Search results for: artificial stock market
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5903

Search results for: artificial stock market

4643 Radical Technological Innovation - Comparison of a Critical Success Factors Framework with Existing Literature

Authors: Florian Wohlfeil, Orestis Terzidis, Louisa Hellmann

Abstract:

Radical technological innovations enable companies to reach strong market positions and are thus desirable. On the other hand, the innovation process is related to significant costs and risks. Hence, the knowledge of the factors that influence success is crucial for technology driven companies. In a previous study, we have developed a conceptual framework of 25 Critical Success Factors for radical technological innovations and mapped them to four main categories: Technology, Organization, Market, and Process. We refer to it as the Technology-Organization-Market-Process (TOMP) framework. Taking the TOMP framework as a reference model, we conducted a structured and focused literature review of eleven standard books on the topic of radical technological innovation. With this approach, we aim to evaluate, expand, and clarify the set of Critical Success Factors detailed in the TOMP framework. Overall, the set of factors and their allocation to the main categories of the TOMP framework could be confirmed. However, the factor organizational home is not emphasized and discussed in most of the reviewed literature. On the other hand, an additional factor that has not been part of the TOMP framework is described to be important – strategy fit. Furthermore, the factors strategic alliances and platform strategy appear in the literature but in a different context compared to the reference model.

Keywords: Critical Success Factors, radical technological innovation, TOMP framework, innovation process

Procedia PDF Downloads 659
4642 Intellectual Property Risk Assessment in Planning Market Entry to China

Authors: Qing Cao

Abstract:

Generally speaking, China has a relatively high level of intellectual property (IP) infringement. Risk assessment is indispensable in the strategic planning process. To complement the current literature in international business, the paper sheds the light on how to assess IP risk for foreign companies in planning market entry to China. Evaluating internal and external IP environment, proposed in the paper, consists of external analysis, internal analysis and further internal analysis. Through position the company’s IP environment, the risk assessment approach enables the foreign companies to either build the corresponding IP strategies or abort the entry plan beforehand to minimize the IP risks.

Keywords: intellectual property, IP environment, risk assessment

Procedia PDF Downloads 560
4641 The Digital Desert in Global Business: Digital Analytics as an Oasis of Hope for Sub-Saharan Africa

Authors: David Amoah Oduro

Abstract:

In the ever-evolving terrain of international business, a profound revolution is underway, guided by the swift integration and advancement of disruptive technologies like digital analytics. In today's international business landscape, where competition is fierce, and decisions are data-driven, the essence of this paper lies in offering a tangible roadmap for practitioners. It is a guide that bridges the chasm between theory and actionable insights, helping businesses, investors, and entrepreneurs navigate the complexities of international expansion into sub-Saharan Africa. This practitioner paper distils essential insights, methodologies, and actionable recommendations for businesses seeking to leverage digital analytics in their pursuit of market entry and expansion across the African continent. What sets this paper apart is its unwavering focus on a region ripe with potential: sub-Saharan Africa. The adoption and adaptation of digital analytics are not mere luxuries but essential strategic tools for evaluating countries and entering markets within this dynamic region. With the spotlight firmly fixed on sub-Saharan Africa, the aim is to provide a compelling resource to guide practitioners in their quest to unearth the vast opportunities hidden within sub-Saharan Africa's digital desert. The paper illuminates the pivotal role of digital analytics in providing a data-driven foundation for market entry decisions. It highlights the ability to uncover market trends, consumer behavior, and competitive landscapes. By understanding Africa's incredible diversity, the paper underscores the importance of tailoring market entry strategies to account for unique cultural, economic, and regulatory factors. For practitioners, this paper offers a set of actionable recommendations, including the creation of cross-functional teams, the integration of local expertise, and the cultivation of long-term partnerships to ensure sustainable market entry success. It advocates for a commitment to continuous learning and flexibility in adapting strategies as the African market evolves. This paper represents an invaluable resource for businesses, investors, and entrepreneurs who are keen on unlocking the potential of digital analytics for informed market entry in Africa. It serves as a guiding light, equipping practitioners with the essential tools and insights needed to thrive in this dynamic and diverse continent. With these key insights, methodologies, and recommendations, this paper is a roadmap to prosperous and sustainable market entry in Africa. It is vital for anyone looking to harness the transformational potential of digital analytics to create prosperous and sustainable ventures in a region brimming with promise. In the ever-advancing digital age, this practitioner paper becomes a lodestar, guiding businesses and visionaries toward success amidst the unique challenges and rewards of sub-Saharan Africa's international business landscape.

Keywords: global analytics, digital analytics, sub-Saharan Africa, data analytics

Procedia PDF Downloads 72
4640 Regulating the Ottomans on Turkish Television and the Making of Good Citizens

Authors: Chien Yang Erdem

Abstract:

