Search results for: matterport model
4239 Shear Behaviour of RC Deep Beams with Openings Strengthened with Carbon Fiber Reinforced Polymer
Authors: Mannal Tariq
Abstract:
Construction industry is making progress at a high pace. The trend of the world is getting more biased towards the high rise buildings. Deep beams are one of the most common elements in modern construction having small span to depth ratio. Deep beams are mostly used as transfer girders. This experimental study consists of 16 reinforced concrete (RC) deep beams. These beams were divided into two groups; A and B. Groups A and B consist of eight beams each, having 381 mm (15 in) and 457 mm (18 in) depth respectively. Each group was further subdivided into four sub groups each consisting of two identical beams. Each subgroup was comprised of solid/control beam (without opening), opening above neutral axis (NA), at NA and below NA. Except for control beams, all beams with openings were strengthened with carbon fibre reinforced polymer (CFRP) vertical strips. These eight groups differ from each other based on depth and location of openings. For testing sake, all beams have been loaded with two symmetrical point loads. All beams have been designed based on strut and tie model concept. The outcome of experimental investigation elaborates the difference in the shear behaviour of deep beams based on depth and location of circular openings variation. 457 mm (18 in) deep beam with openings above NA show the highest strength and 381 mm (15 in) deep beam with openings below NA show the least strength. CFRP sheets played a vital role in increasing the shear capacity of beams.Keywords: CFRP, deep beams, openings in deep beams, strut and tie modal, shear behaviour
Procedia PDF Downloads 3044238 Assessing the Impact of Urbanization on Flood Risk: A Case Study
Authors: Talha Ahmed, Ishtiaq Hassan
Abstract:
Urban areas or metropolitan is portrayed by the very high density of population due to the result of these economic activities. Some critical elements, such as urban expansion and climate change, are driving changes in cities with exposure to the incidence and impacts of pluvial floods. Urban communities are recurrently developed by huge spaces by which water cannot enter impermeable surfaces, such as man-made permanent surfaces and structures, which do not cause the phenomena of infiltration and percolation. Urban sprawl can result in increased run-off volumes, flood stage and flood extents during heavy rainy seasons. The flood risks require a thorough examination of all aspects affecting to severe an event in order to accurately estimate their impacts and other risk factors associated with them. For risk evaluation and its impact due to urbanization, an integrated hydrological modeling approach is used on the study area in Islamabad (Pakistan), focusing on a natural water body that has been adopted in this research. The vulnerability of the physical elements at risk in the research region is analyzed using GIS and SOBEK. The supervised classification of land use containing the images from 1980 to 2020 is used. The modeling of DEM with selected return period is used for modeling a hydrodynamic model for flood event inundation. The selected return periods are 50,75 and 100 years which are used in flood modeling. The findings of this study provided useful information on high-risk places and at-risk properties.Keywords: urbanization, flood, flood risk, GIS
Procedia PDF Downloads 1754237 Analysis of The Effect about Different Automatic Sprinkler System Extinguishing The Scooter Fire in Underground Parking Space
Authors: Yu-Hsiu Li, Chun-Hsun Chen
Abstract:
Analysis of automatic sprinkler system protects the scooter in underground parking space, the current of general buildings is mainly equipped with foam fire-extinguishing equipment in Taiwan, the automatic sprinkling system has economic and environmental benefits, even high stability, China and the United States allow the parking space to set the automatic sprinkler system under certain conditions. The literature about scooter full-scale fire indicates that the average fire growth coefficient is 0.19 KW/sec2, it represents the scooter fire is classified as ultra-fast time square fire growth model, automatic sprinkler system can suppress the flame height and prevent extending burning. According to the computer simulation (FDS) literature, no matter computer simulation or full-scale experiments, the active order and trend about sprinkler heads are the same. This study uses the computer simulation program (FDS), the simulation scenario designed includes using a different system (enclosed wet type and open type), and different configurations. The simulation result demonstrates that the open type requires less time to extinguish the fire than the enclosed wet type if the horizontal distance between the sprinkler and the scooter ignition source is short, the sprinkler can act quickly, the heat release rate of fire can be suppressed in advance.Keywords: automatic sprinkler system, underground parking Spac, FDS, scooter fire extinguishing
Procedia PDF Downloads 1424236 Grid Based Traffic Vulnerability Model Using Betweenness Centrality for Urban Disaster Management Information
Authors: Okyu Kwon, Dongho Kang, Byungsik Kim, Seungkwon Jung
Abstract:
