Search results for: analysis and real time information about liquefaction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 46807

Search results for: analysis and real time information about liquefaction

45547 Kernel-Based Double Nearest Proportion Feature Extraction for Hyperspectral Image Classification

Authors: Hung-Sheng Lin, Cheng-Hsuan Li

Abstract:

Over the past few years, kernel-based algorithms have been widely used to extend some linear feature extraction methods such as principal component analysis (PCA), linear discriminate analysis (LDA), and nonparametric weighted feature extraction (NWFE) to their nonlinear versions, kernel principal component analysis (KPCA), generalized discriminate analysis (GDA), and kernel nonparametric weighted feature extraction (KNWFE), respectively. These nonlinear feature extraction methods can detect nonlinear directions with the largest nonlinear variance or the largest class separability based on the given kernel function. Moreover, they have been applied to improve the target detection or the image classification of hyperspectral images. The double nearest proportion feature extraction (DNP) can effectively reduce the overlap effect and have good performance in hyperspectral image classification. The DNP structure is an extension of the k-nearest neighbor technique. For each sample, there are two corresponding nearest proportions of samples, the self-class nearest proportion and the other-class nearest proportion. The term “nearest proportion” used here consider both the local information and other more global information. With these settings, the effect of the overlap between the sample distributions can be reduced. Usually, the maximum likelihood estimator and the related unbiased estimator are not ideal estimators in high dimensional inference problems, particularly in small data-size situation. Hence, an improved estimator by shrinkage estimation (regularization) is proposed. Based on the DNP structure, LDA is included as a special case. In this paper, the kernel method is applied to extend DNP to kernel-based DNP (KDNP). In addition to the advantages of DNP, KDNP surpasses DNP in the experimental results. According to the experiments on the real hyperspectral image data sets, the classification performance of KDNP is better than that of PCA, LDA, NWFE, and their kernel versions, KPCA, GDA, and KNWFE.

Keywords: feature extraction, kernel method, double nearest proportion feature extraction, kernel double nearest feature extraction

Procedia PDF Downloads 344
45546 Design and Implementation of LabVIEW Based Relay Autotuning Controller for Level Setup

Authors: Manoj M. Sarode, Sharad P. Jadhav, Mukesh D. Patil, Pushparaj S. Suryawanshi

Abstract:

Even though the PID controller is widely used in industrial process, tuning of PID parameters are not easy. It is a time consuming and requires expert people. Another drawback of PID controller is that process dynamics might change over time. This can happen due to variation of the process load, normal wear and tear etc. To compensate for process behavior change over time, expert users are required to recalibrate the PID gains. Implementation of model based controllers usually needs a process model. Identification of process model is time consuming job and no guaranty of model accuracy. If the identified model is not accurate, performance of the controller may degrade. Model based controllers are quite expensive and the whole procedure for the implementation is sometimes tedious. To eliminate such issues Autotuning PID controller becomes vital element. Software based Relay Feedback Autotuning Controller proves to be efficient, upgradable and maintenance free controller. In Relay Feedback Autotune controller PID parameters can be achieved with a very short span of time. This paper presents the real time implementation of LabVIEW based Relay Feedback Autotuning PID controller. It is successfully developed and implemented to control level of a laboratory setup. Its performance is analyzed for different setpoints and found satisfactorily.

Keywords: autotuning, PID, liquid level control, recalibrate, labview, controller

Procedia PDF Downloads 394
45545 OILU Tag: A Projective Invariant Fiducial System

Authors: Youssef Chahir, Messaoud Mostefai, Salah Khodja

Abstract:

This paper presents the development of a 2D visual marker, derived from a recent patented work in the field of numbering systems. The proposed fiducial uses a group of projective invariant straight-line patterns, easily detectable and remotely recognizable. Based on an efficient data coding scheme, the developed marker enables producing a large panel of unique real time identifiers with highly distinguishable patterns. The proposed marker Incorporates simultaneously decimal and binary information, making it readable by both humans and machines. This important feature opens up new opportunities for the development of efficient visual human-machine communication and monitoring protocols. Extensive experiment tests validate the robustness of the marker against acquisition and geometric distortions.

Keywords: visual markers, projective invariants, distance map, level sets

Procedia PDF Downloads 163
45544 Social Network Roles in Organizations: Influencers, Bridges, and Soloists

Authors: Sofia Dokuka, Liz Lockhart, Alex Furman

Abstract:

Organizational hierarchy, traditionally composed of individual contributors, middle management, and executives, is enhanced by the understanding of informal social roles. These roles, identified with organizational network analysis (ONA), might have an important effect on organizational functioning. In this paper, we identify three social roles – influencers, bridges, and soloists, and provide empirical analysis based on real-world organizational networks. Influencers are employees with broad networks and whose contacts also have rich networks. Influence is calculated using PageRank, initially proposed for measuring website importance, but now applied in various network settings, including social networks. Influencers, having high PageRank, become key players in shaping opinions and behaviors within an organization. Bridges serve as links between loosely connected groups within the organization. Bridges are identified using betweenness and Burt’s constraint. Betweenness quantifies a node's control over information flows by evaluating its role in the control over the shortest paths within the network. Burt's constraint measures the extent of interconnection among an individual's contacts. A high constraint value suggests fewer structural holes and lesser control over information flows, whereas a low value suggests the contrary. Soloists are individuals with fewer than 5 stable social contacts, potentially facing challenges due to reduced social interaction and hypothetical lack of feedback and communication. We considered social roles in the analysis of real-world organizations (N=1,060). Based on data from digital traces (Slack, corporate email and calendar) we reconstructed an organizational communication network and identified influencers, bridges and soloists. We also collected employee engagement data through an online survey. Among the top-5% of influencers, 10% are members of the Executive Team. 56% of the Executive Team members are part of the top influencers group. The same proportion of top influencers (10%) is individual contributors, accounting for just 0.6% of all individual contributors in the company. The majority of influencers (80%) are at the middle management level. Out of all middle managers, 19% hold the role of influencers. However, individual contributors represent a small proportion of influencers, and having information about these individuals who hold influential roles can be crucial for management in identifying high-potential talents. Among the bridges, 4% are members of the Executive Team, 16% are individual contributors, and 80% are middle management. Predominantly middle management acts as a bridge. Bridge positions of some members of the executive team might indicate potential micromanagement on the leader's part. Recognizing the individuals serving as bridges in an organization uncovers potential communication problems. The majority of soloists are individual contributors (96%), and 4% of soloists are from middle management. These managers might face communication difficulties. We found an association between being an influencer and attitude toward a company's direction. There is a statistically significant 20% higher perception that the company is headed in the right direction among influencers compared to non-influencers (p < 0.05, Mann-Whitney test). Taken together, we demonstrate that considering social roles in the company might indicate both positive and negative aspects of organizational functioning that should be considered in data-driven decision-making.

