Search results for: structure material
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12971

Search results for: structure material

371 Modeling Driving Distraction Considering Psychological-Physical Constraints

Authors: Yixin Zhu, Lishengsa Yue, Jian Sun, Lanyue Tang

Abstract:

Modeling driving distraction in microscopic traffic simulation is crucial for enhancing simulation accuracy. Current driving distraction models are mainly derived from physical motion constraints under distracted states, in which distraction-related error terms are added to existing microscopic driver models. However, the model accuracy is not very satisfying, due to a lack of modeling the cognitive mechanism underlying the distraction. This study models driving distraction based on the Queueing Network Human Processor model (QN-MHP). This study utilizes the queuing structure of the model to perform task invocation and switching for distracted operation and control of the vehicle under driver distraction. Based on the assumption of the QN-MHP model about the cognitive sub-network, server F is a structural bottleneck. The latter information must wait for the previous information to leave server F before it can be processed in server F. Therefore, the waiting time for task switching needs to be calculated. Since the QN-MHP model has different information processing paths for auditory information and visual information, this study divides driving distraction into two types: auditory distraction and visual distraction. For visual distraction, both the visual distraction task and the driving task need to go through the visual perception sub-network, and the stimuli of the two are asynchronous, which is called stimulus on asynchrony (SOA), so when calculating the waiting time for switching tasks, it is necessary to consider it. In the case of auditory distraction, the auditory distraction task and the driving task do not need to compete for the server resources of the perceptual sub-network, and their stimuli can be synchronized without considering the time difference in receiving the stimuli. According to the Theory of Planned Behavior for drivers (TPB), this study uses risk entropy as the decision criterion for driver task switching. A logistic regression model is used with risk entropy as the independent variable to determine whether the driver performs a distraction task, to explain the relationship between perceived risk and distraction. Furthermore, to model a driver’s perception characteristics, a neurophysiological model of visual distraction tasks is incorporated into the QN-MHP, and executes the classical Intelligent Driver Model. The proposed driving distraction model integrates the psychological cognitive process of a driver with the physical motion characteristics, resulting in both high accuracy and interpretability. This paper uses 773 segments of distracted car-following in Shanghai Naturalistic Driving Study data (SH-NDS) to classify the patterns of distracted behavior on different road facilities and obtains three types of distraction patterns: numbness, delay, and aggressiveness. The model was calibrated and verified by simulation. The results indicate that the model can effectively simulate the distracted car-following behavior of different patterns on various roadway facilities, and its performance is better than the traditional IDM model with distraction-related error terms. The proposed model overcomes the limitations of physical-constraints-based models in replicating dangerous driving behaviors, and internal characteristics of an individual. Moreover, the model is demonstrated to effectively generate more dangerous distracted driving scenarios, which can be used to construct high-value automated driving test scenarios.

Keywords: computational cognitive model, driving distraction, microscopic traffic simulation, psychological-physical constraints

Procedia PDF Downloads 62
370 Technology for Biogas Upgrading with Immobilized Algae Biomass

Authors: Marcin Debowski, Marcin Zielinski, Miroslaw Krzemieniewski, Agata Glowacka-Gil, Paulina Rusanowska, Magdalena Zielinska, Agnieszka Cydzik-Kwiatkowska

Abstract:

Technologies of biogas upgrading are now perceived as competitive solution combustion and production of electricity and heat. Biomethane production will ensure broader application as energy carrier than biogas. Biomethane can be used as fuel in internal combustion engines or introduced into the natural gas transmission network. Therefore, there is a need to search for innovative, economically and technically justified methods for biogas enrichment. The aim of this paper is to present a technology solution for biogas upgrading with immobilized algae biomass. Reactor for biogas upgrading with immobilized algae biomass can be used for removing CO₂ from the biogas, flue gases and the waste gases especially coming from different industry sectors, e.g. from the food industry from yeast production process, biogas production systems, liquid and gaseous fuels combustion systems, hydrocarbon processing technology. The basis for the technological assumptions of presented technology were laboratory works and analyses that tested technological variants of biogas upgrading. The enrichment of biogas with a methane content of 90-97% pointed to technological assumptions for installation on a technical scale. Reactor for biogas upgrading with algae biomass is characterized by a significantly lower cubature in relation to the currently used solutions which use CO₂ removal processes. The invention, by its structure, assumes achieving a very high concentration of biomass of algae through its immobilization in capsules. This eliminates the phenomenon of lowering the pH value, i.e. acidification of the environment in which algae grow, resulting from the introduction of waste gases at a high CO₂ concentration. The system for introducing light into algae capsules is characterized by a higher degree of its use, due to lower losses resulting from the phenomenon of absorption of light energy by water. The light from the light source is continuously supplied to the formed biomass of algae or cyanobacteria in capsules by the light tubes. The light source may be sunlight or a light generator of a different wavelength of light from 300 nm to 800 nm. A portion of gas containing CO₂, accumulated in the tank and conveyed by the pump is periodically introduced into the housing of the photobioreactor tank. When conveying the gas that contains CO₂, it penetrates the algal biomass in capsules through the outer envelope, displacing, from the algal biomass, gaseous metabolic products which are discharged by the outlet duct for gases. It contributes to eliminating the negative impact of this factor on CO₂ binding processes. As a result of the cyclic dosing of gases containing carbon dioxide, gaseous metabolic products of algae are displaced and removed outside the technological system. Technology for biogas upgrading with immobilized algae biomass is suitable for the small biogas plant. The advantages of this technology are high efficiency as well as useful algae biomass which can be used mainly as animal feed, fertilizers and in the power industry. The construction of the device allows effective removal of carbon dioxide from gases at a high CO₂ concentration.

Keywords: biogas, carbon dioxide, immobilised biomass, microalgae, upgrading

Procedia PDF Downloads 138
369 Academic Knowledge Transfer Units in the Western Balkans: Building Service Capacity and Shaping the Business Model

Authors: Andrea Bikfalvi, Josep Llach, Ferran Lazaro, Bojan Jovanovski

Abstract:

Due to the continuous need to foster university-business cooperation in both developed and developing countries, some higher education institutions face the challenge of designing, piloting, operating, and consolidating knowledge and technology transfer units. University-business cooperation has different maturity stages worldwide, with some higher education institutions excelling in these practices, but with lots of others that could be qualified as intermediate, or even some situated at the very beginning of their knowledge transfer adventure. These latter face the imminent necessity to formally create the technology transfer unit and to draw its roadmap. The complexity of this operation is due to various aspects that need to align and coordinate, including a major change in mission, vision, structure, priorities, and operations. Qualitative in approach, this study presents 5 case studies, consisting of higher education institutions located in the Western Balkans – 2 in Albania, 2 in Bosnia and Herzegovina, 1 in Montenegro- fully immersed in the entrepreneurial journey of creating their knowledge and technology transfer unit. The empirical evidence is developed in a pan-European project, illustratively called KnowHub (reconnecting universities and enterprises to unleash regional innovation and entrepreneurial activity), which is being implemented in three countries and has resulted in at least 15 pilot cooperation agreements between academia and business. Based on a peer-mentoring approach including more experimented and more mature technology transfer models of European partners located in Spain, Finland, and Austria, a series of initial lessons learned are already available. The findings show that each unit developed its tailor-made approach to engage with internal and external stakeholders, offer value to the academic staff, students, as well as business partners. The latest technology underpinning KnowHub services and institutional commitment are found to be key success factors. Although specific strategies and plans differ, they are based on a general strategy jointly developed and based on common tools and methods of strategic planning and business modelling. The main output consists of providing good practice for designing, piloting, and initial operations of units aiming to fully valorise knowledge and expertise available in academia. Policymakers can also find valuable hints on key aspects considered vital for initial operations. The value of this contribution is its focus on the intersection of three perspectives (service orientation, organisational innovation, business model) since previous research has only relied on a single topic or dual approaches, most frequently in the business context and less frequently in higher education.

Keywords: business model, capacity building, entrepreneurial education, knowledge transfer

Procedia PDF Downloads 124
368 Improving Junior Doctor Induction Through the Use of Simple In-House Mobile Application

Authors: Dmitriy Chernov, Maria Karavassilis, Suhyoun Youn, Amna Izhar, Devasenan Devendra

Abstract:

Introduction and Background: A well-structured and comprehensive departmental induction improves patient safety and job satisfaction amongst doctors. The aims of our Project were as follows: 1. Assess the perceived preparedness of junior doctors starting their rotation in Acute Medicine at Watford General Hospital. 2. Develop a supplemental Induction Guide and Pocket reference in the form of an iOS mobile application. 3. To collect feedback after implementing the mobile application following a trial period of 8 weeks with a small cohort of junior doctors. Materials and Methods: A questionnaire was distributed to all new junior trainees starting in the department of Acute Medicine to assess their experience of current induction. A mobile Induction application was developed and trialled over a period of 8 weeks, distributed in addition to the existing didactic induction session. After the trial period, the same questionnaire was distributed to assess improvement in induction experience. Analytics data were collected with users’ consent to gauge user engagement and identify areas of improvement of the application. A feedback survey about the app was also distributed. Results: A total of 32 doctors used the application during the 8-week trial period. The application was accessed 7259 times in total, with the average user spending a cumulative of 37 minutes 22 seconds on the app. The most used section was Clinical Guidelines, accessed 1490 times. The App Feedback survey revealed positive reviews: 100% of participants (n=15/15) responded that the app improved their overall induction experience compared to other placements; 93% (n=14/15) responded that the app improved overall efficiency in completing daily ward jobs compared to previous rotations; and 93% (n=14/15) responded that the app improved patient safety overall. In the Pre-App and Post-App Induction Surveys, participants reported: a 48% improvement in awareness of practical aspects of the job; a 26% improvement of awareness on locating pathways and clinical guidelines; a 40% reduction of feelings of overwhelmingness. Conclusions and recommendations: This study demonstrates the importance of technology in Medical Education and Clinical Induction. The mobile application average engagement time equates to over 20 cumulative hours of on-the-job training delivered to each user, within an 8-week period. The most used and referred to section was clinical guidelines. This shows that there is high demand for an accessible pocket guide for this type of material. This simple mobile application resulted in a significant improvement in feedback about induction in our Department of Acute Medicine, and will likely impact workplace satisfaction. Limitations of the application include: post-app surveys had a small number of participants; the app is currently only available for iPhone users; some useful sections are nested deep within the app, lacks deep search functionality across all sections; lacks real time user feedback; and requires regular review and updates. Future steps for the app include: developing a web app, with an admin dashboard to simplify uploading and editing content; a comprehensive search functionality; and a user feedback and peer ratings system.

