three probabilistic tests: the Fermat Primality Test, the Miller-Rabin Test, and the Baillie-PSW Test, as well as one deterministic test, the Agrawal-Kayal-Saxena (AKS) Test. Furthermore, we do an analysis of these tests. All of the reviews discussed are not based on the Elliptic Curve. The analysis demonstrates that, in the majority of real-world scenarios, the Baillie- PSW test’s favorability stems from its typical operational complexity of O(log 3n) and its capacity to deliver accurate results for numbers below 2^64.Keywords: primality tests, Fermat’s primality test, Miller-Rabin primality test, Baillie-PSW primality test, AKS primality test
Procedia PDF Downloads 911247 Modelling of Relocation and Battery Autonomy Problem on Electric Cars Sharing Dynamic by Using Discrete Event Simulation and Petri Net
Authors: Taha Benarbia, Kay W. Axhausen, Anugrah Ilahi
Abstract:
Electric car sharing system as ecologic transportation increasing in the world. The complexity of managing electric car sharing systems, especially one-way trips and battery autonomy have direct influence to on supply and demand of system. One must be able to precisely model the demand and supply of these systems to better operate electric car sharing and estimate its effect on mobility management and the accessibility that it provides in urban areas. In this context, our work focus to develop performances optimization model of the system based on discrete event simulation and stochastic Petri net. The objective is to search optimal decisions and management parameters of the system in order to fulfil at best demand while minimizing undesirable situations. In this paper, we present new model of electric cars sharing with relocation based on monitoring system. The proposed approach also help to precise the influence of battery charging level on the behaviour of system as important decision parameter of this complex and dynamical system.Keywords: electric car-sharing systems, smart mobility, Petri nets modelling, discrete event simulation
Procedia PDF Downloads 1831246 Identification of Successful Criteria for Measuring Large Infrastructure Projects Performance in Malaysia
Authors: M. A. N. Masrom, M. H. I. A. Rahim, G. K. Chen, S. Mohamed
Abstract:
Large infrastructure project is one of significant category in the development of Malaysian construction industry. This type of project has been recognized as a high complexity project with numerous construction risks, large cost involvement, highly technical requirements and divers of resources. Besides, the development of large infrastructure such as highway, railway, Mass Rapid Transit (MRT) and airport are also needed a large investment of public and private sector. To accomplish the development successfully, several challenges has to be determined prior the project commencement. To date, a comprehensive assessment of key success criteria particularly for large infrastructure in developing country such as Malaysia, is still not systematically defined and therefore, it needs further investigation. This paper aims to explore the potential success criteria that would be useful in gauging overall performance of large infrastructure implementation particularly in developing country. Previous successful criteria studies were used to develop a conceptual framework that possibly suitable for measuring large infrastructure performance. The findings show that successful criteria of infrastructure projects implementation could be grouped according to several key elements as it seems significant to the participants in prioritizing project challenges more systematically.Keywords: successful criteria, performance, large infrastructure, Malaysia
Procedia PDF Downloads 4111245 Design an Development of an Agorithm for Prioritizing the Test Cases Using Neural Network as Classifier
Authors: Amit Verma, Simranjeet Kaur, Sandeep Kaur
Abstract:
Test Case Prioritization (TCP) has gained wide spread acceptance as it often results in good quality software free from defects. Due to the increase in rate of faults in software traditional techniques for prioritization results in increased cost and time. Main challenge in TCP is difficulty in manually validate the priorities of different test cases due to large size of test suites and no more emphasis are made to make the TCP process automate. The objective of this paper is to detect the priorities of different test cases using an artificial neural network which helps to predict the correct priorities with the help of back propagation algorithm. In our proposed work one such method is implemented in which priorities are assigned to different test cases based on their frequency. After assigning the priorities ANN predicts whether correct priority is assigned to every test case or not otherwise it generates the interrupt when wrong priority is assigned. In order to classify the different priority test cases classifiers are used. Proposed algorithm is very effective as it reduces the complexity with robust efficiency and makes the process automated to prioritize the test cases.Keywords: test case prioritization, classification, artificial neural networks, TF-IDF
Procedia PDF Downloads 3981244 Supporting Homeless People in Red Deer, Canada
Authors: Cornelius Ehlers, Lisa Harmatiuk, Sharon Rowland, Michelle Shafers