This paper takes up the proliferating historical dramas and children’s programs featuring the Ottoman-Islamic legacy on Turkish television as a locus where the processes of subjectification take place. A critical analysis of this emergent cultural phenomenon reveals an alliance of neoliberal and neoconservative political rationalities based on which the Turkish media is restructured to transform society. The existing debates have focused on how the Ottoman historical dramas manifest the Justice and Development Party’s (Adalet ve Kalkınma Partisi) neo-Ottomanist ideology and foreign policy. However, this approach tends to overlook the more complex relationship between the media, government, and society. Employing Michel Foucault’s notion of 'technologies of the self,' this paper aims to examine the governing practices that are deployed to regulate the media and to transform individual citizens into governable subjects in contemporary Turkey. First, through a brief discussion of recent development of the Turkish media towards an authoritarian model, the paper suggests that the relation between the Ottoman television drama and the political subject in question cannot be adequately examined without taking into account the force of the market. Second, by focusing on the managerial restructuring of the Turkish Television and Radio Corporation (Türkiye Radyo ve Televizyon Kurumu), the paper aims to illustrate the rationale and process through which the Turkish media sector is transformed into an integral part of the free market where the government becomes a key actor. The paper contends that this new sphere of free market is organized in a way that enables direct interference of the government and divides media practitioners and consumers into opposing categories through their own participation in the media market. On the one hand, a 'free subject' is constituted based on the premise that the market is a sphere where individuals are obliged to exercise their right to freedom (of choice, lifestyle, and expression). On the other hand, this 'free subject' is increasingly subjugated to such disciplinary practices as censorship for being on the wrong side of the government. Finally, the paper examines the relation between the restructured Turkish media market and the proliferation of Ottoman television drama in the 2010s. The study maintains that the reorganization of the media market has produced a condition where private sector is encouraged to take an active role in reviving Turkey’s Ottoman-Islamic cultural heritage and promulgating moral-religious values. Paying specific attention to the controversial case of Magnificent Century (Muhteşem Yüzyıl) in contrast with TRT’s Ottoman historical drama and children’s programs, the paper aims to identify the ways in which individual citizens are directed to conduct themselves as a virtuous citizenry. It is through the double movement between the governing practices associated with the media market and those concerning the making of a 'conservative generation' that a subject of citizenry of new Turkey is constituted.

Keywords: neoconservatism, neoliberalism, ottoman historical drama, technologies of the self, Turkish television

Procedia PDF Downloads 142
4639 Microbubbles Enhanced Synthetic Phorbol Ester Degradation by Ozonolysis

Authors: D. Kuvshinov, A. Siswanto, W. Zimmerman

Abstract:

A phorbol-12-myristate-13-acetate (TPA) is a synthetic analogue of phorbol ester (PE), a natural toxic compound of Euphorbiaceae plant. The oil extracted from plants of this family is useful source for primarily biofuel. However this oil can also be used as a food stock due to its significant nutrition content. The limitations for utilizing the oil as a food stock are mainly due to a toxicity of PE. Nowadays a majority of PE detoxification processes are expensive as include multi steps alcohol extraction sequence. Ozone is considered as a strong oxidative agent. It reaction with PE it attacks the carbon double bond of PE. This modification of PE molecular structure results into nontoxic ester with high lipid content. This report presents data on development of simple and cheap PE detoxification process with water application as a buffer and ozone as reactive component. The core of this new technique is a simultaneous application of new microscale plasma unit for ozone production and patented gas oscillation technology. In combination with a reactor design the technology permits ozone injection to the water-TPA mixture in form of microbubbles. The efficacy of a heterogeneous process depends on diffusion coefficient which can be controlled by contact time and interface area. The low velocity of rising microbubbles and high surface to volume ratio allow fast mass transfer to be achieved during the process. Direct injection of ozone is the most efficient process for a highly reactive and short lived chemical. Data on the plasma unit behavior are presented and influence of the gas oscillation technology to the microbubbles production mechanism has been discussed. Data on overall process efficacy for TPA degradation is shown.

Keywords: microbubble, ozonolysis, synthetic phorbol ester, chemical engineering

Procedia PDF Downloads 217
4638 Automated Driving Deep Neural Networks Model Accuracy and Performance Assessment in a Simulated Environment

Authors: David Tena-Gago, Jose M. Alcaraz Calero, Qi Wang

Abstract:

The evolution and integration of automated vehicles have become more and more tangible in recent years. State-of-the-art technological advances in the field of camera-based Artificial Intelligence (AI) and computer vision greatly favor the performance and reliability of the Advanced Driver Assistance System (ADAS), leading to a greater knowledge of vehicular operation and resembling human behavior. However, the exclusive use of this technology still seems insufficient to control vehicular operation at 100%. To reveal the degree of accuracy of the current camera-based automated driving AI modules, this paper studies the structure and behavior of one of the main solutions in a controlled testing environment. The results obtained clearly outline the lack of reliability when using exclusively the AI model in the perception stage, thereby entailing using additional complementary sensors to improve its safety and performance.

Keywords: accuracy assessment, AI-driven mobility, artificial intelligence, automated vehicles

Procedia PDF Downloads 113
4637 A Hybrid Artificial Intelligence and Two Dimensional Depth Averaged Numerical Model for Solving Shallow Water and Exner Equations Simultaneously

Authors: S. Mehrab Amiri, Nasser Talebbeydokhti

Abstract:

Modeling sediment transport processes by means of numerical approach often poses severe challenges. In this way, a number of techniques have been suggested to solve flow and sediment equations in decoupled, semi-coupled or fully coupled forms. Furthermore, in order to capture flow discontinuities, a number of techniques, like artificial viscosity and shock fitting, have been proposed for solving these equations which are mostly required careful calibration processes. In this research, a numerical scheme for solving shallow water and Exner equations in fully coupled form is presented. First-Order Centered scheme is applied for producing required numerical fluxes and the reconstruction process is carried out toward using Monotonic Upstream Scheme for Conservation Laws to achieve a high order scheme.  In order to satisfy C-property of the scheme in presence of bed topography, Surface Gradient Method is proposed. Combining the presented scheme with fourth order Runge-Kutta algorithm for time integration yields a competent numerical scheme. In addition, to handle non-prismatic channels problems, Cartesian Cut Cell Method is employed. A trained Multi-Layer Perceptron Artificial Neural Network which is of Feed Forward Back Propagation (FFBP) type estimates sediment flow discharge in the model rather than usual empirical formulas. Hydrodynamic part of the model is tested for showing its capability in simulation of flow discontinuities, transcritical flows, wetting/drying conditions and non-prismatic channel flows. In this end, dam-break flow onto a locally non-prismatic converging-diverging channel with initially dry bed conditions is modeled. The morphodynamic part of the model is verified simulating dam break on a dry movable bed and bed level variations in an alluvial junction. The results show that the model is capable in capturing the flow discontinuities, solving wetting/drying problems even in non-prismatic channels and presenting proper results for movable bed situations. It can also be deducted that applying Artificial Neural Network, instead of common empirical formulas for estimating sediment flow discharge, leads to more accurate results.