Keywords: mobile app, doctor induction, medical education, acute medicine

Procedia PDF Downloads 70
367 Application of 3D Apparel CAD for Costume Reproduction

Authors: Zi Y. Kang, Tracy D. Cassidy, Tom Cassidy

Abstract:

3D apparel CAD is one of the remarkable products in advanced technology which enables intuitive design, visualisation and evaluation of garments through stereoscopic drape simulation. The progressive improvements of 3D apparel CAD have led to the creation of more realistic clothing simulation which is used not only in design development but also in presentation, promotion and communication for fashion as well as other industries such as film, game and social network services. As a result, 3D clothing technology is becoming more ubiquitous in human culture and lives today. This study considers that such phenomenon implies that the technology has reached maturity and it is time to inspect the status of current technology and to explore its potential uses in ways to create cultural values to further move forward. For this reason, this study aims to generate virtual costumes as culturally significant objects using 3D apparel CAD and to assess its capability, applicability and attitudes of the audience towards clothing simulation through comparison with physical counterparts. Since the access to costume collection is often limited due to the conservative issues, the technology may make valuable contribution by democratization of culture and knowledge for museums and its audience. This study is expected to provide foundation knowledge for development of clothing technology and for expanding its boundary of practical uses. To prevent any potential damage, two replicas of the costumes in the 1860s and 1920s at the Museum of London were chosen as samples. Their structural, visual and physical characteristics were measured and collected using patterns, scanned images of fabrics and objective fabric measurements with scale, KES-F (Kawabata Evaluation System of Fabrics) and Titan. Commercial software, DC Suite 5.0 was utilised to create virtual costumes applying collected data and the following outcomes were produced for the evaluation: Images of virtual costumes and video clips showing static and dynamic simulation. Focus groups were arranged with fashion design students and the public for evaluation which exposed the outcomes together with physical samples, fabrics swatches and photographs. The similarities, application and acceptance of virtual costumes were estimated through discussion and a questionnaire. The findings show that the technology has the capability to produce realistic or plausible simulation but expression of some factors such as details and capability of light material requires improvements. While the use of virtual costumes was viewed as more interesting and futuristic replacements to physical objects by the public group, the fashion student group noted more differences in detail and preferred physical garments highlighting the absence of tangibility. However, the advantages and potential of virtual costumes as effective and useful visual references for educational and exhibitory purposes were underlined by both groups. Although 3D apparel CAD has sufficient capacity to assist garment design process, it has limits in identical replication and more study on accurate reproduction of details and drape is needed for its technical improvements. Nevertheless, the virtual costumes in this study demonstrated the possibility of the technology to contribute to cultural and knowledgeable value creation through its applicability and as an interesting way to offer 3D visual information.

Keywords: digital clothing technology, garment simulation, 3D Apparel CAD, virtual costume

Procedia PDF Downloads 195
366 Effects of Tramadol Administration on the Ovary of Adult Rats and the Possible Recovery after Tramadol Withdrawal: A Light and Electron Microscopic Study

Authors: Heba Kamal Mohamed

Abstract:

Introduction: Tramadol is a weak -opioid receptor agonist with an analgesic effect because of the inhibition of uptake of norepinephrine and serotonin. Nowadays, tramadol hydrochloride is frequently used as a pain reliever. Tramadol is recommended for the management of acute and chronic pain of moderate to severe intensity associated with a variety of diseases or problems, including osteoarthritis, diabetic neuropathy, neuropathic pain, and even perioperative pain in human patients. In obstetrics and gynecology, tramadol is used extensively to treat postoperative pain. Aim of the study: This study was undertaken to investigate the histological (light and electron microscopic) and immunohistochemical effects of long term tramadol treatment on the ovary of adult rats and the possible recovery after tramadol withdrawal. Design: Experimental study. Materials and methods: Thirty adult female albino rats were used in this study. They were classified into three main groups (10 rats each). Group I served as the control group. Group II, rats were subcutaneously injected with tramadol 40 mg/kg three times per week for 8 weeks. Group III, rats were subcutaneously injected with tramadol 40 mg/kg three times per week for 8 weeks then were kept for another 8 weeks without treatment for recovery. At the end of the experiment rats were sacrificed and bilateral oophorectomy was carried out; the ovaries were processed for histological study (light and electron microscopic) and immunohistochemical reaction for caspase-3 (apoptotic protein). Results: Examination of the ovary of tramadol-treated rats (group II) revealed many atretic ovarian follicles, some follicles showed detachment of the oocyte from surrounding granulosa cells and others showed loss of the oocyte. Many follicles revealed degenerated vacuolated oocytes and vacuolated theca folliculi cells. Granulosa cells appeared shrunken, disrupted and loosely attached with vacuolated cytoplasm and pyknotic nuclei. Some follicles showed separation of granulosa cells from the theca folliculi layer. The ultrastructural study revealed the presence of granulosa cells with electron dense indented nuclei, damaged mitochondria and granular vacuolated cytoplasm. Other cells showed accumulation of large amount of lipid droplets in their cytoplasm. Some follicles revealed rarifaction of the cytoplasm of oocytes and absent zona pellucida. Moreover, apoptotic changes were detected by immunohistochemical staining in the form of increased staining intensity to caspase-3 (apoptotic protein). With Masson's Trichrome stain, there was an increased collagen fibre deposition in the ovarian cortical stroma. The wall of blood vessels appeared thickened. In the withdrawal group (group III), there was a little improvement in the histological and immunohistochemical changes. Conclusion: Tramadol had serious deleterious effects on ovarian structure. Thus, it should be used with caution, especially when a long term treatment is indicated. Withdrawal of tramadol led to a little improvement in the structural impairment of the ovary.

Keywords: tramadol, ovary, withdrawal, rats

Procedia PDF Downloads 273
365 Functional Plasma-Spray Ceramic Coatings for Corrosion Protection of RAFM Steels in Fusion Energy Systems

Authors: Chen Jiang, Eric Jordan, Maurice Gell, Balakrishnan Nair

Abstract:

Nuclear fusion, one of the most promising options for reliably generating large amounts of carbon-free energy in the future, has seen a plethora of ground-breaking technological advances in recent years. An efficient and durable “breeding blanket”, needed to ensure a reactor’s self-sufficiency by maintaining the optimal coolant temperature as well as by minimizing radiation dosage behind the blanket, still remains a technological challenge for the various reactor designs for commercial fusion power plants. A relatively new dual-coolant lead-lithium (DCLL) breeder design has exhibited great potential for high-temperature (>700oC), high-thermal-efficiency (>40%) fusion reactor operation. However, the structural material, namely reduced activation ferritic-martensitic (RAFM) steel, is not chemically stable in contact with molten Pb-17%Li coolant. Thus, to utilize this new promising reactor design, the demand for effective corrosion-resistant coatings on RAFM steels represents a pressing need. Solution Spray Technologies LLC (SST) is developing a double-layer ceramic coating design to address the corrosion protection of RAFM steels, using a novel solution and solution/suspension plasma spray technology through a US Department of Energy-funded project. Plasma spray is a coating deposition method widely used in many energy applications. Novel derivatives of the conventional powder plasma spray process, known as the solution-precursor and solution/suspension-hybrid plasma spray process, are powerful methods to fabricate thin, dense ceramic coatings with complex compositions necessary for the corrosion protection in DCLL breeders. These processes can be used to produce ultra-fine molten splats and to allow fine adjustment of coating chemistry. Thin, dense ceramic coatings with chosen chemistry for superior chemical stability in molten Pb-Li, low activation properties, and good radiation tolerance, is ideal for corrosion-protection of RAFM steels. A key challenge is to accommodate its CTE mismatch with the RAFM substrate through the selection and incorporation of appropriate bond layers, thus allowing for enhanced coating durability and robustness. Systematic process optimization is being used to define the optimal plasma spray conditions for both the topcoat and bond-layer, and X-ray diffraction and SEM-EDS are applied to successfully validate the chemistry and phase composition of the coatings. The plasma-sprayed double-layer corrosion resistant coatings were also deposited onto simulated RAFM steel substrates, which are being tested separately under thermal cycling, high-temperature moist air oxidation as well as molten Pb-Li capsule corrosion conditions. Results from this testing on coated samples, and comparisons with bare RAFM reference samples will be presented and conclusions will be presented assessing the viability of the new ceramic coatings to be viable corrosion prevention systems for DCLL breeders in commercial nuclear fusion reactors.

Keywords: breeding blanket, corrosion protection, coating, plasma spray

Procedia PDF Downloads 289
364 Synthesis and Characterization of Fibrin/Polyethylene Glycol-Based Interpenetrating Polymer Networks for Dermal Tissue Engineering

Authors: O. Gsib, U. Peirera, C. Egles, S. A. Bencherif

Abstract:

In skin regenerative medicine, one of the critical issues is to produce a three-dimensional scaffold with optimized porosity for dermal fibroblast infiltration and neovascularization, which exhibits high mechanical properties and displays sufficient wound healing characteristics. In this study, we report on the synthesis and characterization of macroporous sequential interpenetrating polymer networks (IPNs) combining skin wound healing properties of fibrin with the excellent physical properties of polyethylene glycol (PEG). Fibrin fibers serve as a provisional biologically active network to promote cell adhesion and proliferation while PEG provides the mechanical stability to maintain the entire 3D construct. After having modified both PEG and Serum Albumin (used for promoting enzymatic degradability) by adding methacrylate residues (PEGDM and SAM, respectively), Fibrin/PEGDM-SAM sequential IPNs were synthesized as follows: Macroporous sponges were first produced from PEGDM-SAM hydrogels by a freeze-drying technique and then rehydrated by adding the fibrin precursors. Environmental Scanning Electron Microscopy (ESEM) and Confocal Laser Scanning Microscopy (CLSM) were used to characterize their microstructure. Human dermal fibroblasts were cultivated during one week in the constructs and different cell culture parameters (viability, morphology, proliferation) were evaluated. Subcutaneous implantations of the scaffolds were conducted on five-week old male nude mice to investigate their biocompatibility in vivo. We successfully synthesized interconnected and macroporous Fibrin/PEGDM-SAM sequential IPNs. The viability of primary dermal fibroblasts was well maintained (above 90%) after 2 days of culture. Cells were able to adhere, spread and proliferate in the scaffolds suggesting the suitable porosity and intrinsic biologic properties of the constructs. The fibrin network adopted a spider web shape that covered partially the pores allowing easier cell infiltration into the macroporous structure. To further characterize the in vitro cell behavior, cell proliferation (EdU incorporation, MTS assay) is being studied. Preliminary histological analysis of animal studies indicated the persistence of hydrogels even after one-month post implantation and confirmed the absence of inflammation response, good biocompatibility and biointegration of our scaffolds within the surrounding tissues. These results suggest that our Fibrin/PEGDM-SAM IPNs could be considered as potential candidates for dermis regenerative medicine. Histological analysis will be completed to further assess scaffold remodeling including de novo extracellular matrix protein synthesis and early stage angiogenesis analysis. Compression measurements will be conducted to investigate the mechanical properties.