Abstract:
The objective of the Street Connect program is to provide client-centered care for the homeless population within the City of Red Deer. The program aims to provide an extended continuum of care (addiction, mental health, and physical health) for high acuity homeless individuals who are not connected to a service provider and/or community service agency. Street Connect includes both primary and secondary streams of service: Overall, Street Connect has demonstrated its ability to support vulnerable populations within the City of Red Deer, specifically those who are homeless and seeking addiction, mental health, and medical assistance. The results from the data extract and chart audit reflect the complexity and vulnerability of the clients enrolled in the Street Connect program. The clients were predominantly male, with an average age of 41 years. The majority did not have a permanent address, and 65% did not have employment. Substance abuse/addiction issues were common, combined with a history of psychiatric diagnoses and previous mental health hospitalizations. The most utilized drugs were street drugs such as methamphetamine, fentanyl, and other opioids.Keywords: client-centred care, homelessness, mental health, rural
Procedia PDF Downloads 961243 Construction of Wind Tunnel for Aerodynamic
Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale, José Ubiragi de Lima Mendes
Abstract:
The study of the aerodynamics is related to the improvement in the acting of airplanes and automobiles with the objective of being reduced the effect of the attrition of the air on structures, providing larger speeds and smaller consumption of fuel. The application of the knowledge of the aerodynamics not more limits to the aeronautical and automobile industries. In that way, being tried the new demands with relationship to the aerodynamic study in the most several areas of the engineering, this work presents the stages of the project and construction of a wind tunnel for application in aerodynamic rehearsals. Among the several configurations of existent wind tunnels, opted to build open circuit, due to smaller construction complexity and installation; operational simplicity and cost reduced. Belonging to the type blower, to take advantage of a larger efficiency of the motor; and with diffusion so that flowed him of air it wins speed before reaching the section of rehearsals. The guidelines for project were: didactic practices: study of the layer it limits and analyze of the drainages on proof bodies with different geometries. For the pressure variation in the test section a connected manometer used a pitot tube. Quantitative and qualitative results showed to be satisfactory.Keywords: wind tunnel, aerodynamics, air, airplane
Procedia PDF Downloads 4861242 Helical Motions Dynamics and Hydraulics of River Channel Confluences
Authors: Ali Aghazadegan, Ali Shokria, Julia Mullarneya, Jon Tunnicliffe
Abstract:
River channel confluences are dynamic systems with branching structures that exhibit a high degree of complexity both in natural and man-made open channel networks. Recent and past fields and modeling have investigated the river dynamics modeling of confluent based on a series of over-simplified assumptions (i.e. straight tributary channel with a bend with a 90° junction angle). Accurate assessment of such systems is important to the design and management of hydraulic structures and river engineering processes. Despite their importance, there has been little study of the hydrodynamics characteristics of river confluences, and the link between flow hydrodynamics and confluence morphodynamics in the confluence is still incompletely understood. This paper studies flow structures in confluences, morphodynamics and deposition patterns in 30 and 90 degrees confluences with different flow conditions. The results show that the junction angle is primarily the key factor for the determination of the confluence bed morphology and sediment pattern, while the discharge ratio is a secondary factor. It also shows that super elevation created by mixing flows is a key function of the morphodynamics patterns.Keywords: helical flow, river confluence, bed morphology , secondary flows, shear layer
Procedia PDF Downloads 1461241 DNA Polymorphism Studies of β-Lactoglobulin Gene in Native Saudi Goat Breeds
Authors: Amr A. El Hanafy, Muhammad I. Qureshi, Jamal Sabir, Mohamed Mutawakil, Mohamed M. Ahmed, Hassan El Ashmaoui, Hassan Ramadan, Mohamed Abou-Alsoud, Mahmoud Abdel Sadek
Abstract:
β-Lactoglobulin (β-LG) is the dominant non-casein whey protein found in bovine milk and of most ruminants. The amino acid sequence of β-LG along with its 3-dimensional structure illustrates linkage with the lipocalin superfamily. Preliminary studies in goats indicated that milk yield can be influenced by polymorphism in genes coding for whey proteins. The aim of this study is to identify and evaluate the incidence of functional polymorphisms in the exonic and intronic portions of β-LG gene in native Saudi goat breeds (Ardi, Habsi, and Harri). Blood samples were collected from 300 animals (100 for each breed) and genomic DNA was extracted using QIAamp DNA extraction Kit. A fragment of the β-LG gene from exon 7 to 3’ flanking region was amplified with pairs of specific primers. Subsequent digestion with Sac II restriction endonuclease revealed two alleles (A and B) and three different banding patterns or genotypes i.e. AA, AB and BB. The statistical analysis showed that β-LG AA genotype had higher milk yield than β-LG AB and β-LG BB genotypes. Nucleotide sequencing of the selected β-LG fragments was done and submitted to GenBank NCBI (Accession No. KJ544248, KJ588275, KJ588276, KJ783455, KJ783456 and KJ874959). Two already established SNPs in exon 7 (+4601 and +4603) and one fresh SNP in the 3’ UTR region were detected in the β-LG fragments with designated AA genotype. The polymorphisms in exon 7 did not produce any amino acid change. Phylogenetic analysis on the basis of nucleotide sequences of native Saudi goats indicated evolutional similarity with the GenBank reference sequences of goat, Bubalus bubalis and Bos taurus.Keywords: β-Lactoglobulin, Saudi goats, PCR-RFLP, functional polymorphism, nucleotide sequencing, phylogenetic analysis
Procedia PDF Downloads 5011240 Improvement of Direct Torque and Flux Control of Dual Stator Induction Motor Drive Using Intelligent Techniques
Authors: Kouzi Katia
Abstract:
This paper proposes a Direct Torque Control (DTC) algorithm of dual Stator Induction Motor (DSIM) drive using two approach intelligent techniques: Artificial Neural Network (ANN) approach replaces the switching table selector block of conventional DTC and Mamdani Fuzzy Logic controller (FLC) is used for stator resistance estimation. The fuzzy estimation method is based on an online stator resistance correction through the variations of stator current estimation error and its variation. The fuzzy logic controller gives the future stator resistance increment at the output. The main advantage of suggested algorithm control is to reduce the hardware complexity of conventional selectors, to avoid the drive instability that may occur in certain situation and ensure the tracking of the actual of the stator resistance. The effectiveness of the technique and the improvement of the whole system performance are proved by results.Keywords: artificial neural network, direct torque control, dual stator induction motor, fuzzy logic estimator, switching table
Procedia PDF Downloads 3451239 Introducing Transcending Pedagogies
Authors: Wajeehah Aayeshah, Joy Higgs
Abstract:
The term “transcending pedagogies” has been created to refer to teaching and learning strategies that transcend the mode of student enrolment, the needs of different students, and different learning spaces. The value of such pedagogies in the current arena when learning spaces, technologies and preferences are more volatile than ever before, is a key focus of this paper. The paper will examine current and emerging pedagogies that transcend the learning spaces and enrollment modes of on campus, distance, virtual and workplace learning contexts. A further point of interest is how academics in professional and higher education settings interpret and implement pedagogies in the current global conversation space and re-creation of higher education. This study questioned how the notion and practice of transcending pedagogies enables us to re-imagine and reshape university curricula. It explored the nature of teaching and learning spaces and those professional and higher education (current and emerging) pedagogies that can be implemented across these spaces. We set out to identify how transcending pedagogies can assist students in learning to deal with complexity, uncertainty and change in the practice worlds and better appeal to students who are making decisions on where to enrol. The data for this study was collected through in-depth interviews and focus groups with academics and policy makers within academia.Keywords: Transcending Pedagogies, teaching and learning strategies, learning spaces, pedagogies
Procedia PDF Downloads 5391238 Global Indicators of Successful Remote Monitoring Adoption Applying Diffusion of Innovation Theory
Authors: Danika Tynes
Abstract:
Innovations in technology have implications for sustainable development in health and wellness. Remote monitoring is one innovation for which the evidence-base has grown to support its viability as a quality healthcare delivery adjunct. This research reviews global data on telehealth adoption, in particular, remote monitoring, and the conditions under which its success becomes more likely. System-level indicators were selected to represent four constructs of DoI theory (relative advantage, compatibility, complexity, and observability) and assessed against 5 types of Telehealth (Teleradiology, Teledermatology, Telepathology, Telepsychology, and Remote Monitoring) using ordinal logistic regression. Analyses include data from 84 countries, as extracted from the World Health Organization, World Bank, ICT (Information Communications Technology) Index, and HDI (Human Development Index) datasets. Analyses supported relative advantage and compatibility as the strongest influencers of remote monitoring adoption. Findings from this research may help focus on the allocation of resources, as a sustainability concern, through consideration of systems-level factors that may influence the success of remote monitoring adoption.Keywords: remote monitoring, diffusion of innovation, telehealth, digital health