We propose a technique to measure the impact of loss of traffic function in a particular area to surrounding areas. The proposed method is applied to the city of Seoul, which is the capital of South Korea, with a population of about ten million. Based on the actual road network in Seoul, we construct an abstract road network between 1kmx1km grid cells. The link weight of the abstract road network is re-adjusted considering traffic volume measured at several survey points. On the modified abstract road network, we evaluate the traffic vulnerability by calculating a network measure of betweenness centrality (BC) for every single grid cells. This study analyzes traffic impacts caused by road dysfunction due to heavy rainfall in urban areas. We could see the change of the BC value in all other grid cells by calculating the BC value once again when the specific grid cell lost its traffic function, that is, when the node disappeared on the grid-based road network. The results show that it is appropriate to use the sum of the BC variation of other cells as the influence index of each lattice cell on traffic. This research was supported by a grant (2017-MOIS31-004) from Fundamental Technology Development Program for Extreme Disaster Response funded by Korean Ministry of Interior and Safety (MOIS).Keywords: vulnerability, road network, beweenness centrality, heavy rainfall, road impact
Procedia PDF Downloads 954235 Application of Taguchi Techniques on Machining of A356/Al2O3 Metal Matrix Nano-Composite
Authors: Abdallah M. Abdelkawy, Tarek M. El Hossainya, I. El Mahallawib
Abstract:
Recently, significant achievements have been made in development and manufacturing of nano-dispersed metal matrix nanocomposites (MMNCs). They gain their importance due to their high strength to weight ratio. The machining problems of these new materials are less widely investigated, thus this work focuses on machining of them. Aluminum-Silicon (A356)/ MMNC dispersed with alumina (Al2O3) is important in many applications include engine blocks. The final finish process of this application depends heavily on machining. The most important machining parameter studied includes: cutting force and surface roughness. Experimental trails are performed on the number of special samples of MMNC (with different Al2O3%) where the relation between Al2O3% and cutting speed, feed rate and cutting depth with cutting force and surface roughness were studied. The data obtained were statistically analyzed using Analysis of variance (ANOVA) to define the significant factors on both cutting force and surface roughness and their level of confident. Response Surface Methodology (RSM) is used to build a model relating cutting conditions and Al2O3% to the cutting force and surface roughness. The results have shown that feed and depth of cut have the major contribution on the cutting force and the surface roughness followed by cutting speed and nano-percent in MMNCs.Keywords: machinability, cutting force, surface roughness, Ra, RSM, ANOVA, MMNCs
Procedia PDF Downloads 3694234 Modeling Factors Affecting Fertility Transition in Africa: Case of Kenya
Authors: Dennis Okora Amima Ondieki
Abstract:
Fertility transition has been identified to be affected by numerous factors. This research aimed to investigate the most real factors affecting fertility transition in Kenya. These factors were firstly extracted from the literature convened into demographic features, social, and economic features, social-cultural features, reproductive features and modernization features. All these factors had 23 factors identified for this study. The data for this study was from the Kenya Demographic and Health Surveys (KDHS) conducted in 1999-2003 and 2003-2008/9. The data was continuous, and it involved the mean birth order for the ten periods. Principal component analysis (PCA) was utilized using 23 factors. Principal component analysis conveyed religion, region, education and marital status as the real factors. PC scores were calculated for every point. The identified principal components were utilized as forecasters in the multiple regression model, with the fertility level as the response variable. The four components were found to be affecting fertility transition differently. It was found that fertility is affected positively by factors of region and marital and negatively by factors of religion and education. These four factors can be considered in the planning policy in Kenya and Africa at large.Keywords: fertility transition, principal component analysis, Kenya demographic health survey, birth order
Procedia PDF Downloads 1024233 Data-Driven Analysis of Velocity Gradient Dynamics Using Neural Network
Authors: Nishant Parashar, Sawan S. Sinha, Balaji Srinivasan
Abstract:
We perform an investigation of the unclosed terms in the evolution equation of the velocity gradient tensor (VGT) in compressible decaying turbulent flow. Velocity gradients in a compressible turbulent flow field influence several important nonlinear turbulent processes like cascading and intermittency. In an attempt to understand the dynamics of the velocity gradients various researchers have tried to model the unclosed terms in the evolution equation of the VGT. The existing models proposed for these unclosed terms have limited applicability. This is mainly attributable to the complex structure of the higher order gradient terms appearing in the evolution equation of VGT. We investigate these higher order gradients using the data from direct numerical simulation (DNS) of compressible decaying isotropic turbulent flow. The gas kinetic method aided with weighted essentially non-oscillatory scheme (WENO) based flow- reconstruction is employed to generate DNS data. By applying neural-network to the DNS data, we map the structure of the unclosed higher order gradient terms in the evolution of the equation of the VGT with VGT itself. We validate our findings by performing alignment based study of the unclosed higher order gradient terms obtained using the neural network with the strain rate eigenvectors.Keywords: compressible turbulence, neural network, velocity gradient tensor, direct numerical simulation