Keywords: fibrin, hydrogels for dermal reconstruction, polyethylene glycol, semi-interpenetrating polymer network

Procedia PDF Downloads 215
363 Phenotypic and Molecular Heterogeneity Linked to the Magnesium Transporter CNNM2

Authors: Reham Khalaf-Nazzal, Imad Dweikat, Paula Gimenez, Iker Oyenarte, Alfonso Martinez-Cruz, Domonik Muller

Abstract:

Metal cation transport mediator (CNNM) gene family comprises 4 isoforms that are expressed in various human tissues. Structurally, CNNMs are complex proteins that contain an extracellular N-terminal domain preceding a DUF21 transmembrane domain, a ‘Bateman module’ and a C-terminal cNMP-binding domain. Mutations in CNNM2 cause familial dominant hypomagnesaemia. Growing evidence highlights the role of CNNM2 in neurodevelopment. Mutations in CNNM2 have been implicated in epilepsy, intellectual disability, schizophrenia, and others. In the present study, we aim to elucidate the function of CNNM2 in the developing brain. Thus, we present the genetic origin of symptoms in two family cohorts. In the first family, three siblings of a consanguineous Palestinian family in which parents are first cousins, and consanguinity ran over several generations, presented a varying degree of intellectual disability, cone-rod dystrophy, and autism spectrum disorder. Exome sequencing and segregation analysis revealed the presence of homozygous pathogenic mutation in the CNNM2 gene, the parents were heterozygous for that gene mutation. Magnesium blood levels were normal in the three children and their parents in several measurements. They had no symptoms of hypomagnesemia. The CNNM2 mutation in this family was found to locate in the CBS1 domain of the CNNM2 protein. The crystal structure of the mutated CNNM2 protein was not significantly different from the wild-type protein, and the binding of AMP or MgATP was not dramatically affected. This suggests that the CBS1 domain could be involved in pure neurodevelopmental functions independent of its magnesium-handling role, and this mutation could have affected a protein partner binding or other functions in this protein. In the second family, another autosomal dominant CNNM2 mutation was found to run in a large family with multiple individuals over three generations. All affected family members had hypomagnesemia and hypermagnesuria. Oral supplementation of magnesium did not increase the levels of magnesium in serum significantly. Some affected members of this family have defects in fine motor skills such as dyslexia and dyslalia. The detected mutation is located in the N-terminal part, which contains a signal peptide thought to be involved in the sorting and routing of the protein. In this project, we describe heterogenous clinical phenotypes related to CNNM2 mutations and protein functions. In the first family, and up to the authors’ knowledge, we report for the first time the involvement of CNNM2 in retinal photoreceptor development and function. In addition, we report the presence of a neurophenotype independent of magnesium status related to the CNNM2 protein mutation. Taking into account the different modes of inheritance and the different positions of the mutations within CNNM2 and its different structural and functional domains, it is likely that CNNM2 might be involved in a wide spectrum of neuropsychiatric comorbidities with considerable varying phenotypes.

Keywords: magnesium transport, autosomal recessive, autism, neurodevelopment, CBS domain

Procedia PDF Downloads 129
362 Chemical and Electrochemical Syntheses of Two Organic Components of Ginger

Authors: Adrienn Kiss, Karoly Zauer, Gyorgy Keglevich, Rita Molnarne Bernath

Abstract:

Ginger (Zingiber officinale) is a perennial plant from Southeast Asia, widely used as a spice, herb, and medicine for many illnesses since its beneficial health effects were observed thousands of years ago. Among the compounds found in ginger, zingerone [4-hydroxy-3- methoxyphenyl-2-butanone] deserves special attention: it has an anti-inflammatory and antispasmodic effect, it can be used in case of diarrheal disease, helps to prevent the formation of blood clots, has antimicrobial properties, and can also play a role in preventing the Alzheimer's disease. Ferulic acid [(E)-3-(4-hydroxy-3-methoxyphenyl)-prop-2-enoic acid] is another cinnamic acid derivative in ginger, which has promising properties. Like many phenolic compounds, ferulic acid is also an antioxidant. Based on the results of animal experiments, it is assumed to have a direct antitumoral effect in lung and liver cancer. It also deactivates free radicals that can damage the cell membrane and the DNA and helps to protect the skin against UV radiation. The aim of this work was to synthesize these two compounds by new methods. A few of the reactions were based on the hydrogenation of dehydrozingerone [4-(4-Hydroxy-3-methoxyphenyl)-3-buten-2-one] to zingerone. Dehydrozingerone can be synthesized by a relatively simple method from acetone and vanillin with good yield (80%, melting point: 41 °C). Hydrogenation can be carried out chemically, for example by the reaction of zinc and acetic acid, or Grignard magnesium and ethyl alcohol. Another way to complete the reduction is the electrochemical pathway. The electrolysis of dehydrozingerone without diaphragm in aqueous media was attempted to produce ferulic acid in the presence of sodium carbonate and potassium iodide using platinum electrodes. The electrolysis of dehydrozingerone in the presence of potassium carbonate and acetic acid to prepare zingerone was carried out similarly. Ferulic acid was expected to be converted to dihydroferulic acid [3-(4-Hydroxy-3-methoxyphenyl)propanoic acid] in potassium hydroxide solution using iron electrodes, separating the anode and cathode space with a Soxhlet paper sheath impregnated with saturated magnesium chloride solution. For this reaction, ferulic acid was synthesized from vanillin and malonic acid in the presence of pyridine and piperidine (yield: 88.7%, melting point: 173°C). Unfortunately, in many cases, the expected transformations did not happen or took place in low conversions, although gas evolution occurred. Thus, a deeper understanding of these experiments and optimization are needed. Since both compounds are found in different plants, they can also be obtained by alkaline extraction or steam distillation from distinct plant parts (ferulic acid from ground bamboo shoots, zingerone from grated ginger root). The products of these reactions are rich in several other organic compounds as well; therefore, their separation must be solved to get the desired pure material. The products of the reactions described above were characterized by infrared spectral data and melting points. The use of these two simple methods may be informative for the formation of the products. In the future, we would like to study the ferulic acid and zingerone content of other plants and extract them efficiently. The optimization of electrochemical reactions and the use of other test methods are also among our plans.

Keywords: ferulic acid, ginger, synthesis, zingerone

Procedia PDF Downloads 156
361 The Use of Remotely Sensed Data to Model Habitat Selections of Pileated Woodpeckers (Dryocopus pileatus) in Fragmented Landscapes

Authors: Ruijia Hu, Susanna T.Y. Tong

Abstract:

Light detection and ranging (LiDAR) and four-channel red, green, blue, and near-infrared (RGBI) remote sensed imageries allow an accurate quantification and contiguous measurement of vegetation characteristics and forest structures. This information facilitates the generation of habitat structure variables for forest species distribution modelling. However, applications of remote sensing data, especially the combination of structural and spectral information, to support evidence-based decisions in forest managements and conservation practices at local scale are not widely adopted. In this study, we examined the habitat requirements of pileated woodpecker (Dryocopus pileatus) (PW) in Hamilton County, Ohio, using ecologically relevant forest structural and vegetation characteristics derived from LiDAR and RGBI data. We hypothesized that the habitat of PW is shaped by vegetation characteristics that are directly associated with the availability of food, hiding and nesting resources, the spatial arrangement of habitat patches within home range, as well as proximity to water sources. We used 186 PW presence or absence locations to model their presence and absence in generalized additive model (GAM) at two scales, representing foraging and home range size, respectively. The results confirm PW’s preference for tall and large mature stands with structural complexity, typical of late-successional or old-growth forests. Besides, the crown size of dead trees shows a positive relationship with PW occurrence, therefore indicating the importance of declining living trees or early-stage dead trees within PW home range. These locations are preferred by PW for nest cavity excavation as it attempts to balance the ease of excavation and tree security. In addition, we found that PW can adjust its travel distance to the nearest water resource, suggesting that habitat fragmentation can have certain impacts on PW. Based on our findings, we recommend that forest managers should use different priorities to manage nesting, roosting, and feeding habitats. Particularly, when devising forest management and hazard tree removal plans, one needs to consider retaining enough cavity trees within high-quality PW habitat. By mapping PW habitat suitability for the study area, we highlight the importance of riparian corridor in facilitating PW to adjust to the fragmented urban landscape. Indeed, habitat improvement for PW in the study area could be achieved by conserving riparian corridors and promoting riparian forest succession along major rivers in Hamilton County.