Keywords: artificial neural network, morphodynamic model, sediment continuity equation, shallow water equations

Procedia PDF Downloads 187
4636 The Effects of Anthropomorphism on Complex Technological Innovations

Authors: Chyi Jaw

Abstract:

Many companies have suffered as a result of consumers’ rejection of complex new products and experienced huge losses in the market. Marketers have to understand what block from new technology adoption or positive product attitude may exist in the market. This research examines the effects of techno-complexity and anthropomorphism on consumer psychology and product attitude when new technologies are introduced to the market. This study conducted a pretest and a 2 x 2 between-subjects experiment. Four simulated experimental web pages were constructed to collect data. The empirical analysis tested the moderation-mediation relationships among techno-complexity, technology anxiety, ability, and product attitude. These empirical results indicate (1) Techno-complexity of an innovation is negatively related to consumers’ product attitude, as well as increases consumers’ technology anxiety and reduces their self-ability perception. (2) Consumers’ technology anxiety and ability perception towards an innovation completely mediate the relationship between techno-complexity and product attitude. (3) Product anthropomorphism is positively related to consumers’ attitude of new technology, and also significantly moderates the effect of techno-complexity in the hypothesized model. In this work, the study presents the moderation-mediation model and the effects of anthropomorphized strategy, which describes how managers can better predict and influence the diffusion of complex technological innovations.

Keywords: ability, anthropomorphic effect, innovation, techno-complexity, technology anxiety

Procedia PDF Downloads 191
4635 The Strategic Gas Aggregator: A Key Legal Intervention in an Evolving Nigerian Natural Gas Sector

Authors: Olanrewaju Aladeitan, Obiageli Phina Anaghara-Uzor

Abstract:

Despite the abundance of natural gas deposits in Nigeria and the immense potential, this presents both for the domestic and export oriented revenue, there exists an imbalance in the preference for export as against the development and optimal utilization of natural gas for the domestic industry. Considerable amounts of gas are still being wasted by flaring in the country to this day. Although the government has set in place initiatives to harness gas at the flare and thereby reduce volumes flared, the gas producers would rather direct the gas produced to the export market whereas gas apportioned to the domestic market is often marred by the low domestic gas price which is often discouraging to the gas producers. The exported fraction of gas production no doubt yields healthy revenues for the government and an encouraging return on investment for the gas producers and for this reason export sales remain enticing and preferable to the domestic sale of gas. This export pull impacts negatively if left unchecked, on the domestic market which is in no position to match the price at the international markets. The issue of gas price remains critical to the optimal development of the domestic gas industry, in that it comprises the basis for investment decisions of the producers on the allocation of their scarce resources and to what project to channel their output in order to maximize profit. In order then to rebalance the domestic industry and streamline the market for gas, the Gas Aggregation Company of Nigeria, also known as the Strategic Aggregator was proposed under the Nigerian Gas Master Plan of 2008 and then established pursuant to the National Gas Supply and Pricing Regulations of 2008 to implement the domestic gas supply obligation which focuses on ramping-up gas volumes for domestic utilization by mandatorily requiring each gas producer to dedicate a portion of its gas production for domestic utilization before having recourse to the export market. The 2008 Regulations further stipulate penalties in the event of non-compliance. This study, in the main, assesses the adequacy of the legal framework for the Nigerian Gas Industry, given that the operational laws are structured more for oil than its gas counterpart; examine the legal basis for the Strategic Aggregator in the light of the Domestic Gas Supply and Pricing Policy 2008 and the National Domestic Gas Supply and Pricing Regulations 2008 and makes a case for a review of the pivotal role of the Aggregator in the Nigerian Gas market. In undertaking this assessment, the doctrinal research methodology was adopted. Findings from research conducted reveal the reawakening of the Federal Government to the immense potential of its gas industry as a critical sector of its economy and the need for a sustainable domestic natural gas market. A case for the review of the ownership structure of the Aggregator to comprise a balanced mix of the Federal Government, gas producers and other key stakeholders in order to ensure the effective implementation of the domestic supply obligations becomes all the more imperative.

Keywords: domestic supply obligations, natural gas, Nigerian gas sector, strategic gas aggregator

Procedia PDF Downloads 226
4634 Beware the Trolldom: Speculative Interests and Policy Implications behind the Circulation of Damage Claims

Authors: Antonio Davola

Abstract:

Moving from the evaluations operated by Richard Posner in his judgment on the case Carhart v. Halaska, the paper seeks to analyse the so-called ‘litigation troll’ phenomenon and the development of a damage claims market, i.e. a market in which the right to propose claims is voluntary exchangeable for money and can be asserted by private buyers. The aim of our study is to assess whether the implementation of a ‘damage claims market’ might represent a resource for victims or if, on the contrary, it might operate solely as a speculation tool for private investors. The analysis will move from the US experience, and will then focus on the EU framework. Firstly, the paper will analyse the relation between the litigation troll phenomenon and the patent troll activity: even though these activities are considered similar by Posner, a comparative study shows how these practices significantly differ in their impact on the market and on consumer protection, even moving from similar economic perspectives. The second part of the paper will focus on the main specific concerns related to the litigation trolling activity. The main issues that will be addressed are the risk that the circulation of damage claims might spur non-meritorious litigation and the implications of the misalignment between the victim of a tort and the actual plaintiff in court arising from the sale of a claim. In its third part, the paper will then focus on the opportunities and benefits that the introduction and regulation of a claims market might imply both for potential claims sellers and buyers, in order to ultimately assess whether such a solution might actually increase individual’s legal empowerment. Through the damage claims market compensation would be granted more quickly and easily to consumers who had suffered harm: tort victims would, in fact, be compensated instantly upon the sale of their claims without any burden of proof. On the other hand, claim-buyers would profit from the gap between the amount that a consumer would accept for an immediate refund and the compensation awarded in court. In the fourth part of the paper, the analysis will focus on the legal legitimacy of the litigation trolling activity in the US and the EU framework. Even though there is no express provision that forbids the sale of the right to pursue a claim in court - or that deems such a right to be non-transferable – procedural laws of single States (especially in the EU panorama) must be taken into account in evaluating this aspect. The fifth and final part of the paper will summarize the various data collected to suggest an evaluation on if, and through which normative solutions, the litigation trolling might comport benefits for competition and which would be its overall effect over consumer’s protection.

Keywords: competition, claims, consumer's protection, litigation

Procedia PDF Downloads 231
4633 Applications of AI, Machine Learning, and Deep Learning in Cyber Security

Authors: Hailyie Tekleselase

Abstract:

Deep learning is increasingly used as a building block of security systems. However, neural networks are hard to interpret and typically solid to the practitioner. This paper presents a detail survey of computing methods in cyber security, and analyzes the prospects of enhancing the cyber security capabilities by suggests that of accelerating the intelligence of the security systems. There are many AI-based applications used in industrial scenarios such as Internet of Things (IoT), smart grids, and edge computing. Machine learning technologies require a training process which introduces the protection problems in the training data and algorithms. We present machine learning techniques currently applied to the detection of intrusion, malware, and spam. Our conclusions are based on an extensive review of the literature as well as on experiments performed on real enterprise systems and network traffic. We conclude that problems can be solved successfully only when methods of artificial intelligence are being used besides human experts or operators.

Keywords: artificial intelligence, machine learning, deep learning, cyber security, big data

Procedia PDF Downloads 126
4632 Digitalization in Aggregate Quarries

Authors: José Eugenio Ortiz, Pierre Plaza, Josefa Herrero, Iván Cabria, José Luis Blanco, Javier Gavilanes, José Ignacio Escavy, Ignacio López-Cilla, Virginia Yagüe, César Pérez, Silvia Rodríguez, Jorge Rico, Cecilia Serrano, Jesús Bernat

Abstract:

The development of Artificial Intelligence services in mining processes, specifically in aggregate quarries, is facilitating automation and improving numerous aspects of operations. Ultimately, AI is transforming the mining industry by improving efficiency, safety and sustainability. With the ability to analyze large amounts of data and make autonomous decisions, AI offers great opportunities to optimize mining operations and maximize the economic and social benefits of this vital industry. Within the framework of the European DIGIECOQUARRY project, various services were developed for the identification of material quality, production estimation, detection of anomalies and prediction of consumption and production automatically with good results.

Keywords: aggregates, artificial intelligence, automatization, mining operations

Procedia PDF Downloads 88
4631 Insect Infestation of Two Varieties of Cowpea Seeds (Vigna Unguiculata L.Walp) Stored at Sokoto Central Market Grainaries

Authors: A. Jatau, H. M. Bandiya, Q. Majeed, M. A. Yahaya

Abstract:

An investigation on the insect infestation of stored seeds of cowpea seeds varieties (Sokoto Loacal and Kanannado) was carried out in Sokoto central market, Sokoto. Two insects' species, Callosobrunchus maculatus and Callosobrunchus chinensis were found on the stored seeds with C. maculutus found to be the most prevalent. The rate of infestation of the cowpea seeds by the two insect species were significantly (P< 0.05) higher in Sokoto local than in Kanannado variety. The result shows that kanannado variety is more resistance to cowpea seeds weevils, hence should be used for long storage in Sokoto.

Keywords: insect, infestation, cowpea seeds, grainaries

Procedia PDF Downloads 388
4630 Permeability Prediction Based on Hydraulic Flow Unit Identification and Artificial Neural Networks

Authors: Emad A. Mohammed

Abstract:

The concept of hydraulic flow units (HFU) has been used for decades in the petroleum industry to improve the prediction of permeability. This concept is strongly related to the flow zone indicator (FZI) which is a function of the reservoir rock quality index (RQI). Both indices are based on reservoir porosity and permeability of core samples. It is assumed that core samples with similar FZI values belong to the same HFU. Thus, after dividing the porosity-permeability data based on the HFU, transformations can be done in order to estimate the permeability from the porosity. The conventional practice is to use the power law transformation using conventional HFU where percentage of error is considerably high. In this paper, neural network technique is employed as a soft computing transformation method to predict permeability instead of power law method to avoid higher percentage of error. This technique is based on HFU identification where Amaefule et al. (1993) method is utilized. In this regard, Kozeny and Carman (K–C) model, and modified K–C model by Hasan and Hossain (2011) are employed. A comparison is made between the two transformation techniques for the two porosity-permeability models. Results show that the modified K-C model helps in getting better results with lower percentage of error in predicting permeability. The results also show that the use of artificial intelligence techniques give more accurate prediction than power law method. This study was conducted on a heterogeneous complex carbonate reservoir in Oman. Data were collected from seven wells to obtain the permeability correlations for the whole field. The findings of this study will help in getting better estimation of permeability of a complex reservoir.