Keywords: organizational network analysis, social roles, influencer, bridge, soloist

Procedia PDF Downloads 105
45543 Design of Knowledge Management System with Geographic Information System

Authors: Angga Hidayah Ramadhan, Luciana Andrawina, M. Azani Hasibuan

Abstract:

Data will be as a core of the decision if it has a good treatment or process, which is process that data into information, and information into knowledge to make a wisdom or decision. Today, many companies have not realize it include XYZ University Admission Directorate as executor of National Admission called Seleksi Masuk Bersama (SMB) that during the time, the workers only uses their feeling to make a decision. Whereas if it done, then that company can analyze the data to make a right decision to get a pin sales from student candidate or registrant that follow SMB as many as possible. Therefore, needs Knowledge Management System (KMS) with Geographic Information System (GIS) use 5C4C that can process that company data becomes more useful and can help make decisions. This information system can process data into information based on the pin sold data with 5C (Contextualized, Categorize, Calculation, Correction, Condensed) and convert information into knowledge with 4C (Comparing, Consequence, Connection, Conversation) that has been several steps until these data can be useful to make easier to take a decision or wisdom, resolve problems, communicate, and quicker to learn to the employees have not experience and also for ease of viewing/visualization based on spatial data that equipped with GIS functionality that can be used to indicate events in each province with indicator that facilitate in this system. The system also have a function to save the tacit on the system then to be proceed into explicit in expert system based on the problems that will be found from the consequences of information. With the system each team can make a decision with same ways, structured, and the important is based on the actual event/data.

Keywords: 5C4C, data, information, knowledge

Procedia PDF Downloads 462
45542 Classification of Emotions in Emergency Call Center Conversations

Authors: Magdalena Igras, Joanna Grzybowska, Mariusz Ziółko

Abstract:

The study of emotions expressed in emergency phone call is presented, covering both statistical analysis of emotions configurations and an attempt to automatically classify emotions. An emergency call is a situation usually accompanied by intense, authentic emotions. They influence (and may inhibit) the communication between caller and responder. In order to support responders in their responsible and psychically exhaustive work, we studied when and in which combinations emotions appeared in calls. A corpus of 45 hours of conversations (about 3300 calls) from emergency call center was collected. Each recording was manually tagged with labels of emotions valence (positive, negative or neutral), type (sadness, tiredness, anxiety, surprise, stress, anger, fury, calm, relief, compassion, satisfaction, amusement, joy) and arousal (weak, typical, varying, high) on the basis of perceptual judgment of two annotators. As we concluded, basic emotions tend to appear in specific configurations depending on the overall situational context and attitude of speaker. After performing statistical analysis we distinguished four main types of emotional behavior of callers: worry/helplessness (sadness, tiredness, compassion), alarm (anxiety, intense stress), mistake or neutral request for information (calm, surprise, sometimes with amusement) and pretension/insisting (anger, fury). The frequency of profiles was respectively: 51%, 21%, 18% and 8% of recordings. A model of presenting the complex emotional profiles on the two-dimensional (tension-insecurity) plane was introduced. In the stage of acoustic analysis, a set of prosodic parameters, as well as Mel-Frequency Cepstral Coefficients (MFCC) were used. Using these parameters, complex emotional states were modeled with machine learning techniques including Gaussian mixture models, decision trees and discriminant analysis. Results of classification with several methods will be presented and compared with the state of the art results obtained for classification of basic emotions. Future work will include optimization of the algorithm to perform in real time in order to track changes of emotions during a conversation.

Keywords: acoustic analysis, complex emotions, emotion recognition, machine learning

Procedia PDF Downloads 398
45541 Development and Evaluation of a Cognitive Behavioural Therapy Based Smartphone App for Low Moods and Anxiety

Authors: David Bakker, Nikki Rickard

Abstract:

Smartphone apps hold immense potential as mental health and wellbeing tools. Support can be made easily accessible and can be used in real-time while users are experiencing distress. Furthermore, data can be collected to enable machine learning and automated tailoring of support to users. While many apps have been developed for mental health purposes, few have adhered to evidence-based recommendations and even fewer have pursued experimental validation. This paper details the development and experimental evaluation of an app, MoodMission, that aims to provide support for low moods and anxiety, help prevent clinical depression and anxiety disorders, and serve as an adjunct to professional clinical supports. MoodMission was designed to deliver cognitive behavioural therapy for specifically reported problems in real-time, momentary interactions. Users report their low moods or anxious feelings to the app along with a subjective units of distress scale (SUDS) rating. MoodMission then provides a choice of 5-10 short, evidence-based mental health strategies called Missions. Users choose a Mission, complete it, and report their distress again. Automated tailoring, gamification, and in-built data collection for analysis of effectiveness was also included in the app’s design. The development process involved construction of an evidence-based behavioural plan, designing of the app, building and testing procedures, feedback-informed changes, and a public launch. A randomized controlled trial (RCT) was conducted comparing MoodMission to two other apps and a waitlist control condition. Participants completed measures of anxiety, depression, well-being, emotional self-awareness, coping self-efficacy and mental health literacy at the start of their app use and 30 days later. At the time of submission (November 2016) over 300 participants have participated in the RCT. Data analysis will begin in January 2017. At the time of this submission, MoodMission has over 4000 users. A repeated-measures ANOVA of 1390 completed Missions reveals that SUDS (0-10) ratings were significantly reduced between pre-Mission ratings (M=6.20, SD=2.39) and post-Mission ratings (M=4.93, SD=2.25), F(1,1389)=585.86, p < .001, np2=.30. This effect was consistent across both low moods and anxiety. Preliminary analyses of the data from the outcome measures surveys reveal improvements across mental health and wellbeing measures as a result of using the app over 30 days. This includes a significant increase in coping self-efficacy, F(1,22)=5.91, p=.024, np2=.21. Complete results from the RCT in which MoodMission was evaluated will be presented. Results will also be presented from the continuous outcome data being recorded by MoodMission. MoodMission was successfully developed and launched, and preliminary analysis suggest that it is an effective mental health and wellbeing tool. In addition to the clinical applications of MoodMission, the app holds promise as a research tool to conduct component analysis of psychological therapies and overcome restraints of laboratory based studies. The support provided by the app is discrete, tailored, evidence-based, and transcends barriers of stigma, geographic isolation, financial limitations, and low health literacy.

Keywords: anxiety, app, CBT, cognitive behavioural therapy, depression, eHealth, mission, mobile, mood, MoodMission

Procedia PDF Downloads 271
45540 The Impact of Corporate Governance Mechanisms on Earnings Management Practices: Evidence from Jordan

Authors: Lara Al-Haddad, Mark Whittington

Abstract:

This paper aims to examine the impact of two influential internal corporate governance mechanisms, namely board characteristics and ownership structure on the use of real activities-based and accrual-based earnings management by Jordanian public firms. Using panel data from Jordanian public firms after the introduction of the Jordanian Corporate Governance Code (JCGC) in 2009, the study finds both institutional ownership and managerial ownership constrain the use of real and accrual earnings manipulations. On the other side, both independent directors and largest shareholders are found to exaggerate the incidence of using real and accrual earnings management. The study also examines the trade-off between real and accrual earnings management and found that Jordanian firms use a combination of real and accrual-based earnings management to obtain the greatest effect on earnings reporting strategies. For the purpose of this study, three types of real earnings management are considered: sales manipulation, overproduction, and the abnormal reduction of discretionary expenditures. The abnormal discretionary accrual is considered for accruals management. While for the internal corporate governance mechanisms; board characteristics are examined by using board independence, board size, and CEO-duality; and ownership structure is examined by using managerial ownership, institutional ownership, foreign ownership and largest shareholder ownership. To the best knowledge of the researchers, this study is the first to examine the relationship between board characteristics and real earnings management in Jordan. Further, it is the first to examine the relationship between corporate governance mechanisms and discretionary accruals after the introduction of the Jordanian Corporate Governance Code in 2009. Thus, the findings of this study have important policy implications for policymakers, regulators, standard setters, audit professional, and investors in their attempts to constrain the practice of earnings management, whether real or accrual, and to improve the financial reporting quality in Jordan.

Keywords: board characteristics, Jordan, ownership structure, real earnings management

Procedia PDF Downloads 346
45539 An Analysis of the Movie “Sunset Boulevard” through the Transactional Analysis Paradigm

Authors: Borislava Dimitrova, Didem Kepir Savoly

Abstract:

The movie analysis offers a dynamic and multifaceted lens in order to explore and understand various aspects of human behavior and relationship, emotion, and cognition. Cinema therapy can be an important tool for counselor education and counselors in therapy. Therefore, this paper aims to delve deeper into human relationships and individual behavior patterns and analyze some of their most vivid aspects in light of the transactional analysis and its main components. While describing certain human behaviors and emotional states in real life, sometimes it can be difficult even for mental health practitioners to become aware of the subtle social cues and hints that are being transmitted, often in a rushed and swift manner. To address this challenge, the current paper focuses on the relationship dynamics as conveyed through the plot of the movie “Sunset Boulevard”, and examines slightly exaggerated yet true-to-life examples. The movie was directed by Billy Wilder and written by Charles Brackett, Billy Wilder, and D.M. Marshman Jr. The scenes of interest were examined through Transactional Analysis concepts: the different ego states, strokes, the various kinds of transactions, the paradigm of games in transactional analysis, and lastly, with the help of the drama triangle. The addressed themes comprised mainly the way the main characters engaged in game playing, which eventually had a negative outcome on the sequences of interactions between the individuals and the desired payoffs that they craved as a result. Furthermore, counselor educators can use the result of this paper for educational purposes, such as for teaching theoretical knowledge about Transactional Analysis, and for utilizing characters’ interactions and behaviors as real-life situations that can serve as case studies and role-playing activities. Finally, the paper aims to foster the use of movies as materials for psychological analysis which can assist the teaching of new mental health professionals in the field.

Keywords: transactional analysis, movie analysis, drama triangle, games, ego-state

Procedia PDF Downloads 102
45538 IoT Continuous Monitoring Biochemical Oxygen Demand Wastewater Effluent Quality: Machine Learning Algorithms

Authors: Sergio Celaschi, Henrique Canavarro de Alencar, Claaudecir Biazoli

Abstract:

Effluent quality is of the highest priority for compliance with the permit limits of environmental protection agencies and ensures the protection of their local water system. Of the pollutants monitored, the biochemical oxygen demand (BOD) posed one of the greatest challenges. This work presents a solution for wastewater treatment plants - WWTP’s ability to react to different situations and meet treatment goals. Delayed BOD5 results from the lab take 7 to 8 analysis days, hindered the WWTP’s ability to react to different situations and meet treatment goals. Reducing BOD turnaround time from days to hours is our quest. Such a solution is based on a system of two BOD bioreactors associated with Digital Twin (DT) and Machine Learning (ML) methodologies via an Internet of Things (IoT) platform to monitor and control a WWTP to support decision making. DT is a virtual and dynamic replica of a production process. DT requires the ability to collect and store real-time sensor data related to the operating environment. Furthermore, it integrates and organizes the data on a digital platform and applies analytical models allowing a deeper understanding of the real process to catch sooner anomalies. In our system of continuous time monitoring of the BOD suppressed by the effluent treatment process, the DT algorithm for analyzing the data uses ML on a chemical kinetic parameterized model. The continuous BOD monitoring system, capable of providing results in a fraction of the time required by BOD5 analysis, is composed of two thermally isolated batch bioreactors. Each bioreactor contains input/output access to wastewater sample (influent and effluent), hydraulic conduction tubes, pumps, and valves for batch sample and dilution water, air supply for dissolved oxygen (DO) saturation, cooler/heater for sample thermal stability, optical ODO sensor based on fluorescence quenching, pH, ORP, temperature, and atmospheric pressure sensors, local PLC/CPU for TCP/IP data transmission interface. The dynamic BOD system monitoring range covers 2 mg/L < BOD < 2,000 mg/L. In addition to the BOD monitoring system, there are many other operational WWTP sensors. The CPU data is transmitted/received to/from the digital platform, which in turn performs analyses at periodic intervals, aiming to feed the learning process. BOD bulletins and their credibility intervals are made available in 12-hour intervals to web users. The chemical kinetics ML algorithm is composed of a coupled system of four first-order ordinary differential equations for the molar masses of DO, organic material present in the sample, biomass, and products (CO₂ and H₂O) of the reaction. This system is solved numerically linked to its initial conditions: DO (saturated) and initial products of the kinetic oxidation process; CO₂ = H₂0 = 0. The initial values for organic matter and biomass are estimated by the method of minimization of the mean square deviations. A real case of continuous monitoring of BOD wastewater effluent quality is being conducted by deploying an IoT application on a large wastewater purification system located in S. Paulo, Brazil.

Keywords: effluent treatment, biochemical oxygen demand, continuous monitoring, IoT, machine learning

Procedia PDF Downloads 73
45537 Prediction of the Heat Transfer Characteristics of Tunnel Concrete

Authors: Seung Cho Yang, Jae Sung Lee, Se Hee Park

Abstract:

This study suggests the analysis method to predict the damages of tunnel concrete caused by fires. The result obtained from the analyses of concrete temperatures at a fire in a tunnel using ABAQUS was compared with the test result. After the reliability of the analysis method was verified, the temperatures of a tunnel at a real fire and those of concrete during the fire were estimated to predict fire damages. The temperatures inside the tunnel were estimated by FDS, a CFD model. It was deduced that the fire performance of tunnel lining and the fire damages of the structure at an actual fire could be estimated by the analysis method.

Keywords: fire resistance, heat transfer, numerical analysis, tunnel fire

Procedia PDF Downloads 437
45536 Single-Molecule Analysis of Structure and Dynamics in Polymer Materials by Super-Resolution Technique

Authors: Hiroyuki Aoki

Abstract:

The physical properties of polymer materials are dependent on the conformation and molecular motion of a polymer chain. Therefore, the structure and dynamic behavior of the single polymer chain have been the most important concerns in the field of polymer physics. However, it has been impossible to directly observe the conformation of the single polymer chain in a bulk medium. In the current work, the novel techniques to study the conformation and dynamics of a single polymer chain are proposed. Since a fluorescence method is extremely sensitive, the fluorescence microscopy enables the direct detection of a single molecule. However, the structure of the polymer chain as large as 100 nm cannot be resolved by conventional fluorescence methods because of the diffraction limit of light. In order to observe the single chains, we developed the labeling method of polymer materials with a photo-switchable dye and the super-resolution microscopy. The real-space conformational analysis of single polymer chains with the spatial resolution of 15-20 nm was achieved. The super-resolution microscopy enables us to obtain the three-dimensional coordinates; therefore, we succeeded the conformational analysis in three dimensions. The direct observation by the nanometric optical microscopy would reveal the detailed information on the molecular processes in the various polymer systems.

Keywords: polymer materials, single molecule, super-resolution techniques, conformation

Procedia PDF Downloads 306
45535 Improving the Penalty-free Multi-objective Evolutionary Design Optimization of Water Distribution Systems

Authors: Emily Kambalame

Abstract:

Water distribution networks necessitate many investments for construction, prompting researchers to seek cost reduction and efficient design solutions. Optimization techniques are employed in this regard to address these challenges. In this context, the penalty-free multi-objective evolutionary algorithm (PFMOEA) coupled with pressure-dependent analysis (PDA) was utilized to develop a multi-objective evolutionary search for the optimization of water distribution systems (WDSs). The aim of this research was to find out if the computational efficiency of the PFMOEA for WDS optimization could be enhanced. This was done by applying real coding representation and retaining different percentages of feasible and infeasible solutions close to the Pareto front in the elitism step of the optimization. Two benchmark network problems, namely the Two-looped and Hanoi networks, were utilized in the study. A comparative analysis was then conducted to assess the performance of the real-coded PFMOEA in relation to other approaches described in the literature. The algorithm demonstrated competitive performance for the two benchmark networks by implementing real coding. The real-coded PFMOEA achieved the novel best-known solutions ($419,000 and $6.081 million) and a zero-pressure deficit for the two networks, requiring fewer function evaluations than the binary-coded PFMOEA. In previous PFMOEA studies, elitism applied a default retention of 30% of the least cost-feasible solutions while excluding all infeasible solutions. It was found in this study that by replacing 10% and 15% of the feasible solutions with infeasible ones that are close to the Pareto front with minimal pressure deficit violations, the computational efficiency of the PFMOEA was significantly enhanced. The configuration of 15% feasible and 15% infeasible solutions outperformed other retention allocations by identifying the optimal solution with the fewest function evaluation

Keywords: design optimization, multi-objective evolutionary, penalty-free, water distribution systems