Keywords: deadwood detection, generalized additive model, individual tree crown delineation, LiDAR, pileated woodpecker, RGBI aerial imagery, species distribution models

Procedia PDF Downloads 35
360 Microfungi on Sandy Beaches: Potential Threats for People Enjoying Lakeside Recreation

Authors: Tomasz Balabanski, Anna Biedunkiewicz

Abstract:

Research on basic bacteriological and physicochemical parameters conducted by state institutions (Provincial Sanitary and Epidemiological Station and District Sanitary and Epidemiological Station) are limited to bathing waters under constant sanitary and epidemiological supervision. Unfortunately, no routine or monitoring tests are carried out for the presence of microfungi. This also applies to beach sand used for recreational purposes. The purpose of the planned own research was to determine the diversity of the mycobiota present on supervised and unsupervised sandy beaches, on the shores of lakes, of municipal baths used for recreation. The research material consisted of microfungi isolated from April to October 2019 from sandy beaches of supervised and unsupervised lakes located within the administrative boundaries of the city of Olsztyn (North-Eastern Poland, Europe). Four lakes, out of the fifteen available (Tyrsko, Kortowskie, Skanda, and Ukiel), whose bathing waters are subjected to routine bacteriological tests, were selected for testing. To compare the diversity of the mycobiota composition on the surface and below the sand mixing layer, samples were taken from two depths (10 cm and 50 cm), using a soil auger. Micro-fungi from sand samples were obtained by surface inoculation on an RBC medium from the 1st dilution (1:10). After incubation at 25°C for 96-144 h, the average number of CFU/dm³ was counted. Morphologically differing yeast colonies were passaged into Sabouraud agar slants with gentamicin and incubated again. For detailed laboratory analyses, culture methods (macro- and micro-cultures) and identification methods recommended in diagnostic mycological laboratories were used. The conducted research allowed obtaining 140 yeast isolates. The total average population ranged from 1.37 × 10⁻² CFU/dm³ before the bathing season (April 2019), 1.64 × 10⁻³ CFU/dm³ in the season (May-September 2019), and 1.60 × 10⁻² CFU/dm³ after the end of the season (October 2019). More microfungi were obtained from the surface layer of sand (100 isolates) than from the deeper layer (40 isolates). Reported microfungi may circulate seasonally between individual elements of the lake ecosystem. From the sand/soil from the catchment area beaches, they can get into bathing waters, stopping periodically on the coastal phyllosphere. The sand of the beaches and the phyllosphere are a kind of filter for the water reservoir. The presence of microfungi with various pathogenicity potential in these places is of major epidemiological importance. Therefore, full monitoring of not only recreational waters but also sandy beaches should be treated as an element of constant control by appropriate supervisory institutions, allowing recreational areas for public use so that the use of these places does not involve the risk of infection. Acknowledgment: 'Development Program of the University of Warmia and Mazury in Olsztyn', POWR.03.05.00-00-Z310/17, co-financed by the European Union under the European Social Fund from the Operational Program Knowledge Education Development. Tomasz Bałabański is a recipient of a scholarship from the Programme Interdisciplinary Doctoral Studies in Biology and Biotechnology (POWR.03.05.00-00-Z310/17), which is funded by the 'European Social Fund'.

Keywords: beach, microfungi, sand, yeasts

Procedia PDF Downloads 78
359 Post-Soviet Georgia in Visual History Analysis

Authors: Ana Nemsadze

Abstract:

Contemporary era and society are called postindustrial era and postindustrial society and/or informational era and informational society. Today science intends to define concept of information and comprehend informations role and function in contemporary society. Organization of social environment and governance of public processes on the base of information and tools of communication are main characteristics of informational era. This was defined by technological changes which were accomplished in culture in the second half of twentieth century. Today Georgia as an independent state needs to create an informational discourse of the country and therefore it is very important to study political and social cases which accomplished in the country after collapse of the Soviet Union because they start to define the present and the future of the country. The purpose of this study is to analyze political cases of the latest history of Georgia in terms of culture and information, concretely to elucidate which political cases transformed social life of post Soviet Georgia most of all who accomplished these political cases which visual and verbal messages was each political case spread with. The research is conducted on the base of interview. Participants of the interview are people of various specializations. Their professional activity is related to reflections on culture and theme of visual communication. They are philosophers sociologists a journalist media researcher a politologist a painter. The participants of the interview enumerated political cases and characterized them separately. Every expert thinks that declaration of independence of Georgia is the most important fact among all facts which were implemented in Georgia after collapse of the Soviet Union. The research revealed important social and political cases. Most of the cases are related to independence and territorial integrity of the state. Presidents of Georgia Zviad Gamsakhurdia Eduard Shevardnadze Mikheil Saakashvili Catholocos-Patriarch of All Georgia, the Archbishop of Mtskheta Tbilisi and Metropolitan bishop of Bichvinta and Tskhum Abkhazia Ilia II, businessman Bidzina Ivanishvili assumed dominating roles in cases. Verbal narrative of the cases accomplished during Zviad Gamsakhurdia presidential term expresses national freedom and visual part of cases of the same period expresses ruin of social-political structure. Verbal narrative of the cases accomplished during Eduard Sevardnadze presidential term expresses Free State and stability and reestablishment of Georgias political function in international relations and visual part of cases of the same period describes the most important moment of his presidential term and Eduard Shevardnadzes face appears too. Verbal narrative of the cases accomplished during Mikheil Saakashvilis presidential term expresses social renewal and visual part of cases of the same period describes August war and Mikheil Saakashvilis face appears too. The results of the study also reveal other details of visual verbal narrative of political and social cases of post Soviet Georgia. This gives a chance to start further reflection.

Keywords: culture, narrative, post soviet, visual communication

Procedia PDF Downloads 285
358 The Application of Whole-Cell Luminescent Biosensors for Assessing Bactericidal Properties of Medicinal Plants

Authors: Yuliya Y. Gavrichenko

Abstract:

Background and Aims: The increasing bacterial resistance to almost all the available antibiotics has encouraged scientists to search for alternative sources of antibacterial agents. Nowadays, it is known that many plant secondary metabolites have diverse biological activity. These compounds can be potentially active against human bacterial and viral infections. Extended research has been carried out to explore the use of the luminescent bacterial test as a rapid, accurate and inexpensive method to assess the antibacterial properties and to predict the biological activity spectra for plant origin substances. Method: Botanical material of fifteen species was collected from their natural and cultural habitats on the Crimean peninsula. The aqueous extracts of following plants were tested: Robinia pseudoacacia L., Sideritis comosa, Cotinus coggygria Scop., Thymus serpyllum L., Juglans regia L., Securigera varia L., Achillea millefolium L., Phlomis taurica, Corylus avellana L., Sambucus nigra L., Helichrysum arenarium L., Glycyrrhiza glabra L., Elytrigia repens L., Echium vulgare L., Conium maculatum L. The test was carried out using luminous strains of marine bacteria Photobacterium leiognathi, which was isolated from the Sea of Azov as well as four Escherichia coli MG1655 recombinant strains harbouring Vibrio fischeri luxCDABE genes. Results: The bactericidal capacity of plant extracts showed significant differences in the study. Cotinus coggygria, Phlomis taurica, Juglans regia L. proved to be the most toxic to P. leiognathi. (EC50 = 0.33 g dried plant/l). Glycyrrhiza glabra L., Robinia pseudoacacia L., Sideritis comosa and Helichrysum arenarium L. had moderate inhibitory effects (EC50 = 3.3 g dried plant/l). The rest of the aqueous extracts have decreased the luminescence of no more than 50% at the lowest concentration (16.5 g dried plant/l). Antibacterial activity of herbal extracts against constitutively luminescent E. coli MG1655 (pXen7-lux) strain was observed at approximately the same level as for P. leiognathi. Cotinus coggygria and Conium maculatum L. extracts have increased light emission in the mutant E. coli MG1655 (pFabA-lux) strain which is associated with cell membranes damage. Sideritis comosa, Phlomis taurica, Juglans regia induced SOS response in E. coli (pColD-lux) strain. Glycyrrhiza glabra L. induced protein damage response in E. coli MG1655 (pIbpA-lux) strain. Conclusion: The received results have shown that the plants’ extracts had nonspecific antimicrobial effects against both E. coli (pXen7-lux) and P. leiognathi biosensors. Mutagenic, cytotoxic and protein damage effects have been observed. In general, the bioluminescent inhibition test result correlated with the traditional use of screened plants. It leads to the following conclusion that whole-cell luminescent biosensors could be the indicator of overall plants antibacterial capacity. The results of the investigation have shown a possibility of bioluminescent method in medicine and pharmacy as an approach to research the antibacterial properties of medicinal plants.

Keywords: antibacterial property, bioluminescence, medicinal plants, whole-cell biosensors

Procedia PDF Downloads 104
357 An Adiabatic Quantum Optimization Approach for the Mixed Integer Nonlinear Programming Problem

Authors: Maxwell Henderson, Tristan Cook, Justin Chan Jin Le, Mark Hodson, YoungJung Chang, John Novak, Daniel Padilha, Nishan Kulatilaka, Ansu Bagchi, Sanjoy Ray, John Kelly

Abstract:

We present a method of using adiabatic quantum optimization (AQO) to solve a mixed integer nonlinear programming (MINLP) problem instance. The MINLP problem is a general form of a set of NP-hard optimization problems that are critical to many business applications. It requires optimizing a set of discrete and continuous variables with nonlinear and potentially nonconvex constraints. Obtaining an exact, optimal solution for MINLP problem instances of non-trivial size using classical computation methods is currently intractable. Current leading algorithms leverage heuristic and divide-and-conquer methods to determine approximate solutions. Creating more accurate and efficient algorithms is an active area of research. Quantum computing (QC) has several theoretical benefits compared to classical computing, through which QC algorithms could obtain MINLP solutions that are superior to current algorithms. AQO is a particular form of QC that could offer more near-term benefits compared to other forms of QC, as hardware development is in a more mature state and devices are currently commercially available from D-Wave Systems Inc. It is also designed for optimization problems: it uses an effect called quantum tunneling to explore all lowest points of an energy landscape where classical approaches could become stuck in local minima. Our work used a novel algorithm formulated for AQO to solve a special type of MINLP problem. The research focused on determining: 1) if the problem is possible to solve using AQO, 2) if it can be solved by current hardware, 3) what the currently achievable performance is, 4) what the performance will be on projected future hardware, and 5) when AQO is likely to provide a benefit over classical computing methods. Two different methods, integer range and 1-hot encoding, were investigated for transforming the MINLP problem instance constraints into a mathematical structure that can be embedded directly onto the current D-Wave architecture. For testing and validation a D-Wave 2X device was used, as well as QxBranch’s QxLib software library, which includes a QC simulator based on simulated annealing. Our results indicate that it is mathematically possible to formulate the MINLP problem for AQO, but that currently available hardware is unable to solve problems of useful size. Classical general-purpose simulated annealing is currently able to solve larger problem sizes, but does not scale well and such methods would likely be outperformed in the future by improved AQO hardware with higher qubit connectivity and lower temperatures. If larger AQO devices are able to show improvements that trend in this direction, commercially viable solutions to the MINLP for particular applications could be implemented on hardware projected to be available in 5-10 years. Continued investigation into optimal AQO hardware architectures and novel methods for embedding MINLP problem constraints on to those architectures is needed to realize those commercial benefits.