Procedia PDF Downloads 1684232 Analyzing the Performance of Machine Learning Models to Predict Alzheimer's Disease and its Stages Addressing Missing Value Problem
Authors: Carlos Theran, Yohn Parra Bautista, Victor Adankai, Richard Alo, Jimwi Liu, Clement G. Yedjou
Abstract:
Alzheimer's disease (AD) is a neurodegenerative disorder primarily characterized by deteriorating cognitive functions. AD has gained relevant attention in the last decade. An estimated 24 million people worldwide suffered from this disease by 2011. In 2016 an estimated 40 million were diagnosed with AD, and for 2050 is expected to reach 131 million people affected by AD. Therefore, detecting and confirming AD at its different stages is a priority for medical practices to provide adequate and accurate treatments. Recently, Machine Learning (ML) models have been used to study AD's stages handling missing values in multiclass, focusing on the delineation of Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive Impairment (LMCI), and normal cognitive (CN). But, to our best knowledge, robust performance information of these models and the missing data analysis has not been presented in the literature. In this paper, we propose studying the performance of five different machine learning models for AD's stages multiclass prediction in terms of accuracy, precision, and F1-score. Also, the analysis of three imputation methods to handle the missing value problem is presented. A framework that integrates ML model for AD's stages multiclass prediction is proposed, performing an average accuracy of 84%.Keywords: alzheimer's disease, missing value, machine learning, performance evaluation
Procedia PDF Downloads 2524231 Autonomous Taxiing Robot for Grid Resilience Enhancement in Green Airport
Authors: Adedayo Ajayi, Patrick Luk, Liyun Lao
Abstract:
This paper studies the supportive needs for the electrical infrastructure of the green airport. In particular, the core objective revolves around the choice of electric grid configuration required to meet the expected electrified loads, i.e., the taxiing and charging loads of hybrid /pure electric aircraft in the airport. Further, reliability and resilience are critical aspects of a newly proposed grid; the concept of mobile energy storage as energy as a service (EAAS) for grid support in the proposed green airport is investigated using an autonomous electric taxiing robot (A-ETR) at a case study (Cranfield Airport). The performance of the model is verified and validated through DigSILENT power factory simulation software to compare the networks in terms of power quality, short circuit fault levels, system voltage profile, and power losses. Contingency and reliability index analysis are further carried out to show the potential of EAAS on the grid. The results demonstrate that the low voltage a.c network ( LVAC) architecture gives better performance with adequate compensation than the low voltage d.c (LVDC) microgrid architecture for future green airport electrification integration. And A-ETR can deliver energy as a service (EaaS) to improve the airport's electrical power system resilience and energy supply.Keywords: reliability, voltage profile, flightpath 2050, green airport
Procedia PDF Downloads 824230 The Ancient Oasis Architecture of Ghadames
Authors: Amer Rghei
Abstract:
The Sahara region potentially is one of the most attractive heritage areas in the world. Yet presently, the heritage of the Sahara is currently facing serious planning challenges of underdeveloped and neglected economic and physical potentials. Deterioration of heritage resources has been observed by the author during his several field tours for historic sites has discovered special heritage values such as in Ghadames which combines historic oasis, natural environment along with its exceptional urban fabric and architectural character. Despite the richness of Ghadames with historic significance, it is found that at the present time, Ghadames city, the UNESCO World Heritage site, is facing serious challenges including the abandonment by its tenants and inclusive negligence by its officials. The author believes that Ghadames can illustrate an excellent heritage example in North Africa with cultural pride and socio-economic opportunities that can contribute to overall economic development in the Sahara region. However, the paper deals with the case of Ghadames ‘The World Heritage Site’ in Libya and discusses the current challenges and possible planning for its heritage conservation strategy. The momentous resources in Ghadames with their historical, environmental, economic, social, cultural, and aesthetic values would benefit from a careful heritage planning and management program for its significant values. In this paper an attempt is made to investigate this issue seriously towards building a model of a strategy for heritage conservation planning for Ghadames is proposed.Keywords: Ghadames, Oasis architecture, Sahara region, heritage environment
Procedia PDF Downloads 2984229 Management of Quality Assessment of Teaching and Methodological Activities of a Teacher of a Military, Special Educational Institution
Authors: Maxutova I. O., Bulatbayeva A. A.