Procedia PDF Downloads 62
45534 Improved Feature Extraction Technique for Handling Occlusion in Automatic Facial Expression Recognition

Authors: Khadijat T. Bamigbade, Olufade F. W. Onifade

Abstract:

The field of automatic facial expression analysis has been an active research area in the last two decades. Its vast applicability in various domains has drawn so much attention into developing techniques and dataset that mirror real life scenarios. Many techniques such as Local Binary Patterns and its variants (CLBP, LBP-TOP) and lately, deep learning techniques, have been used for facial expression recognition. However, the problem of occlusion has not been sufficiently handled, making their results not applicable in real life situations. This paper develops a simple, yet highly efficient method tagged Local Binary Pattern-Histogram of Gradient (LBP-HOG) with occlusion detection in face image, using a multi-class SVM for Action Unit and in turn expression recognition. Our method was evaluated on three publicly available datasets which are JAFFE, CK, SFEW. Experimental results showed that our approach performed considerably well when compared with state-of-the-art algorithms and gave insight to occlusion detection as a key step to handling expression in wild.

Keywords: automatic facial expression analysis, local binary pattern, LBP-HOG, occlusion detection

Procedia PDF Downloads 170
45533 Technology in the Calculation of People Health Level: Design of a Computational Tool

Authors: Sara Herrero Jaén, José María Santamaría García, María Lourdes Jiménez Rodríguez, Jorge Luis Gómez González, Adriana Cercas Duque, Alexandra González Aguna

Abstract:

Background: Health concept has evolved throughout history. The health level is determined by the own individual perception. It is a dynamic process over time so that you can see variations from one moment to the next. In this way, knowing the health of the patients you care for, will facilitate decision making in the treatment of care. Objective: To design a technological tool that calculates the people health level in a sequential way over time. Material and Methods: Deductive methodology through text analysis, extraction and logical knowledge formalization and education with expert group. Studying time: September 2015- actually. Results: A computational tool for the use of health personnel has been designed. It has 11 variables. Each variable can be given a value from 1 to 5, with 1 being the minimum value and 5 being the maximum value. By adding the result of the 11 variables we obtain a magnitude in a certain time, the health level of the person. The health calculator allows to represent people health level at a time, establishing temporal cuts being useful to determine the evolution of the individual over time. Conclusion: The Information and Communication Technologies (ICT) allow training and help in various disciplinary areas. It is important to highlight their relevance in the field of health. Based on the health formalization, care acts can be directed towards some of the propositional elements of the concept above. The care acts will modify the people health level. The health calculator allows the prioritization and prediction of different strategies of health care in hospital units.

Keywords: calculator, care, eHealth, health

Procedia PDF Downloads 264
45532 Solvent Extraction, Spectrophotometric Determination of Antimony(III) from Real Samples and Synthetic Mixtures Using O-Methylphenyl Thiourea as a Sensitive Reagent

Authors: Shashikant R. Kuchekar, Shivaji D. Pulate, Vishwas B. Gaikwad

Abstract:

A simple and selective method is developed for solvent extraction spectrophotometric determination of antimony(III) using O-Methylphenyl Thiourea (OMPT) as a sensitive chromogenic chelating agent. The basis of proposed method is formation of antimony(III)-OMPT complex was extracted with 0.0025 M OMPT in chloroform from aqueous solution of antimony(III) in 1.0 M perchloric acid. The absorbance of this complex was measured at 297 nm against reagent blank. Beer’s law was obeyed up to 15µg mL-1 of antimony(III). The Molar absorptivity and Sandell’s sensitivity of the antimony(III)-OMPT complex in chloroform are 16.6730 × 103 L mol-1 cm-1 and 0.00730282 µg cm-2 respectively. The stoichiometry of antimony(III)-OMPT complex was established from slope ratio method, mole ratio method and Job’s continuous variation method was 1:2. The complex was stable for more than 48 h. The interfering effect of various foreign ions was studied and suitable masking agents are used wherever necessary to enhance selectivity of the method. The proposed method is successfully applied for determination of antimony(III) from real samples alloy and synthetic mixtures. Repetition of the method was checked by finding relative standard deviation (RSD) for 10 determinations which was 0.42%.

Keywords: solvent extraction, antimony, spectrophotometry, real sample analysis

Procedia PDF Downloads 332
45531 A Neural Network Classifier for Identifying Duplicate Image Entries in Real-Estate Databases

Authors: Sergey Ermolin, Olga Ermolin

Abstract:

A Deep Convolution Neural Network with Triplet Loss is used to identify duplicate images in real-estate advertisements in the presence of image artifacts such as watermarking, cropping, hue/brightness adjustment, and others. The effects of batch normalization, spatial dropout, and various convergence methodologies on the resulting detection accuracy are discussed. For comparative Return-on-Investment study (per industry request), end-2-end performance is benchmarked on both Nvidia Titan GPUs and Intel’s Xeon CPUs. A new real-estate dataset from San Francisco Bay Area is used for this work. Sufficient duplicate detection accuracy is achieved to supplement other database-grounded methods of duplicate removal. The implemented method is used in a Proof-of-Concept project in the real-estate industry.

Keywords: visual recognition, convolutional neural networks, triplet loss, spatial batch normalization with dropout, duplicate removal, advertisement technologies, performance benchmarking

Procedia PDF Downloads 338
45530 Foundation of the Information Model for Connected-Cars

Authors: Hae-Won Seo, Yong-Gu Lee

Abstract:

Recent progress in the next generation of automobile technology is geared towards incorporating information technology into cars. Collectively called smart cars are bringing intelligence to cars that provides comfort, convenience and safety. A branch of smart cars is connected-car system. The key concept in connected-cars is the sharing of driving information among cars through decentralized manner enabling collective intelligence. This paper proposes a foundation of the information model that is necessary to define the driving information for smart-cars. Road conditions are modeled through a unique data structure that unambiguously represent the time variant traffics in the streets. Additionally, the modeled data structure is exemplified in a navigational scenario and usage using UML. Optimal driving route searching is also discussed using the proposed data structure in a dynamically changing road conditions.