Keywords: permeability, hydraulic flow units, artificial intelligence, correlation

Procedia PDF Downloads 136
4629 Reform of the Intellectual Property Administrative System and High-Quality Innovation of Enterprises

Authors: Prof. Hao Mao, Phd Qia Wei, Dr.Siwei Cao

Abstract:

The administrative system is the organisational carrier for managing the operation of the market and the basic guarantee for achieving innovation incentives. This paper takes the reform of provincial administrative institutions in the process of Chinese national intellectual property administrative system reform in 2018 as a quasi-natural experiment to assess the impact of IP administrative system reform on enterprise innovation. The study finds that reducing the independence of some provincial administrative institutions will lead to a reduction in the number of local enterprises' innovations and a decrease in the quality of innovations, which is mainly triggered by a decrease in R&D investment due to a decrease in the strength of subsidy policies. The new round of intellectual property administrative system reform in 2023 elevated the administrative status of China National Intellectual Property Administration (CNIPA), and re-strengthened the top-level design and centralization of IP administration. This paper clarifies the role of the 2018 IP administrative system reform on China's market innovation, provides empirical evidence for the properly handling government market relations and property rights incentives and other institutional designs, and also provides empirical references for further promoting the improvement of national and local IP institutional mechanisms and the implementation of the innovation-driven development strategy in the new round of reform.

Keywords: intellectual property, administrative systems, reform, high-quality innovation

Procedia PDF Downloads 38
4628 A New Asset: The Role of Money in the Evolution of 20th Century Street Art

Authors: Eileen Kim

Abstract:

As socioeconomic disparities grew in New York during the 1970s, artists represented new values that came with the times. Street art, in particular, was birthed from a distinctly urban, fringe setting to ultimately become one of the most lucrative forms of art today. Examining the economic and psychological reasons behind the rise of street art, this paper delves into the development of the art market as a parallel insight into human behaviors and economic models such as supply and demand. The purpose of this study is to show the role of the increasingly divided socioeconomic classes and the rise of art collecting as an asset-building form. This study concludes that the iconography and market value of street art represented distinct values that came from a series of intertwined social matters such as racial tensions and revolutions in industrial innovation.

Keywords: art industry, cultural representation, ethnicity, markets, public property, social classes, street art

Procedia PDF Downloads 230
4627 Environmental Accounting Practice: Analyzing the Extent and Qualification of Environmental Disclosures of Turkish Companies Located in BIST-XKURY Index

Authors: Raif Parlakkaya, Mustafa Nihat Demirci, Mehmet Nuri Salur

Abstract:

Environmental pollution has detrimental effects on the quality of our life and its scope has reached such an extent that measures are being taken both at the national and international levels to reduce, prevent and mitigate its impact on social, economic and political spheres. Therefore, awareness of environmental problems has been increasing among stakeholders and accordingly among companies. It is seen that corporate reporting is expanding beyond environmental performance. Primary purpose of publishing an environmental report is to provide specific audiences with useful, meaningful information. This paper is intended to analyze the extent and qualification of environmental disclosures of Turkish publicly quoted firms and see how it varies from one sector to another. The data for the study were collected from annual activity reports of companies, listed on the corporate governance index (BIST-XKURY) of Istanbul Stock Exchange. Content analysis was the research methodology used to measure the extent of environmental disclosure. Accordingly, 2015 annual activity reports of companies that carry out business in some particular fields were acquired from Capital Market Board, websites of Public Disclosure Platform and companies’ own websites. These reports were categorized into five main aspects: Environmental policies, environmental management systems, environmental protection and conservation activities, environmental awareness and information on environmental lawsuits. Subsequently, each component was divided into several variables related to what each firm is supposed to disclose about environmental information. In this context, the nature and scope of the information disclosed on each item were assessed according to five different ways (N.I: No Information; G.E.: General Explanations; Q.E.: Qualitative Detailed Explanations; N.E.: Quantitative (numerical) Detailed Explanations; Q.&N.E.: Both Qualitative and Quantitative Explanations).

Keywords: environmental accounting, disclosure, corporate governance, content analysis

Procedia PDF Downloads 265
4626 A Comparison between Artificial Neural Network Prediction Models for Coronal Hole Related High Speed Streams

Authors: Rehab Abdulmajed, Amr Hamada, Ahmed Elsaid, Hisashi Hayakawa, Ayman Mahrous

Abstract:

Solar emissions have a high impact on the Earth’s magnetic field, and the prediction of solar events is of high interest. Various techniques have been used in the prediction of solar wind using mathematical models, MHD models, and neural network (NN) models. This study investigates the coronal hole (CH) derived high-speed streams (HSSs) and their correlation to the CH area and create a neural network model to predict the HSSs. Two different algorithms were used to compare different models to find a model that best simulates the HSSs. A dataset of CH synoptic maps through Carrington rotations 1601 to 2185 along with Omni-data set solar wind speed averaged over the Carrington rotations is used, which covers Solar cycles (sc) 21, 22, 23, and most of 24.