Keywords: adiabatic quantum optimization, mixed integer nonlinear programming, quantum computing, NP-hard

Procedia PDF Downloads 500
356 Seafloor and Sea Surface Modelling in the East Coast Region of North America

Authors: Magdalena Idzikowska, Katarzyna Pająk, Kamil Kowalczyk

Abstract:

Seafloor topography is a fundamental issue in geological, geophysical, and oceanographic studies. Single-beam or multibeam sonars attached to the hulls of ships are used to emit a hydroacoustic signal from transducers and reproduce the topography of the seabed. This solution provides relevant accuracy and spatial resolution. Bathymetric data from ships surveys provides National Centers for Environmental Information – National Oceanic and Atmospheric Administration. Unfortunately, most of the seabed is still unidentified, as there are still many gaps to be explored between ship survey tracks. Moreover, such measurements are very expensive and time-consuming. The solution is raster bathymetric models shared by The General Bathymetric Chart of the Oceans. The offered products are a compilation of different sets of data - raw or processed. Indirect data for the development of bathymetric models are also measurements of gravity anomalies. Some forms of seafloor relief (e.g. seamounts) increase the force of the Earth's pull, leading to changes in the sea surface. Based on satellite altimetry data, Sea Surface Height and marine gravity anomalies can be estimated, and based on the anomalies, it’s possible to infer the structure of the seabed. The main goal of the work is to create regional bathymetric models and models of the sea surface in the area of the east coast of North America – a region of seamounts and undulating seafloor. The research includes an analysis of the methods and techniques used, an evaluation of the interpolation algorithms used, model thickening, and the creation of grid models. Obtained data are raster bathymetric models in NetCDF format, survey data from multibeam soundings in MB-System format, and satellite altimetry data from Copernicus Marine Environment Monitoring Service. The methodology includes data extraction, processing, mapping, and spatial analysis. Visualization of the obtained results was carried out with Geographic Information System tools. The result is an extension of the state of the knowledge of the quality and usefulness of the data used for seabed and sea surface modeling and knowledge of the accuracy of the generated models. Sea level is averaged over time and space (excluding waves, tides, etc.). Its changes, along with knowledge of the topography of the ocean floor - inform us indirectly about the volume of the entire water ocean. The true shape of the ocean surface is further varied by such phenomena as tides, differences in atmospheric pressure, wind systems, thermal expansion of water, or phases of ocean circulation. Depending on the location of the point, the higher the depth, the lower the trend of sea level change. Studies show that combining data sets, from different sources, with different accuracies can affect the quality of sea surface and seafloor topography models.

Keywords: seafloor, sea surface height, bathymetry, satellite altimetry

Procedia PDF Downloads 59
355 Treatment of Wastewater by Constructed Wetland Eco-Technology: Plant Species Alters the Performance and the Enrichment of Bacteria Ries Alters the Performance and the Enrichment of Bacteria

Authors: Kraiem Khadija, Hamadi Kallali, Naceur Jedidi

Abstract:

Constructed wetland systems are eco-technology recognized as environmentally friendly and emerging innovative solutions remediation as these systems are cost-effective and sustainable wastewater treatment systems. The performance of these biological system is affected by various factors such as plant, substrate, wastewater type, hydraulic loading rate, hydraulic retention time, water depth, and operation mood. The objective of this study was to to assess the alters of plant species on pollutants reduction and enrichment of anammox and nitrifing denitrifing bacteria in a modified vertical flow (VFCW) constructed wetland. This tests were carried out using three modified vertical constructed wetlands with a surface of 0.23 m² and depth 80 cm. It was a saturated vertical constructed wetland at the bottom. The saturation zone is maintained by the siphon structure at the outlet. The VFCW (₁) system was unplanted, VFCW (₂) planted with Typha angustofolia, and VFCW(₃) planted with Phragmites australis. The experimental units were fed with domestic wastewater and were operated by batch mode during 8 months at an average hydraulic loading rate around 20 cm day− 1. The operation cycle was two days feeding and five days rest. Results indicated that plants presence improved the removal efficiency; the removal rates of organic matter (85.1–90.9%; COD and 81.8–88.9%; BOD5), nitrogen (54.2–73%; NTK and 66–77%; NH4 -N) were higher by 10.7–30.1% compared to the unplanted vertical constructed wetland. On the other hand, the plant species had no significant effect on removal efficiency of COD, The removal of COD was similar in VFCW (₂) and VFCW (₃) (p > 0.05), attaining average removal efficiencies of 88.7% and 85.2%, respectively. Whereas it had a significant effect on NTK removal (p > 0.05), with an average removal rate of 72% versus 51% for VFCW (₂) and VFCW (₃), respectively. Among the three sets of vertical flow constructed wetlands, the VFCW(₂) removed the highest percent of total streptococcus, fecal streptococcus total coliforms, fecal coliforms, E. coli as 59, 62, 52, 63, and 58%, respectively. The presence and the plant species alters the community composition and abundance of the bacteria. The abundance of bacteria in the planted wetland was much higher than that in the unplanted one. VFCW(₃) had the highest relative abundance of nitrifying bacteria such as Nitrosospira (18%), Nitrosospira (12%), and Nitrobacter (8%). Whereas the vertical constructed wetland planted with typha had larger number of denitrifying species, with relative abundances of Aeromonas (13%), Paracoccus (11%), Thauera (7%), and Thiobacillus (6%). However, the abundance of nitrifying bacteria was very lower in this system than VFCW(₂). Interestingly, the presence of Thypha angustofolia species favored the enrichment of anammox bacteria compared to unplanted system and system planted with phragmites australis. The results showed that the middle layer had the most accumulation of anammox bacteria, which the anaerobic condition is better and the root system is moderate. Vegetation has several characteristics that make it an essential component of wetlands, but its exact effects are complex and debated.

Keywords: wastawater, constructed wetland, anammox, removal

Procedia PDF Downloads 80
354 Digital Holographic Interferometric Microscopy for the Testing of Micro-Optics

Authors: Varun Kumar, Chandra Shakher

Abstract:

Micro-optical components such as microlenses and microlens array have numerous engineering and industrial applications for collimation of laser diodes, imaging devices for sensor system (CCD/CMOS, document copier machines etc.), for making beam homogeneous for high power lasers, a critical component in Shack-Hartmann sensor, fiber optic coupling and optical switching in communication technology. Also micro-optical components have become an alternative for applications where miniaturization, reduction of alignment and packaging cost are necessary. The compliance with high-quality standards in the manufacturing of micro-optical components is a precondition to be compatible on worldwide markets. Therefore, high demands are put on quality assurance. For quality assurance of these lenses, an economical measurement technique is needed. For cost and time reason, technique should be fast, simple (for production reason), and robust with high resolution. The technique should provide non contact, non-invasive and full field information about the shape of micro- optical component under test. The interferometric techniques are noncontact type and non invasive and provide full field information about the shape of the optical components. The conventional interferometric technique such as holographic interferometry or Mach-Zehnder interferometry is available for characterization of micro-lenses. However, these techniques need more experimental efforts and are also time consuming. Digital holography (DH) overcomes the above described problems. Digital holographic microscopy (DHM) allows one to extract both the amplitude and phase information of a wavefront transmitted through the transparent object (microlens or microlens array) from a single recorded digital hologram by using numerical methods. Also one can reconstruct the complex object wavefront at different depths due to numerical reconstruction. Digital holography provides axial resolution in nanometer range while lateral resolution is limited by diffraction and the size of the sensor. In this paper, Mach-Zehnder based digital holographic interferometric microscope (DHIM) system is used for the testing of transparent microlenses. The advantage of using the DHIM is that the distortions due to aberrations in the optical system are avoided by the interferometric comparison of reconstructed phase with and without the object (microlens array). In the experiment, first a digital hologram is recorded in the absence of sample (microlens array) as a reference hologram. Second hologram is recorded in the presence of microlens array. The presence of transparent microlens array will induce a phase change in the transmitted laser light. Complex amplitude of object wavefront in presence and absence of microlens array is reconstructed by using Fresnel reconstruction method. From the reconstructed complex amplitude, one can evaluate the phase of object wave in presence and absence of microlens array. Phase difference between the two states of object wave will provide the information about the optical path length change due to the shape of the microlens. By the knowledge of the value of the refractive index of microlens array material and air, the surface profile of microlens array is evaluated. The Sag of microlens and radius of curvature of microlens are evaluated and reported. The sag of microlens agrees well within the experimental limit as provided in the specification by the manufacturer.

Keywords: micro-optics, microlens array, phase map, digital holographic interferometric microscopy

Procedia PDF Downloads 482
353 Assessment and Characterization of Dual-Hardening Adhesion Promoter for Self-Healing Mechanisms in Metal-Plastic Hybrid System

Authors: Anas Hallak, Latifa Seblini, Juergen Wilde

Abstract:

In mechatronics or sensor technology, plastic housings are used to protect sensitive components from harmful environmental influences, such as moisture, media, or reactive substances. Connections, preferably in the form of metallic lead-frame structures, through the housing wall are required for their electrical supply or control. In this system, an insufficient connection between the plastic component, e.g., Polyamide66, and the metal surface, e.g., copper, due to the incompatibility is dominating. As a result, leakage paths can occur along with the plastic-metal interface. Since adhesive bonding has been established as one of the most important joining processes and its use has expanded significantly, driven by the development of improved high-performance adhesives and bonding techniques, this technology has been involved in metal-plastic hybrid structures. In this study, an epoxy bonding agent from DELO (DUALBOND LT2266) has been used to improve the mechanical and chemical binding between the metal and the polymer. It is an adhesion promoter with two reaction stages. In these, the first stage provides fixation to the lead frame directly after the coating step, which can be done by UV-Exposure for a few seconds. In the second stage, the material will be thermally hardened during injection molding. To analyze the two reaction stages of the primer, dynamic DSC experiments were carried out and correlated with Fourier-transform infrared spectroscopy measurements. Furthermore, the number of crosslinking bonds formed in the system in each reaction stage has also been estimated by a rheological characterization. Those investigations have been performed with different times of UV exposure: 12, 96 s and in an industrial preferred temperature range from -20 to 175°C. The shear viscosity values of primer have been measured as a function of temperature and exposure times. For further interpretation, the storage modulus values have been calculated, and the so-called Booij–Palmen plot has been sketched. The next approach in this study is the self-healing mechanisms in the hydride system in which the primer should flow into micro-damage such as interface, cracks, inhibit them from growing, and close them. The ability of the primer to flow in and penetrate defined capillaries made in Ultramid was investigated. Holes with a diameter of 0.3 mm were produced in injection-molded A3EG7 plates with 4 mm thickness. A copper substrate coated with the DUALBOND was placed on the A3EG7 plate and pressed with a certain force. Metallographic analyses were carried out to verify the filling grade, which showed an almost 95% filling ratio of the capillaries. Finally, to estimate the self-healing mechanism in metal-plastic hybrid systems, characterizations have been done on a simple geometry with a metal inlay developed by the Institute of Polymer Technology in Friedrich-Alexander-University. The specimens have been modified with tungsten wire which was to be pulled out after the injection molding to create a micro-hole in the specimen at the interface between the primer and the polymer. The capability of the primer to heal those micro-cracks upon heating, pressing, and thermal aging has been characterized through metallographic analyses.