Keywords: connected-car, data modeling, route planning, navigation system

Procedia PDF Downloads 374
45529 Exploring the Techniques of Achieving Structural Electrical Continuity for Gas Plant Facilities

Authors: Abdulmohsen Alghadeer, Fahad Al Mahashir, Loai Al Owa, Najim Alshahrani

Abstract:

Electrical continuity of steel structure members is an essential condition to ensure equipotential and ultimately to protect personnel and assets in industrial facilities. The steel structure is electrically connected to provide a low resistance path to earth through equipotential bonding to prevent sparks and fires in the event of fault currents and avoid malfunction of the plant with detrimental consequences to the local and global environment. The oil and gas industry is commonly establishing steel structure electrical continuity by bare surface connection of coated steel members. This paper presents information pertaining to a real case of exploring and applying different techniques to achieve the electrical continuity in erecting steel structures at a gas plant facility. A project was supplied with fully coated steel members even at the surface connection members that cause electrical discontinuity. This was observed while a considerable number of steel members had already been received at the job site and erected. This made the resolution of the case to use different techniques such as bolt tightening and torqueing, chemical paint stripping and single point jumpers. These techniques are studied with comparative analysis related to their applicability, workability, time and cost advantages and disadvantages.

Keywords: coated Steel, electrical continuity, equipotential bonding, galvanized steel, gas plant facility, lightning protection, steel structure

Procedia PDF Downloads 128
45528 Study on the Presence of Protozoal Coinfections among Patients with Pneumocystis jirovecii Pneumonia in Bulgaria

Authors: Nina Tsvetkova, Rumen Harizanov, Aleksandra Ivanova, Iskra Rainova, Nina Yancheva-Petrova, Dimitar Strashimirov, Raina Enikova, Mihaela Videnova, Eleonora Kaneva, Iskren Kaftandjiev, Viktoria Levterova, Ivan Simeonovski, Nikolay Yanev, Georgi Hinkov

Abstract:

The Pneumocystis jirovecii (P. jirovecii) and protozoan of the genera Acanthamoeba, Cryptosporidium, and Toxoplasma gondii are opportunistic pathogens that can cause life-threatening infections in immunocompromised patients. Aim of the study was to evaluate the coinfection rate with opportunistic protozoal agents among Bulgarian patients diagnosed with P. jirovecii pneumonia. Thirty-eight pulmonary samples were collected from 38 patients (28 HIV-infected) with P. jirovecii infection. P. jirovecii DNA was detected by real-time PCR targeting the large mitochondrial subunit ribosomal RNA gene. Acanthamoeba was determined by genus-specific conventional PCR assay. Real-time PCR for the detection of a Toxoplasma gondii and Cryptosporidium DNA fragment was used. Pneumocystis DNA was detected in all 38 specimens; 28 (73.7%) were from HIV-infected patients. Three (10,7%) of them were co-infected with T. gondii and 1 (3.6%) with Cryptosporidium. In the group of non-HIV-infected (n=10), Cryptosporidium DNA was detected in an infant (10%). Acanthamoeba DNA was not found in the tested samples. The current study showed a relatively low rate of coinfections of Cryptosporidium spp./T. gondii and P. jirovecii in the Bulgarian patients studied.

Keywords: coinfection, opportunistic protozoal agents, Pneumocystis jirovecii, pulmonary infections

Procedia PDF Downloads 155
45527 Real-Time Finger Tracking: Evaluating YOLOv8 and MediaPipe for Enhanced HCI

Authors: Zahra Alipour, Amirreza Moheb Afzali

Abstract:

In the field of human-computer interaction (HCI), hand gestures play a crucial role in facilitating communication by expressing emotions and intentions. The precise tracking of the index finger and the estimation of joint positions are essential for developing effective gesture recognition systems. However, various challenges, such as anatomical variations, occlusions, and environmental influences, hinder optimal functionality. This study investigates the performance of the YOLOv8m model for hand detection using the EgoHands dataset, which comprises diverse hand gesture images captured in various environments. Over three training processes, the model demonstrated significant improvements in precision (from 88.8% to 96.1%) and recall (from 83.5% to 93.5%), achieving a mean average precision (mAP) of 97.3% at an IoU threshold of 0.7. We also compared YOLOv8m with MediaPipe and an integrated YOLOv8 + MediaPipe approach. The combined method outperformed the individual models, achieving an accuracy of 99% and a recall of 99%. These findings underscore the benefits of model integration in enhancing gesture recognition accuracy and localization for real-time applications. The results suggest promising avenues for future research in HCI, particularly in augmented reality and assistive technologies, where improved gesture recognition can significantly enhance user experience.

Keywords: YOLOv8, mediapipe, finger tracking, joint estimation, human-computer interaction (HCI)

Procedia PDF Downloads 7
45526 Analysis of Delays during Initial Phase of Construction Projects and Mitigation Measures

Authors: Sunaitan Al Mutairi

Abstract:

A perfect start is a key factor for project completion on time. The study examined the effects of delayed mobilization of resources during the initial phases of the project. This paper mainly highlights the identification and categorization of all delays during the initial construction phase and their root cause analysis with corrective/control measures for the Kuwait Oil Company oil and gas projects. A relatively good percentage of the delays identified during the project execution (Contract award to end of defects liability period) attributed to mobilization/preliminary activity delays. Data analysis demonstrated significant increase in average project delay during the last five years compared to the previous period. Contractors had delays/issues during the initial phase, which resulted in slippages and progressively increased, resulting in time and cost overrun. Delays/issues not mitigated on time during the initial phase had very high impact on project completion. Data analysis of the delays for the past five years was carried out using trend chart, scatter plot, process map, box plot, relative importance index and Pareto chart. Construction of any project inside the Gathering Centers involves complex management skills related to work force, materials, plant, machineries, new technologies etc. Delay affects completion of projects and compromises quality, schedule and budget of project deliverables. Works executed as per plan during the initial phase and start-up duration of the project construction activities resulted in minor slippages/delays in project completion. In addition, there was a good working environment between client and contractor resulting in better project execution and management. Mainly, the contractor was on the front foot in the execution of projects, which had minimum/no delays during the initial and construction period. Hence, having a perfect start during the initial construction phase shall have a positive influence on the project success. Our research paper studies each type of delay with some real example supported by statistic results and suggests mitigation measures. Detailed analysis carried out with all stakeholders based on impact and occurrence of delays to have a practical and effective outcome to mitigate the delays. The key to improvement is to have proper control measures and periodic evaluation/audit to ensure implementation of the mitigation measures. The focus of this research is to reduce the delays encountered during the initial construction phase of the project life cycle.