Keywords: artificial neural network, coronal hole area, feed-forward neural network models, solar high speed streams

Procedia PDF Downloads 88
4625 The European Pharmacy Market: The Density and its Influencing Factors

Authors: Selina Schwaabe

Abstract:

Community pharmacies deliver high-quality health care and are responsible for medication safety. During the pandemic, accessibility to the nearest pharmacy became more essential to get vaccinated against Covid-19 and to get medical aid. The government's goal is to ensure nationwide, reachable, and affordable medical health care services by pharmacies. Therefore, the density of community pharmacies matters. Overall, the density of community pharmacies is fluctuating, with slightly decreasing tendencies in some countries. So far, the literature has shown that changes in the system affect prices and density. However, a European overview of the development of the density of community pharmacies and its triggers is still missing. This research is essential to counteract against decreasing density consulting in a lack of professional health care through pharmacies. The analysis focuses on liberal versus regulated market structures, mail-order prescription drug regulation, and third-party ownership consequences. In a panel analysis, the relative influence of the measures is examined across 27 European countries over the last 21 years. In addition, the paper examines seven selected countries in depth, selected for the substantial variance in their pharmacy system: Germany, Austria, Portugal, Denmark, Sweden, Finland and Poland. Overall, the results show that regulated pharmacy markets have over 10.75 pharmacies/100.000 inhabitants more than liberal markets. Further, mail-order prescription drugs decrease the density by -17.98 pharmacies/100.000 inhabitants. Countries allowing third-party ownership have 7.67 pharmacies/100.000 inhabitants more. The results are statistically significant at a 0.001 level. The output of this analysis recommends regulated pharmacy markets, with a ban on mail-order prescription drugs allowing third-party ownership to support nationwide medical health care through community pharmacies.

Keywords: community pharmacy, market conditions, pharmacy, pharmacy market, pharmacy lobby, prescription, e-prescription, ownership structures

Procedia PDF Downloads 132
4624 Smart Sensor Data to Predict Machine Performance with IoT-Based Machine Learning and Artificial Intelligence

Authors: C. J. Rossouw, T. I. van Niekerk

Abstract:

The global manufacturing industry is utilizing the internet and cloud-based services to further explore the anatomy and optimize manufacturing processes in support of the movement into the Fourth Industrial Revolution (4IR). The 4IR from a third world and African perspective is hindered by the fact that many manufacturing systems that were developed in the third industrial revolution are not inherently equipped to utilize the internet and services of the 4IR, hindering the progression of third world manufacturing industries into the 4IR. This research focuses on the development of a non-invasive and cost-effective cyber-physical IoT system that will exploit a machine’s vibration to expose semantic characteristics in the manufacturing process and utilize these results through a real-time cloud-based machine condition monitoring system with the intention to optimize the system. A microcontroller-based IoT sensor was designed to acquire a machine’s mechanical vibration data, process it in real-time, and transmit it to a cloud-based platform via Wi-Fi and the internet. Time-frequency Fourier analysis was applied to the vibration data to form an image representation of the machine’s behaviour. This data was used to train a Convolutional Neural Network (CNN) to learn semantic characteristics in the machine’s behaviour and relate them to a state of operation. The same data was also used to train a Convolutional Autoencoder (CAE) to detect anomalies in the data. Real-time edge-based artificial intelligence was achieved by deploying the CNN and CAE on the sensor to analyse the vibration. A cloud platform was deployed to visualize the vibration data and the results of the CNN and CAE in real-time. The cyber-physical IoT system was deployed on a semi-automated metal granulation machine with a set of trained machine learning models. Using a single sensor, the system was able to accurately visualize three states of the machine’s operation in real-time. The system was also able to detect a variance in the material being granulated. The research demonstrates how non-IoT manufacturing systems can be equipped with edge-based artificial intelligence to establish a remote machine condition monitoring system.

Keywords: IoT, cyber-physical systems, artificial intelligence, manufacturing, vibration analytics, continuous machine condition monitoring

Procedia PDF Downloads 88
4623 Predicting Seoul Bus Ridership Using Artificial Neural Network Algorithm with Smartcard Data

Authors: Hosuk Shin, Young-Hyun Seo, Eunhak Lee, Seung-Young Kho

Abstract:

Currently, in Seoul, users have the privilege to avoid riding crowded buses with the installation of Bus Information System (BIS). BIS has three levels of on-board bus ridership level information (spacious, normal, and crowded). However, there are flaws in the system due to it being real time which could provide incomplete information to the user. For example, a bus comes to the station, and on the BIS it shows that the bus is crowded, but on the stop that the user is waiting many people get off, which would mean that this station the information should show as normal or spacious. To fix this problem, this study predicts the bus ridership level using smart card data to provide more accurate information about the passenger ridership level on the bus. An Artificial Neural Network (ANN) is an interconnected group of nodes, that was created based on the human brain. Forecasting has been one of the major applications of ANN due to the data-driven self-adaptive methods of the algorithm itself. According to the results, the ANN algorithm was stable and robust with somewhat small error ratio, so the results were rational and reasonable.

Keywords: smartcard data, ANN, bus, ridership

Procedia PDF Downloads 167
4622 Reasons of Change in Security Prices and Price Volatility: An Analysis of the European Carbon Futures Market

Authors: Boulis M. Ibrahim, Iordanis A. Kalaitzoglou

Abstract:

A micro structural pricing model is proposed in which price components account for learning by incorporating changing expectations of the trading intensity and the risk level of incoming trades. An analysis of European carbon futures transactions finds expected trading intensity to increase the information component and decrease the liquidity component of price changes, but at different rates. Among the results, the expected persistence in trading intensity explains the majority of the auto correlations in the level and the conditional volatility of price changes, helps predict hourly patterns in the bid–ask spread and differentiates between the impact of buy versus sell and continuing versus reversing trades.