Keywords: hybrid structures, self-healing, thermoplastic housing, adhesive

Procedia PDF Downloads 171
352 An Investigation into Why Very Few Small Start-Ups Business Survive for Longer Than Three Years: An Explanatory Study in the Context of Saudi Arabia

Authors: Motaz Alsolaim

Abstract:

Nowadays, the challenges of running a start-up can be very complex and are perhaps more difficult than at any other time in the past. Changes in technology, manufacturing innovation, and product development, combined with intense competition and market regulations are factors that have put pressure on classic ways of managing firms, thereby forcing change. As a result, the rate of closure, exit or discontinuation of start-ups and young businesses is very high. Despite the essential role of small firms in an economy, they still tend to face obstacles that exert a negative influence on their performance and rate of survival. In fact, it is not easy to determine with any certainty the reasons why small firms fail. For this reason, failure itself is not clearly defined, and its exact causes are hard to diagnose. In this current study, therefore, the barriers to survival will be covered more broadly, especially personal/entrepreneurial, enterprise and environmental factors with regard to various possible reasons for this failure, in order to determine the best solutions and make appropriate recommendations. Methodology: It could be argued that mixed methods might help to improve entrepreneurship research addressing challenges emphasis in previous studies and to achieve the triangulation. Calls for the combined use of quantitative and qualitative research were also made in the entrepreneurship field since entrepreneurship is a multi-faceted area of research. Therefore, explanatory sequential mixed method was used, using questionnaire online survey for entrepreneurs, followed by semi-structure interview. Collecting over 750 surveys and accepting 296 valid surveys, after that 13 interviews from government official seniors, businessmen successful entrepreneurs, and non-successful entrepreneurs. Findings: The first phase findings ( quantitative) shows the obstacles to survive; starting from the personal/ entrepreneurial factors such as; past work experience, lack of skills and interest, are positive factors, while; gender, age and education level of the owner are negative factors. Internal factors such as lack of marketing research and weak business planning are positive. The environmental factors; in economic perspectives; difficulty to find labors, in socio-cultural perspectives; Social restriction and traditions found to be a negative factors. In other hand, from the political perspective; cost of compliance and insufficient government plans found to be a positive factors for small business failure. From infrastructure perspective; lack of skills labor, high level of bureaucracy and lack of information are positive factors. Conclusion: This paper serves to enrich the understanding of failure factors in MENA region more precisely in SA, by minimizing the probability of failure in small-micro entrepreneurial start-up in SA, in the light of the Saudi government’s Vision 2030 plan.

Keywords: small business barriers, start-up business, entrepreneurship, Saudi Arabia

Procedia PDF Downloads 166
351 Accurate Energy Assessment Technique for Mine-Water District Heat Network

Authors: B. Philip, J. Littlewood, R. Radford, N. Evans, T. Whyman, D. P. Jones

Abstract:

UK buildings and energy infrastructures are heavily dependent on natural gas, a large proportion of which is used for domestic space heating. However, approximately half of the gas consumed in the UK is imported. Improving energy security and reducing carbon emissions are major government drivers for reducing gas dependency. In order to do so there needs to be a wholesale shift in the energy provision to householders without impacting on thermal comfort levels, convenience or cost of supply to the end user. Heat pumps are seen as a potential alternative in modern well insulated homes, however, can the same be said of older homes? A large proportion of housing stock in Britain was built prior to 1919. The age of the buildings bears testimony to the quality of construction; however, their thermal performance falls far below the minimum currently set by UK building standards. In recent years significant sums of money have been invested to improve energy efficiency and combat fuel poverty in some of the most deprived areas of Wales. Increasing energy efficiency of older properties remains a significant challenge, which cannot be achieved through insulation and air-tightness interventions alone, particularly when alterations to historically important architectural features of the building are not permitted. This paper investigates the energy demand of pre-1919 dwellings in a former Welsh mining village, the feasibility of meeting that demand using water from the disused mine workings to supply a district heat network and potential barriers to success of the scheme. The use of renewable solar energy generation and storage technologies, both thermal and electrical, to reduce the load and offset increased electricity demand, are considered. A wholistic surveying approach to provide a more accurate assessment of total household heat demand is proposed. Several surveying techniques, including condition surveys, air permeability, heat loss calculations, and thermography were employed to provide a clear picture of energy demand. Additional insulation can bring unforeseen consequences which are detrimental to the fabric of the building, potentially leading to accelerated dilapidation of the asset being ‘protected’. Increasing ventilation should be considered in parallel, to compensate for the associated reduction in uncontrolled infiltration. The effectiveness of thermal performance improvements are demonstrated and the detrimental effects of incorrect material choice and poor installation are highlighted. The findings show estimated heat demand to be in close correlation to household energy bills. Major areas of heat loss were identified such that improvements to building thermal performance could be targeted. The findings demonstrate that the use of heat pumps in older buildings is viable, provided sufficient improvement to thermal performance is possible. Addition of passive solar thermal and photovoltaic generation can help reduce the load and running cost for the householder. The results were used to predict future heat demand following energy efficiency improvements, thereby informing the size of heat pumps required.

Keywords: heat demand, heat pump, renewable energy, retrofit

Procedia PDF Downloads 85
350 An Infrared Inorganic Scintillating Detector Applied in Radiation Therapy

Authors: Sree Bash Chandra Debnath, Didier Tonneau, Carole Fauquet, Agnes Tallet, Julien Darreon

Abstract:

Purpose: Inorganic scintillating dosimetry is the most recent promising technique to solve several dosimetric issues and provide quality assurance in radiation therapy. Despite several advantages, the major issue of using scintillating detectors is the Cerenkov effect, typically induced in the visible emission range. In this context, the purpose of this research work is to evaluate the performance of a novel infrared inorganic scintillator detector (IR-ISD) in the radiation therapy treatment to ensure Cerenkov free signal and the best matches between the delivered and prescribed doses during treatment. Methods: A simple and small-scale infrared inorganic scintillating detector of 100 µm diameter with a sensitive scintillating volume of 2x10-6 mm3 was developed. A prototype of the dose verification system has been introduced based on PTIR1470/F (provided by Phosphor Technology®) material used in the proposed novel IR-ISD. The detector was tested on an Elekta LINAC system tuned at 6 MV/15MV and a brachytherapy source (Ir-192) used in the patient treatment protocol. The associated dose rate was measured in count rate (photons/s) using a highly sensitive photon counter (sensitivity ~20ph/s). Overall measurements were performed in IBATM water tank phantoms by following international Technical Reports series recommendations (TRS 381) for radiotherapy and TG43U1 recommendations for brachytherapy. The performance of the detector was tested through several dosimetric parameters such as PDD, beam profiling, Cerenkov measurement, dose linearity, dose rate linearity repeatability, and scintillator stability. Finally, a comparative study is also shown using a reference microdiamond dosimeter, Monte-Carlo (MC) simulation, and data from recent literature. Results: This study is highlighting the complete removal of the Cerenkov effect especially for small field radiation beam characterization. The detector provides an entire linear response with the dose in the 4cGy to 800 cGy range, independently of the field size selected from 5 x 5 cm² down to 0.5 x 0.5 cm². A perfect repeatability (0.2 % variation from average) with day-to-day reproducibility (0.3% variation) was observed. Measurements demonstrated that ISD has superlinear behavior with dose rate (R2=1) varying from 50 cGy/s to 1000 cGy/s. PDD profiles obtained in water present identical behavior with a build-up maximum depth dose at 15 mm for different small fields irradiation. A low dimension of 0.5 x 0.5 cm² field profiles have been characterized, and the field cross profile presents a Gaussian-like shape. The standard deviation (1σ) of the scintillating signal remains within 0.02% while having a very low convolution effect, thanks to lower sensitive volume. Finally, during brachytherapy, a comparison with MC simulations shows that considering energy dependency, measurement agrees within 0.8% till 0.2 cm source to detector distance. Conclusion: The proposed scintillating detector in this study shows no- Cerenkov radiation and efficient performance for several radiation therapy measurement parameters. Therefore, it is anticipated that the IR-ISD system can be promoted to validate with direct clinical investigations, such as appropriate dose verification and quality control in the Treatment Planning System (TPS).

Keywords: IR-Scintillating detector, dose measurement, micro-scintillators, Cerenkov effect

Procedia PDF Downloads 161
349 Unveiling Drought Dynamics in the Cuneo District, Italy: A Machine Learning-Enhanced Hydrological Modelling Approach

Authors: Mohammadamin Hashemi, Mohammadreza Kashizadeh

Abstract:

Droughts pose a significant threat to sustainable water resource management, agriculture, and socioeconomic sectors, particularly in the field of climate change. This study investigates drought simulation using rainfall-runoff modelling in the Cuneo district, Italy, over the past 60-year period. The study leverages the TUW model, a lumped conceptual rainfall-runoff model with a semi-distributed operation capability. Similar in structure to the widely used Hydrologiska Byråns Vattenbalansavdelning (HBV) model, the TUW model operates on daily timesteps for input and output data specific to each catchment. It incorporates essential routines for snow accumulation and melting, soil moisture storage, and streamflow generation. Multiple catchments' discharge data within the Cuneo district form the basis for thorough model calibration employing the Kling-Gupta Efficiency (KGE) metric. A crucial metric for reliable drought analysis is one that can accurately represent low-flow events during drought periods. This ensures that the model provides a realistic picture of water availability during these critical times. Subsequent validation of monthly discharge simulations thoroughly evaluates overall model performance. Beyond model development, the investigation delves into drought analysis using the robust Standardized Runoff Index (SRI). This index allows for precise characterization of drought occurrences within the study area. A meticulous comparison of observed and simulated discharge data is conducted, with particular focus on low-flow events that characterize droughts. Additionally, the study explores the complex interplay between land characteristics (e.g., soil type, vegetation cover) and climate variables (e.g., precipitation, temperature) that influence the severity and duration of hydrological droughts. The study's findings demonstrate successful calibration of the TUW model across most catchments, achieving commendable model efficiency. Comparative analysis between simulated and observed discharge data reveals significant agreement, especially during critical low-flow periods. This agreement is further supported by the Pareto coefficient, a statistical measure of goodness-of-fit. The drought analysis provides critical insights into the duration, intensity, and severity of drought events within the Cuneo district. This newfound understanding of spatial and temporal drought dynamics offers valuable information for water resource management strategies and drought mitigation efforts. This research deepens our understanding of drought dynamics in the Cuneo region. Future research directions include refining hydrological modelling techniques and exploring future drought projections under various climate change scenarios.