Keywords: construction activities delays, delay analysis for construction projects, mobilization delays, oil & gas projects delays

Procedia PDF Downloads 318
45525 The Lubrication Regimes Recognition of a Pressure-Fed Journal Bearing by Time and Frequency Domain Analysis of Acoustic Emission Signals

Authors: S. Hosseini, M. Ahmadi Najafabadi, M. Akhlaghi

Abstract:

The health of the journal bearings is very important in preventing unforeseen breakdowns in rotary machines, and poor lubrication is one of the most important factors for producing the bearing failures. Hydrodynamic lubrication (HL), mixed lubrication (ML), and boundary lubrication (BL) are three regimes of a journal bearing lubrication. This paper uses acoustic emission (AE) measurement technique to correlate features of the AE signals to the three lubrication regimes. The transitions from HL to ML based on operating factors such as rotating speed, load, inlet oil pressure by time domain and time-frequency domain signal analysis techniques are detected, and then metal-to-metal contacts between sliding surfaces of the journal and bearing are identified. It is found that there is a significant difference between theoretical and experimental operating values that are obtained for defining the lubrication regions.

Keywords: acoustic emission technique, pressure fed journal bearing, time and frequency signal analysis, metal-to-metal contact

Procedia PDF Downloads 155
45524 Information Literacy among Faculty and Students of Medical Colleges of Haryana, Punjab and Chandigarh

Authors: Sanjeev Sharma, Suman Lata

Abstract:

With the availability of diverse printed, electronic literature and web sites on medical and health related information, it is impossible for the medical professional to get the information he seeks in the shortest possible time. For all these problems information literacy is the only solution. Thus, information literacy is recognized as an important aspect of medical education. In the present study, an attempt has been made to know the information literacy skills of the faculty and students at medical colleges of Haryana, Punjab and Chandigarh. The scope of the study was confined to the 12 selected medical colleges of three States (Haryana, Punjab, and Chandigarh). The findings of the study were based on the data collected through 1018 questionnaires filled by the respondents of the medical colleges. It was found that Online Medical Websites (such as WebMD, eMedicine and Mayo Clinic etc.) were frequently used by 63.43% of the respondents of Chandigarh which is slightly more than Haryana (61%) and Punjab (55.65%). As well, 30.86% of the respondents of Chandigarh, 27.41% of Haryana and 27.05% of Punjab were familiar with the controlled vocabulary tool; 25.14% respondents of Chandigarh, 23.80% of Punjab, 23.17% of Haryana were familiar with the Boolean operators; 33.05% of the respondents of Punjab, 28.19% of Haryana and 25.14% of Chandigarh were familiar with the use and importance of the keywords while searching an electronic database; and 51.43% of the respondents of Chandigarh, 44.52% of Punjab and 36.29% of Haryana were able to make effective use of the retrieved information. For accessing information in electronic format, 47.74% of the respondents rated their skills high, while the majority of respondents (76.13%) were unfamiliar with the basic search technique i.e. Boolean operator used for searching information in an online database. On the basis of the findings, it was suggested that a comprehensive training program based on medical professionals information needs should be organized frequently. Furthermore, it was also suggested that information literacy may be included as a subject in the health science curriculum so as to make the medical professionals information literate and independent lifelong learners.

Keywords: information, information literacy, medical professionals, medical colleges

Procedia PDF Downloads 157
45523 Forecasting Model to Predict Dengue Incidence in Malaysia

Authors: W. H. Wan Zakiyatussariroh, A. A. Nasuhar, W. Y. Wan Fairos, Z. A. Nazatul Shahreen

Abstract:

Forecasting dengue incidence in a population can provide useful information to facilitate the planning of the public health intervention. Many studies on dengue cases in Malaysia were conducted but are limited in modeling the outbreak and forecasting incidence. This article attempts to propose the most appropriate time series model to explain the behavior of dengue incidence in Malaysia for the purpose of forecasting future dengue outbreaks. Several seasonal auto-regressive integrated moving average (SARIMA) models were developed to model Malaysia’s number of dengue incidence on weekly data collected from January 2001 to December 2011. SARIMA (2,1,1)(1,1,1)52 model was found to be the most suitable model for Malaysia’s dengue incidence with the least value of Akaike information criteria (AIC) and Bayesian information criteria (BIC) for in-sample fitting. The models further evaluate out-sample forecast accuracy using four different accuracy measures. The results indicate that SARIMA (2,1,1)(1,1,1)52 performed well for both in-sample fitting and out-sample evaluation.