Keywords: CO2 emission allowances, market microstructure, duration, price discovery

Procedia PDF Downloads 407
4621 The Term Structure of Government Bond Yields in an Emerging Market: Empirical Evidence from Pakistan Bond Market

Authors: Wali Ullah, Muhammad Nishat

Abstract:

The study investigates the extent to which the so called Nelson-Siegel model (DNS) and its extended version that accounts for time varying volatility (DNS-EGARCH) can optimally fit the yield curve and predict its future path in the context of an emerging economy. For the in-sample fit, both models fit the curve remarkably well even in the emerging markets. However, the DNS-EGARCH model fits the curve slightly better than the DNS. Moreover, both specifications of yield curve that are based on the Nelson-Siegel functional form outperform the benchmark VAR forecasts at all forecast horizons. The DNS-EGARCH comes with more precise forecasts than the DNS for the 6- and 12-month ahead forecasts, while the two have almost similar performance in terms of RMSE for the very short forecast horizons.

Keywords: yield curve, forecasting, emerging markets, Kalman filter, EGARCH

Procedia PDF Downloads 539
4620 Implementation of an Image Processing System Using Artificial Intelligence for the Diagnosis of Malaria Disease

Authors: Mohammed Bnebaghdad, Feriel Betouche, Malika Semmani

Abstract:

Image processing become more sophisticated over time due to technological advances, especially artificial intelligence (AI) technology. Currently, AI image processing is used in many areas, including surveillance, industry, science, and medicine. AI in medical image processing can help doctors diagnose diseases faster, with minimal mistakes, and with less effort. Among these diseases is malaria, which remains a major public health challenge in many parts of the world. It affects millions of people every year, particularly in tropical and subtropical regions. Early detection of malaria is essential to prevent serious complications and reduce the burden of the disease. In this paper, we propose and implement a scheme based on AI image processing to enhance malaria disease diagnosis through automated analysis of blood smear images. The scheme is based on the convolutional neural network (CNN) method. So, we have developed a model that classifies infected and uninfected single red cells using images available on Kaggle, as well as real blood smear images obtained from the Central Laboratory of Medical Biology EHS Laadi Flici (formerly El Kettar) in Algeria. The real images were segmented into individual cells using the watershed algorithm in order to match the images from the Kaagle dataset. The model was trained and tested, achieving an accuracy of 99% and 97% accuracy for new real images. This validates that the model performs well with new real images, although with slightly lower accuracy. Additionally, the model has been embedded in a Raspberry Pi4, and a graphical user interface (GUI) was developed to visualize the malaria diagnostic results and facilitate user interaction.

Keywords: medical image processing, malaria parasite, classification, CNN, artificial intelligence

Procedia PDF Downloads 20
4619 Advanced Driver Assistance System: Veibra

Authors: C. Fernanda da S. Sampaio, M. Gabriela Sadith Perez Paredes, V. Antonio de O. Martins

Abstract:

Today the transport sector is undergoing a revolution, with the rise of Advanced Driver Assistance Systems (ADAS), industry and society itself will undergo a major transformation. However, the technological development of these applications is a challenge that requires new techniques and great machine learning and artificial intelligence. The study proposes to develop a vehicular perception system called Veibra, which consists of two front cameras for day/night viewing and an embedded device capable of working with Yolov2 image processing algorithms with low computational cost. The strategic version for the market is to assist the driver on the road with the detection of day/night objects, such as road signs, pedestrians, and animals that will be viewed through the screen of the phone or tablet through an application. The system has the ability to perform real-time driver detection and recognition to identify muscle movements and pupils to determine if the driver is tired or inattentive, analyzing the student's characteristic change and following the subtle movements of the whole face and issuing alerts through beta waves to ensure the concentration and attention of the driver. The system will also be able to perform tracking and monitoring through GSM (Global System for Mobile Communications) technology and the cameras installed in the vehicle.

Keywords: advanced driver assistance systems, tracking, traffic signal detection, vehicle perception system

Procedia PDF Downloads 155
4618 Artificial Intelligence-Based Detection of Individuals Suffering from Vestibular Disorder

Authors: Dua Hişam, Serhat İkizoğlu

Abstract:

Identifying the problem behind balance disorder is one of the most interesting topics in the medical literature. This study has considerably enhanced the development of artificial intelligence (AI) algorithms applying multiple machine learning (ML) models to sensory data on gait collected from humans to classify between normal people and those suffering from Vestibular System (VS) problems. Although AI is widely utilized as a diagnostic tool in medicine, AI models have not been used to perform feature extraction and identify VS disorders through training on raw data. In this study, three machine learning (ML) models, the Random Forest Classifier (RF), Extreme Gradient Boosting (XGB), and K-Nearest Neighbor (KNN), have been trained to detect VS disorder, and the performance comparison of the algorithms has been made using accuracy, recall, precision, and f1-score. With an accuracy of 95.28 %, Random Forest Classifier (RF) was the most accurate model.

Keywords: vestibular disorder, machine learning, random forest classifier, k-nearest neighbor, extreme gradient boosting

Procedia PDF Downloads 69
4617 Prediction of California Bearing Ratio of a Black Cotton Soil Stabilized with Waste Glass and Eggshell Powder using Artificial Neural Network

Authors: Biruhi Tesfaye, Avinash M. Potdar

Abstract:

The laboratory test process to determine the California bearing ratio (CBR) of black cotton soils is not only overpriced but also time-consuming as well. Hence advanced prediction of CBR plays a significant role as it is applicable In pavement design. The prediction of CBR of treated soil was executed by Artificial Neural Networks (ANNs) which is a Computational tool based on the properties of the biological neural system. To observe CBR values, combined eggshell and waste glass was added to soil as 4, 8, 12, and 16 % of the weights of the soil samples. Accordingly, the laboratory related tests were conducted to get the required best model. The maximum CBR value found at 5.8 at 8 % of eggshell waste glass powder addition. The model was developed using CBR as an output layer variable. CBR was considered as a function of the joint effect of liquid limit, plastic limit, and plastic index, optimum moisture content and maximum dry density. The best model that has been found was ANN with 5, 6 and 1 neurons in the input, hidden and output layer correspondingly. The performance of selected ANN has been 0.99996, 4.44E-05, 0.00353 and 0.0067 which are correlation coefficient (R), mean square error (MSE), mean absolute error (MAE) and root mean square error (RMSE) respectively. The research presented or summarized above throws light on future scope on stabilization with waste glass combined with different percentages of eggshell that leads to the economical design of CBR acceptable to pavement sub-base or base, as desired.