Keywords: hydrologic extremes, hydrological drought, hydrological modelling, machine learning, rainfall-runoff modelling

Procedia PDF Downloads 22
348 Exploring the Role of Private Commercial Banks in Increasing Small and Medium Size Enterprises’ Financial Accessibility in Developing Countries: A Study in Bangladesh

Authors: Khondokar Farid Ahmmed, Robin Bown

Abstract:

It is widely recognized that the formal financing of Small and Medium Size Enterprises (SMEs) by Private Commercial Banks (PCBs) is restricted. Due to changing financial market competition, SMEs are now important customers to PCBs in the member countries of the Asian Development Bank (ADB). Various initiatives in enhancing the efficiency of risk assessment of PCBs have failed in increasing financing accessibility in the traditional financing system where information asymmetry is a key constraint. In this circumstance, PCBs need to undertake a holistic approach. Holistic approach refers to methods that attempt to fundamentally change established traditions. To undertake holistic approach, this study intends to find the entire established financing culture between PCBs and SMEs in a new lens beyond the tradition on the basis of two basic questions: “What is the traditional lending culture between PCBs and SMEs” and “What could be potential role of PCBs to develop that culture where focusing on SME financing to PCBs". This study considered formal SME financing in Bangladesh by focusing on SMEs applying for their first loan. Bangladesh is a member country of ADB. The data collection method is semi-structured and we utilized face-to-face interviews with in-depth branch managers, higher officials and owner-managers of SME customers of PCBs and higher officials of SME Foundation and the Bangladesh central bank. Discourse analysis method was used for data analysis on the frame of thematic discussion fully based on participants’ views. The research found that branch managers and loan officers have a high level of power in assessing and financing decision-making. There is a changing attitude in PCB sector in requiring flexible collateral assets. Branch managers (Loan Officers) consider value of business prospect of owner-mangers as complementary of collateral assets. However, the study found the assessment process of business prospect is entirely unstructured and linked with socio-cultural settings that does not support PCBs’ changing manner in terms of collateral requirement. The study redefined and classified collateral assets to include all financing constructs in a structure. The degree of value of the collateral assets determines the degree of business prospects. This study suggested applying an outside classroom-learning paradigm such as “knowledge tour” to enhance the value of the kinds of collateral assets. This is the scope of PCBs in increasing SMEs’ financing eligibility in win-win basis. The findings and proposition could be effective in other ADB member countries and audiences in the field.

Keywords: CCA, financing, information asymmetry, PCA, PCB, financing

Procedia PDF Downloads 185
347 Plasma Levels of Collagen Triple Helix Repeat Containing 1 (CTHRC1) as a Potential Biomarker in Interstitial Lung Disease

Authors: Rijnbout-St.James Willem, Lindner Volkhard, Scholand Mary Beth, Ashton M. Tillett, Di Gennaro Michael Jude, Smith Silvia Enrica

Abstract:

Introduction: Fibrosing lung diseases are characterized by changes in the lung interstitium and are classified based on etiology: 1) environmental/exposure-related, 2) autoimmune-related, 3) sarcoidosis, 4) interstitial pneumonia, and 4) idiopathic. Among interstitial lung diseases (ILD) idiopathic forms, idiopathic pulmonary fibrosis (IPF) is the most severe. Pathogenesis of IPF is characterized by an increased presence of proinflammatory mediators, resulting in alveolar injury, where injury to alveolar epithelium precipitates an increase in collagen deposition, subsequently thickening the alveolar septum and decreasing gas exchange. Identifying biomarkers implicated in the pathogenesis of lung fibrosis is key to developing new therapies and improving the efficacy of existing therapies. The transforming growth factor-beta (TGF-B1), a mediator of tissue repair associated with WNT5A signaling, is partially responsible for fibroblast proliferation in ILD and is the target of Pirfenidone, one of the antifibrotic therapies used for patients with IPF. Canonical TGF-B signaling is mediated by the proteins SMAD 2/3, which are, in turn, indirectly regulated by Collagen Triple Helix Repeat Containing 1 (CTHRC1). In this study, we tested the following hypotheses: 1) CTHRC1 is more elevated in the ILD cohort compared to unaffected controls, and 2) CTHRC1 is differently expressed among ILD types. Material and Methods: CTHRC1 levels were measured by ELISA in 171 plasma samples from the deidentified University of Utah ILD cohort. Data represent a cohort of 131 ILD-affected participants and 40 unaffected controls. CTHRC1 samples were categorized by a pulmonologist based on affectation status and disease subtypes: IPF (n = 45), sarcoidosis (4), nonspecific interstitial pneumonia (16), hypersensitivity pneumonitis (n = 7), interstitial pneumonia (n=13), autoimmune (n = 15), other ILD - a category that includes undifferentiated ILD diagnoses (n = 31), and unaffected controls (n = 40). We conducted a single-factor ANOVA of plasma CTHRC1 levels to test whether CTHRC1 variance among affected and non-affected participants is statistically significantly different. In-silico analysis was performed with Ingenuity Pathway Analysis® to characterize the role of CTHRC1 in the pathway of lung fibrosis. Results: Statistical analyses of CTHRC1 in plasma samples indicate that the average CTHRC1 level is significantly higher in ILD-affected participants than controls, with the autoimmune ILD being higher than other ILD types, thus supporting our hypotheses. In-silico analyses show that CTHRC1 indirectly activates and phosphorylates SMAD3, which in turn cross-regulates TGF-B1. CTHRC1 also may regulate the expression and transcription of TGFB-1 via WNT5A and its regulatory relationship with CTNNB1. Conclusion: In-silico pathway analyses demonstrate that CTHRC1 may be an important biomarker in ILD. Analysis of plasma samples indicates that CTHRC1 expression is positively associated with ILD affectation, with autoimmune ILD having the highest average CTHRC1 values. While characterizing CTHRC1 levels in plasma can help to differentiate among ILD types and predict response to Pirfenidone, the extent to which plasma CTHRC1 level is a function of ILD severity or chronicity is unknown.

Keywords: interstitial lung disease, CTHRC1, idiopathic pulmonary fibrosis, pathway analyses

Procedia PDF Downloads 173
346 Molecular Characterization of Chicken B Cell Marker (ChB6) in Native Chicken of Poonch Region from International Borders of India and Pakistan

Authors: Mandeep Singh Azad.Dibyendu Chakraborty, Vikas Vohra

Abstract:

Introduction: Poonch is one of the remotest districts of the Jammu and Kashmir (UT) and situated on international borders. This native poultry population in these areas is quite hardy and thrives well in adverse climatic conditions. Till date, no local breed from this area (Jammu Province) has been characterized thus present study was undertaken with the main objectives of molecular characterization of ChB6 gene in local native chicken of Poonch region located at international borders between India and Pakistan. The chicken B-cell marker (ChB6) gene has been proposed as a candidate gene in regulating B-cell development. Material and Method: RNA was isolated by Blood RNA Purification Kit (HiPura) and Trizol method from whole blood samples. Positive PCR products with size 1110 bp were selected for further purification, sequencing and analysis. The amplified PCR product was sequenced by Sangers dideoxy chain termination method. The obtained sequence of ChB6 gene of Poonchi chicken were compared by MEGAX software. BioEdit software was used to construct phylogenic tree, and Neighbor Joining method was used to infer evolutionary history. In order to compute evolutionary distance Maximum Composite Likelihood method was used. Results: The positively amplified samples of ChB6 genes were then subjected to Sanger sequencing with “Primer Walking. The sequences were then analyzed using MEGA X and BioEdit software. The sequence results were compared with other reported sequence from different breed of chicken and with other species obtained from the NCBI (National Center for Biotechnology Information). ClustalW method using MEGA X software was used for multiple sequence alignment. The sequence results of ChB6 gene of Poonchi chicken was compared with Centrocercus urophasianus, G. gallus mRNA for B6.1 protein, G. gallus mRNA for B6.2, G. gallus mRNA for B6.3, Gallus gallus B6.1, Halichoeres bivittatus, Miniopterus fuliginosus Ferringtonia patagonica, Tympanuchus phasianellus. The genetic distances were 0.2720, 0.0000, 0.0245, 0.0212, 0.0147, 1.6461, 2.2394, 2.0070 and 0.2363 for ChB6 gene of Poonchi chicken sequence with other sequences in the present study respectively. Sequencing results showed variations between different species. It was observed that AT content were higher then GC content for ChB6 gene. The lower AT content suggests less thermostable. It was observed that there was no sequence difference within the Poonchi population for ChB6 gene. The high homology within chicken population indicates the conservation of ChB6 gene. The maximum difference was observed with Miniopterus fuliginosus (Eastern bent-wing bat) followed by Ferringtonia patagonica and Halichoeres bivittatus. Conclusion: Genetic variation is the essential component for genetic improvement. The results of immune related gene Chb6 shows between population genetic variability. Therefore, further association studies of this gene with some prevalent diseases in large population would be helpful to identify disease resistant/ susceptible genotypes in the indigenous chicken population.