Procedia PDF Downloads 1351237 Analysis of ZBTB17 Gene rs10927875 Polymorphism in Relation to Dilated Cardiomyopathy in Slovak Population
Authors: I. Boroňová, J. Bernasovská, J. Kmec, E. Petrejčíková
Abstract:
Dilated cardiomyopathy (DCM) is a primary myocardial disease, it is characterized by progressive systolic dysfunction due to cardiac chamber dilatation and inefficient myocardial contractility with estimated prevalence of 37 in 100 000 people. It is the most frequent cause of heart failure and cardiac transplantation in young adults. About one-third of all patients have a suspected familial disease indicating a genetic basis of DCM. Many candidate gene studies in humans have tested the association of single nucleotide polymorphisms (SNPs) in various genes coding for proteins with a known cardiovascular function. In our study we present the results of ZBTB17 gene rs10927875 polymorphism genotyping in relation to dilated cardiomyopathy in Slovak population. The study included 78 individuals, 39 patients with DCM and 39 healthy control persons. The mean age of patients with DCM was 50.7±11.5 years; the mean age of individuals in control group was 51.3±9.8 years. Risk factors detected at baseline in each group included age, sex, body mass index, smoking status, diabetes and blood pressure. Genomic DNA was extracted from leukocytes by a standard methodology and screened for rs10927875 polymorphism in intron of ZBTB17 gene using Real-time PCR method (Step One Applied Biosystems). The distribution of investigated genotypes for rs10927875 polymorphism in the group of patients with DCM was as follows: CC (89.74%), CT (10.26%), TT (0%), and the distribution in the control group: CC (92.31%), CT (5.13%), and TT (2.56%). Using the chi-square (χ2) test we compared genotype and allele frequencies between patients and controls. There was no difference in genotype or allele frequencies in ZBTB17 gene rs10927875 polymorphism between patients and control group (χ2=3.028, p=0.220; χ2=0.264, p=0.608). Our results represent an initial study, it can be considered as preliminary and first of its kind in Slovak population. Further studies of ZBTB17 gene polymorphisms of more numerous files and additional functional investigations are needed to fully understand the role of genetic associations.Keywords: dilated cardiomyopathy, SNP polymorphism, ZBTB17 gene, bioscience
Procedia PDF Downloads 3841236 Efficient Semi-Systolic Finite Field Multiplier Using Redundant Basis
Authors: Hyun-Ho Lee, Kee-Won Kim
Abstract:
The arithmetic operations over GF(2m) have been extensively used in error correcting codes and public-key cryptography schemes. Finite field arithmetic includes addition, multiplication, division and inversion operations. Addition is very simple and can be implemented with an extremely simple circuit. The other operations are much more complex. The multiplication is the most important for cryptosystems, such as the elliptic curve cryptosystem, since computing exponentiation, division, and computing multiplicative inverse can be performed by computing multiplication iteratively. In this paper, we present a parallel computation algorithm that operates Montgomery multiplication over finite field using redundant basis. Also, based on the multiplication algorithm, we present an efficient semi-systolic multiplier over finite field. The multiplier has less space and time complexities compared to related multipliers. As compared to the corresponding existing structures, the multiplier saves at least 5% area, 50% time, and 53% area-time (AT) complexity. Accordingly, it is well suited for VLSI implementation and can be easily applied as a basic component for computing complex operations over finite field, such as inversion and division operation.Keywords: finite field, Montgomery multiplication, systolic array, cryptography
Procedia PDF Downloads 2961235 Performance Analysis of Permanent Magnet Synchronous Motor Using Direct Torque Control Based ANFIS Controller for Electric Vehicle
Authors: Marulasiddappa H. B., Pushparajesh Viswanathan
Abstract:
Day by day, the uses of internal combustion engines (ICE) are deteriorating because of pollution and less fuel availability. In the present scenario, the electric vehicle (EV) plays a major role in the place of an ICE vehicle. The performance of EVs can be improved by the proper selection of electric motors. Initially, EV preferred induction motors for traction purposes, but due to complexity in controlling induction motor, permanent magnet synchronous motor (PMSM) is replacing induction motor in EV due to its advantages. Direct torque control (DTC) is one of the known techniques for PMSM drive in EV to control the torque and speed. However, the presence of torque ripple is the main drawback of this technique. Many control strategies are followed to reduce the torque ripples in PMSM. In this paper, the adaptive neuro-fuzzy inference system (ANFIS) controller technique is proposed to reduce torque ripples and settling time. Here the performance parameters like torque, speed and settling time are compared between conventional proportional-integral (PI) controller with ANFIS controller.Keywords: direct torque control, electric vehicle, torque ripple, PMSM
Procedia PDF Downloads 165