Keywords: time series modeling, Box-Jenkins, SARIMA, forecasting

Procedia PDF Downloads 486
45522 Stochastic Optimization of a Vendor-Managed Inventory Problem in a Two-Echelon Supply Chain

Authors: Bita Payami-Shabestari, Dariush Eslami

Abstract:

The purpose of this paper is to develop a multi-product economic production quantity model under vendor management inventory policy and restrictions including limited warehouse space, budget, and number of orders, average shortage time and maximum permissible shortage. Since the “costs” cannot be predicted with certainty, it is assumed that data behave under uncertain environment. The problem is first formulated into the framework of a bi-objective of multi-product economic production quantity model. Then, the problem is solved with three multi-objective decision-making (MODM) methods. Then following this, three methods had been compared on information on the optimal value of the two objective functions and the central processing unit (CPU) time with the statistical analysis method and the multi-attribute decision-making (MADM). The results are compared with statistical analysis method and the MADM. The results of the study demonstrate that augmented-constraint in terms of optimal value of the two objective functions and the CPU time perform better than global criteria, and goal programming. Sensitivity analysis is done to illustrate the effect of parameter variations on the optimal solution. The contribution of this research is the use of random costs data in developing a multi-product economic production quantity model under vendor management inventory policy with several constraints.

Keywords: economic production quantity, random cost, supply chain management, vendor-managed inventory

Procedia PDF Downloads 129
45521 Multi-Sensor Image Fusion for Visible and Infrared Thermal Images

Authors: Amit Kumar Happy

Abstract:

This paper is motivated by the importance of multi-sensor image fusion with a specific focus on infrared (IR) and visual image (VI) fusion for various applications, including military reconnaissance. Image fusion can be defined as the process of combining two or more source images into a single composite image with extended information content that improves visual perception or feature extraction. These images can be from different modalities like visible camera & IR thermal imager. While visible images are captured by reflected radiations in the visible spectrum, the thermal images are formed from thermal radiation (infrared) that may be reflected or self-emitted. A digital color camera captures the visible source image, and a thermal infrared camera acquires the thermal source image. In this paper, some image fusion algorithms based upon multi-scale transform (MST) and region-based selection rule with consistency verification have been proposed and presented. This research includes the implementation of the proposed image fusion algorithm in MATLAB along with a comparative analysis to decide the optimum number of levels for MST and the coefficient fusion rule. The results are presented, and several commonly used evaluation metrics are used to assess the suggested method's validity. Experiments show that the proposed approach is capable of producing good fusion results. While deploying our image fusion algorithm approaches, we observe several challenges from the popular image fusion methods. While high computational cost and complex processing steps of image fusion algorithms provide accurate fused results, they also make it hard to become deployed in systems and applications that require a real-time operation, high flexibility, and low computation ability. So, the methods presented in this paper offer good results with minimum time complexity.

Keywords: image fusion, IR thermal imager, multi-sensor, multi-scale transform

Procedia PDF Downloads 115
45520 Optimized Real Ground Motion Scaling for Vulnerability Assessment of Building Considering the Spectral Uncertainty and Shape

Authors: Chen Bo, Wen Zengping

Abstract:

Based on the results of previous studies, we focus on the research of real ground motion selection and scaling method for structural performance-based seismic evaluation using nonlinear dynamic analysis. The input of earthquake ground motion should be determined appropriately to make them compatible with the site-specific hazard level considered. Thus, an optimized selection and scaling method are established including the use of not only Monte Carlo simulation method to create the stochastic simulation spectrum considering the multivariate lognormal distribution of target spectrum, but also a spectral shape parameter. Its applications in structural fragility analysis are demonstrated through case studies. Compared to the previous scheme with no consideration of the uncertainty of target spectrum, the method shown here can make sure that the selected records are in good agreement with the median value, standard deviation and spectral correction of the target spectrum, and greatly reveal the uncertainty feature of site-specific hazard level. Meanwhile, it can help improve computational efficiency and matching accuracy. Given the important infection of target spectrum’s uncertainty on structural seismic fragility analysis, this work can provide the reasonable and reliable basis for structural seismic evaluation under scenario earthquake environment.

Keywords: ground motion selection, scaling method, seismic fragility analysis, spectral shape

Procedia PDF Downloads 293
45519 Role of ABC-Type Efflux Transporters in Antifungal Resistance of Candida auris

Authors: Mohamed Mahdi Alshahni, Takashi Tamura, Koichi Makimura

Abstract:

Objective: The objective of this study is to evaluate roles of ABC-type efflux transporters in the resistance of Candida auris against common antifungal agents. Material and Methods: A wild-type C. auris strain and its antifungal resistant derivative strain that is generated through induction by antifungal agents were used in this study. The strains were cultured onto media containing beauvericin alone or in combination with azole agents. Moreover, expression levels of four ABC-type transporter’s homologs in those strains were analyzed by real time PCR with or without antifungal stress by fluconazole or voriconazole. Results: Addition of beauvericin helped to partially restore the susceptibility of the resistant strain against fluconazole, suggesting participation of ABC-type transporters in the resistance mechanism. Real time PCR results showed that mRNA levels of three out of the four analyzed transporters in the resistant strain were more than 2-fold higher than their counterparts in the wild-type strain under negative control and antifungal agent-containing conditions. Conclusion: C. auris is an emerging multidrug-resistant pathogen causing human mortality worldwide. Providing effective treatment has been hampered by the resistance to antifungal drugs, demanding understanding the resistance mechanism in order to devise new therapeutic strategies. Our data suggest a partial contribution of ABC-type transporters to the resistance of this pathogen.

Keywords: resistance, C. auris, transporters, antifungi

Procedia PDF Downloads 169
45518 Scattered Places in Stories Singularity and Pattern in Geographic Information

Authors: I. Pina, M. Painho

Abstract:

Increased knowledge about the nature of place and the conditions under which space becomes place is a key factor for better urban planning and place-making. Although there is a broad consensus on the relevance of this knowledge, difficulties remain in relating the theoretical framework about place and urban management. Issues related to representation of places are among the greatest obstacles to overcome this gap. With this critical discussion, based on literature review, we intended to explore, in a common framework for geographical analysis, the potential of stories to spell out place meanings, bringing together qualitative text analysis and text mining in order to capture and represent the singularity contained in each person's life history, and the patterns of social processes that shape places. The development of this reasoning is based on the extensive geographical thought about place, and in the theoretical advances in the field of Geographic Information Science (GISc).

Keywords: discourse analysis, geographic information science place, place-making, stories

Procedia PDF Downloads 198