Keywords: ChB6, sequencing, ClustalW, genetic distance, poonchi chicken, SNP

Procedia PDF Downloads 47
345 Integrations of the Instructional System Design for Students Learning Achievement Motives and Science Attitudes with Stem Educational Model on Stoichiometry Issue in Chemistry Classes with Different Genders

Authors: Tiptunya Duangsri, Panwilai Chomchid, Natchanok Jansawang

Abstract:

This research study was to investigate of education decisions must be made which a part of it should be passed on to future generations as obligatory for all members of a chemistry class for students who will prepare themselves for a special position. The descriptions of instructional design were provided and the recent criticisms are discussed. This research study to an outline of an integrative framework for the description of information and the instructional design model give structure to negotiate a semblance of conscious understanding. The aims of this study are to describe the instructional design model for comparisons between students’ genders of their effects on STEM educational learning achievement motives to their science attitudes and logical thinking abilities with a sample size of 18 students at the 11th grade level with the cluster random sampling technique in Mahawichanukul School were designed. The chemistry learning environment was administered with the STEM education method. To build up the 5-instrument lesson instructional plan issues were instructed innovations, the 30-item Logical Thinking Test (LTT) on 5 scales, namely; Inference, Recognition of Assumptions, Deduction, Interpretation and Evaluation scales was used. Students’ responses of their perceptions with the Test Of Chemistry-Related Attitude (TOCRA) were assessed of their attitude in science toward chemistry. The validity from Index Objective Congruence value (IOC) checked by five expert specialist educator in two chemistry classroom targets in STEM education, the E1/E2 process were equaled evidence of 84.05/81.42 which results based on criteria are higher than of 80/80 standard level with the IOC from the expert educators. Comparisons between students’ learning achievement motives with STEM educational model on stoichiometry issue in chemistry classes with different genders were differentiated at evidence level of .05, significantly. Associations between students’ learning achievement motives on their posttest outcomes and logical thinking abilities, the predictive efficiency (R2) values indicate that 69% and 70% of the variances in different male and female student groups of their logical thinking abilities. The predictive efficiency (R2) values indicate that 73%; and 74% of the variances in different male and female student groups of their science attitudes toward chemistry were associated. Statistically significant on students’ perceptions of their chemistry learning classroom environment and their science attitude toward chemistry when using the MCI and TOCRA, the predictive efficiency (R2) values indicated that 72% and 74% of the variances in different male and female student groups of their chemistry classroom climate, consequently. Suggestions that supporting chemistry or science teachers from science, technology, engineering and mathematics (STEM) in addressing complex teaching and learning issues related instructional design to develop, teach, and assess traditional are important strategies with a focus on STEM education instructional method.

Keywords: development, the instructional design model, students learning achievement motives, science attitudes with STEM educational model, stoichiometry issue, chemistry classes, genders

Procedia PDF Downloads 257
344 Addressing the Biocide Residue Issue in Museum Collections Already in the Planning Phase: An Investigation Into the Decontamination of Biocide Polluted Museum Collections Using the Temperature and Humidity Controlled Integrated Contamination Manageme

Authors: Nikolaus Wilke, Boaz Paz

Abstract:

Museum staff, conservators, restorers, curators, registrars, art handlers but potentially also museum visitors are often exposed to the harmful effects of biocides, which have been applied to collections in the past for the protection and preservation of cultural heritage. Due to stable light, moisture, and temperature conditions, the biocidal active ingredients were preserved for much longer than originally assumed by chemists, pest controllers, and museum scientists. Given the requirements to minimize the use and handling of toxic substances and the obligations of employers regarding safe working environments for their employees, but also for visitors, the museum sector worldwide needs adequate decontamination solutions. Today there are millions of contaminated objects in museums. This paper introduces the results of a systematic investigation into the reduction rate of biocide contamination in various organic materials that were treated with the humidity and temperature controlled ICM (Integrated Contamination Management) method. In the past, collections were treated with a wide range, at times even with a combination of toxins, either preventively or to eliminate active insect or fungi infestations. It was only later that most of those toxins were recognized as CMR (cancerogenic mutagen reprotoxic) substances. Among them were numerous chemical substances that are banned today because of their toxicity. While the biocidal effect of inorganic salts such as arsenic (arsenic(III) oxide), sublimate (mercury(II) chloride), copper oxychloride (basic copper chloride) and zinc chloride was known very early on, organic tar distillates such as paradichlorobenzene, carbolineum, creosote and naphthalene were increasingly used from the 19th century onwards, especially as wood preservatives. With the rapid development of organic synthesis chemistry in the 20th century and the development of highly effective warfare agents, pesticides and fungicides, these substances were replaced by chlorogenic compounds (e.g. γ-hexachlorocyclohexane (lindane), dichlorodiphenyltrichloroethane (DDT), pentachlorophenol (PCP), hormone-like derivatives such as synthetic pyrethroids (e.g., permethrin, deltamethrin, cyfluthrin) and phosphoric acid esters (e.g., dichlorvos, chlorpyrifos). Today we know that textile artifacts (costumes, uniforms, carpets, tapestries), wooden objects, herbaria, libraries, archives and historical wall decorations made of fabric, paper and leather were also widely treated with toxic inorganic and organic substances. The migration (emission) of pollutants from the contaminated objects leads to continuous (secondary) contamination and accumulation in the indoor air and dust. It is important to note that many of mentioned toxic substances are also material-damaging; they cause discoloration and corrosion. Some, such as DDT, form crystals, which in turn can cause micro tectonic, destructive shifting, for example, in paint layers. Museums must integrate sustainable solutions to address the residual biocide problems already in the planning phase. Gas and dust phase measurements and analysis must become standard as well as methods of decontamination.

Keywords: biocides, decontamination, museum collections, toxic substances in museums

Procedia PDF Downloads 92
343 Using AI Based Software as an Assessment Aid for University Engineering Assignments

Authors: Waleed Al-Nuaimy, Luke Anastassiou, Manjinder Kainth

Abstract:

As the process of teaching has evolved with the advent of new technologies over the ages, so has the process of learning. Educators have perpetually found themselves on the lookout for new technology-enhanced methods of teaching in order to increase learning efficiency and decrease ever expanding workloads. Shortly after the invention of the internet, web-based learning started to pick up in the late 1990s and educators quickly found that the process of providing learning material and marking assignments could change thanks to the connectivity offered by the internet. With the creation of early web-based virtual learning environments (VLEs) such as SPIDER and Blackboard, it soon became apparent that VLEs resulted in higher reported computer self-efficacy among students, but at the cost of students being less satisfied with the learning process . It may be argued that the impersonal nature of VLEs, and their limited functionality may have been the leading factors contributing to this reported dissatisfaction. To this day, often faced with the prospects of assigning colossal engineering cohorts their homework and assessments, educators may frequently choose optimally curated assessment formats, such as multiple-choice quizzes and numerical answer input boxes, so that automated grading software embedded in the VLEs can save time and mark student submissions instantaneously. A crucial skill that is meant to be learnt during most science and engineering undergraduate degrees is gaining the confidence in using, solving and deriving mathematical equations. Equations underpin a significant portion of the topics taught in many STEM subjects, and it is in homework assignments and assessments that this understanding is tested. It is not hard to see that this can become challenging if the majority of assignment formats students are engaging with are multiple-choice questions, and educators end up with a reduced perspective of their students’ ability to manipulate equations. Artificial intelligence (AI) has in recent times been shown to be an important consideration for many technologies. In our paper, we explore the use of new AI based software designed to work in conjunction with current VLEs. Using our experience with the software, we discuss its potential to solve a selection of problems ranging from impersonality to the reduction of educator workloads by speeding up the marking process. We examine the software’s potential to increase learning efficiency through its features which claim to allow more customized and higher-quality feedback. We investigate the usability of features allowing students to input equation derivations in a range of different forms, and discuss relevant observations associated with these input methods. Furthermore, we make ethical considerations and discuss potential drawbacks to the software, including the extent to which optical character recognition (OCR) could play a part in the perpetuation of errors and create disagreements between student intent and their submitted assignment answers. It is the intention of the authors that this study will be useful as an example of the implementation of AI in a practical assessment scenario insofar as serving as a springboard for further considerations and studies that utilise AI in the setting and marking of science and engineering assignments.

Keywords: engineering education, assessment, artificial intelligence, optical character recognition (OCR)

Procedia PDF Downloads 107
342 Resolving a Piping Vibration Problem by Installing Viscous Damper Supports

Authors: Carlos Herrera Sierralta, Husain M. Muslim, Meshal T. Alsaiari, Daniel Fischer

Abstract:

Preventing piping fatigue flow induced vibration in the Oil & Gas sector demands not only the constant development of engineering design methodologies based on available software packages, but also special piping support technologies for designing safe and reliable piping systems. The vast majority of piping vibration problems in the Oil & Gas industry are provoked by the process flow characteristics which are basically intrinsically related to the fluid properties, the type of service and its different operational scenarios. In general, the corrective actions recommended for flow induced vibration in piping systems can be grouped in two major areas: those which affect the excitation mechanisms typically associated to process variables, and those which affect the response mechanism of the pipework per se, and the pipework associated steel support structure. Where possible the first option is to try to solve the flow induced problem from the excitation mechanism perspective. However, in producing facilities the approach of changing process parameters might not always be convenient as it could lead to reduction of production rates or it may require the shutdown of the system in order to perform the required piping modification. That impediment might lead to a second option, which is to modify the response of the piping system to excitation generated by the type of process flow. In principle, the action of shifting the natural frequency of the system well above the frequency inherent to the process always favours the elimination, or considerably reduces, the level of vibration experienced by the piping system. Tightening up the clearances at the supports (ideally zero gap), and adding new static supports at the system, are typical ways of increasing the natural frequency of the piping system. However, only stiffening the piping system may not be sufficient to resolve the vibration problem, and in some cases, it might not be feasible to implement it at all, as the available piping layout could create limitations on adding supports due to thermal expansion/contraction requirements. In these cases, utilization of viscous damper supports could be recommended as these devices can allow relatively large quasi-static movement of piping while providing sufficient capabilities of dissipating the vibration. Therefore, when correctly selected and installed, viscous damper supports can provide a significant effect on the response of the piping system over a wide range of frequencies. Viscous dampers cannot be used to support sustained, static loads. This paper shows over a real case example, a methodology which allows to determine the selection of the viscous damper supports via a dynamic analysis model. By implementing this methodology, it was possible to resolve the piping vibration problem throughout redesigning adequately the existing static piping supports and by adding new viscous dampers supports. This was conducted on-stream at the oil crude pipeline in question without the necessity of reducing the production of the plant. Concluding that the application of the methodology of this paper can be applied to solve similar cases in a straightforward manner.

Keywords: dynamic analysis, flow induced vibration, piping supports, turbulent flow, slug flow, viscous damper

Procedia PDF Downloads 105