Keywords: CBR, artificial neural network, liquid limit, plastic limit, maximum dry density, OMC

Procedia PDF Downloads 191
4616 An Analysis of the Dominance of Migrants in the South African Spaza and Retail market: A Relationship-Based Network Perspective

Authors: Meron Okbandrias

Abstract:

The South African formal economy is rule-based economy, unlike most African and Asian markets. It has a highly developed financial market. In such a market, foreign migrants have dominated the small or spaza shops that service the poor. They are highly competitive and capture significant market share in South Africa. This paper analyses the factors that assisted the foreign migrants in having a competitive age. It does that by interviewing Somali, Bangladesh, and Ethiopian shop owners in Cape Town analysing the data through a narrative analysis. The paper also analyses the 2019 South African consumer report. The three migrant nationalities mentioned above dominate the spaza shop business and have significant distribution networks. The findings of the paper indicate that family, ethnic, and nationality based network, in that order of importance, form bases for a relationship-based business network that has trust as its mainstay. Therefore, this network ensures the pooling of resources and abiding by certain principles outside the South African rule-based system. The research identified practises like bulk buying within a community of traders, sharing information, buying from a within community distribution business, community based transportation system and providing seed capital for people from the community to start a business is all based on that relationship-based system. The consequences of not abiding by the rules of these networks are social and economic exclusion. In addition, these networks have their own commercial and social conflict resolution mechanisms aside from the South African justice system. Network theory and relationship based systems theory form the theoretical foundations of this paper.

Keywords: migrant, spaza shops, relationship-based system, South Africa

Procedia PDF Downloads 127
4615 Artificial Neural Network Approach for Vessel Detection Using Visible Infrared Imaging Radiometer Suite Day/Night Band

Authors: Takashi Yamaguchi, Ichio Asanuma, Jong G. Park, Kenneth J. Mackin, John Mittleman

Abstract:

In this paper, vessel detection using the artificial neural network is proposed in order to automatically construct the vessel detection model from the satellite imagery of day/night band (DNB) in visible infrared in the products of Imaging Radiometer Suite (VIIRS) on Suomi National Polar-orbiting Partnership (Suomi-NPP).The goal of our research is the establishment of vessel detection method using the satellite imagery of DNB in order to monitor the change of vessel activity over the wide region. The temporal vessel monitoring is very important to detect the events and understand the circumstances within the maritime environment. For the vessel locating and detection techniques, Automatic Identification System (AIS) and remote sensing using Synthetic aperture radar (SAR) imagery have been researched. However, each data has some lack of information due to uncertain operation or limitation of continuous observation. Therefore, the fusion of effective data and methods is important to monitor the maritime environment for the future. DNB is one of the effective data to detect the small vessels such as fishery ships that is difficult to observe in AIS. DNB is the satellite sensor data of VIIRS on Suomi-NPP. In contrast to SAR images, DNB images are moderate resolution and gave influence to the cloud but can observe the same regions in each day. DNB sensor can observe the lights produced from various artifact such as vehicles and buildings in the night and can detect the small vessels from the fishing light on the open water. However, the modeling of vessel detection using DNB is very difficult since complex atmosphere and lunar condition should be considered due to the strong influence of lunar reflection from cloud on DNB. Therefore, artificial neural network was applied to learn the vessel detection model. For the feature of vessel detection, Brightness Temperature at the 3.7 μm (BT3.7) was additionally used because BT3.7 can be used for the parameter of atmospheric conditions.

Keywords: artificial neural network, day/night band, remote sensing, Suomi National Polar-orbiting Partnership, vessel detection, Visible Infrared Imaging Radiometer Suite

Procedia PDF Downloads 235
4614 Heritage and Tourism in the Era of Big Data: Analysis of Chinese Cultural Tourism in Catalonia

Authors: Xinge Liao, Francesc Xavier Roige Ventura, Dolores Sanchez Aguilera

Abstract:

With the development of the Internet, the study of tourism behavior has rapidly expanded from the traditional physical market to the online market. Data on the Internet is characterized by dynamic changes, and new data appear all the time. In recent years the generation of a large volume of data was characterized, such as forums, blogs, and other sources, which have expanded over time and space, together they constitute large-scale Internet data, known as Big Data. This data of technological origin that derives from the use of devices and the activity of multiple users is becoming a source of great importance for the study of geography and the behavior of tourists. The study will focus on cultural heritage tourist practices in the context of Big Data. The research will focus on exploring the characteristics and behavior of Chinese tourists in relation to the cultural heritage of Catalonia. Geographical information, target image, perceptions in user-generated content will be studied through data analysis from Weibo -the largest social networks of blogs in China. Through the analysis of the behavior of heritage tourists in the Big Data environment, this study will understand the practices (activities, motivations, perceptions) of cultural tourists and then understand the needs and preferences of tourists in order to better guide the sustainable development of tourism in heritage sites.

Keywords: Barcelona, Big Data, Catalonia, cultural heritage, Chinese tourism market, tourists’ behavior

Procedia PDF Downloads 138