Abstract:
In modern conditions, the competitiveness of the military, a special educational institution in the educational market, is determined by the quality of the provision of educational services and the economic efficiency of activities. Improving the quality of educational services of the military, the special educational institution is an urgent socially and economically significant problem. The article shows a possible system for the formation of the competitiveness of military, the special educational institution through an assessment of the quality of the educational process, the problem of the transition of the military, special educational institution to digital support of indicative monitoring of the quality of services provided is raised. Quality monitoring is presented in the form of a program or information system, the work of which is carried out in a military, the special educational institution through highlighted interrelated elements. A result-oriented model of management and assessment of the quality of work of the military, the special educational institution is proposed. The indicative indicators for assessing the quality of the teaching and methodological activity of the teacher are considered and described. The publication was prepared as part of an applied grant study for 2020-2022 commissioned by the Ministry of Education and Science of the Republic of Kazakhstan on the topic "Development of a comprehensive methodology for assessing the quality of education of graduates of military special educational institutions" IRN 00029/GF-20.Keywords: quality assessment, indicative indicators, monitoring program, educational and methodological activities, professional activities, result
Procedia PDF Downloads 1514228 The Shona and isiXhosa Linguistic Matrimony Through Code-Switching in Cape Town
Authors: John Mambambo
Abstract:
Debates on the link between Bantu languages are often epitomized by animated theoretical critiques, including the language zoning and groupings. This evaluative, qualitative inquiry hovers above theoretical critiques to offer the sparsely studied ChiShona and isiXhosa code-switching nexus, a yawning gap in scholarship. Using interviews, questionnaires and observations, data germane to the study were collected from a purposively selected group of Shona speakers who had resided in Xhosa-speaking communities for not less than a year. Deploying Myers-Scotton’s Markedness theory, the paper gazes into the pragmatic linguistic affinity that is affirmed through the Shona-Xhosa code-switching in Cape Town. The assorted social variables motivating bilingual speakers to code-switch in Cape Town are also explored in this study. The study unveils that Shona speakers are motivated to code-switch by the linguistic affinity between ChiShona and isiXhosa. Other socio-political justifications also give an impetus to this phenomenon. The Matrix Language Frame Model affirms that ChiShona is the base while isiXhosa is the embedded language during code-switching. This paper is a momentous advancement of the extant literature on code-switching. It is a unique contribution to the nexus between ChiShona and isiXhosa languages, providing fresh insights into the discourse on African language comparison studies.Keywords: code-switching, chishona, isiXhosa, bilingualism
Procedia PDF Downloads 1094227 Analysis of Global Social Responsibilities of Social Studies Pre-Service Teachers Based on Several Variables
Authors: Zafer Cakmak, Birol Bulut, Cengiz Taskiran
Abstract:
Technological advances, the world becoming smaller and increasing world population increase our interdependence with individuals that we maybe never meet face to face. It is impossible for the modern individuals to escape global developments and their impact. Furthermore, it is very unlikely for the global societies to turn back from the path they are in. These effects of globalization in fact encumber the humankind at a certain extend. We succumb to these responsibilities for we desire a better future, a habitable world and a more peaceful life. In the present study, global responsibility levels of the participants were measured and the significance of global reactions that individuals have to develop on global issues was reinterpreted under the light of the existing literature. The study was conducted with general survey model, one of the survey methodologies General survey models are surveys conducted on the whole universe or a group, sample or sampling taken from the universe to arrive at a conclusion about the universe, which includes a high number of elements. The study was conducted with data obtained from 350 pre-service teachers attending 2016 spring semester to determine 'Global Social Responsibility' levels of social studies pre-service teachers based on several variables. Collected data were analyzed using SPSS 21.0 software. T-test and ANOVA were utilized in the data analysis.Keywords: social studies, globalization, global social responsibility, education
Procedia PDF Downloads 3904226 Optimization of Proton Exchange Membrane Fuel Cell Parameters Based on Modified Particle Swarm Algorithms
Authors: M. Dezvarei, S. Morovati
Abstract:
In recent years, increasing usage of electrical energy provides a widespread field for investigating new methods to produce clean electricity with high reliability and cost management. Fuel cells are new clean generations to make electricity and thermal energy together with high performance and no environmental pollution. According to the expansion of fuel cell usage in different industrial networks, the identification and optimization of its parameters is really significant. This paper presents optimization of a proton exchange membrane fuel cell (PEMFC) parameters based on modified particle swarm optimization with real valued mutation (RVM) and clonal algorithms. Mathematical equations of this type of fuel cell are presented as the main model structure in the optimization process. Optimized parameters based on clonal and RVM algorithms are compared with the desired values in the presence and absence of measurement noise. This paper shows that these methods can improve the performance of traditional optimization methods. Simulation results are employed to analyze and compare the performance of these methodologies in order to optimize the proton exchange membrane fuel cell parameters.Keywords: clonal algorithm, proton exchange membrane fuel cell (PEMFC), particle swarm optimization (PSO), real-valued mutation (RVM)
Procedia PDF Downloads 3514225 The Relation between the Organizational Trust Level and Organizational Justice Perceptions of Staff in Konya Municipality: A Theoretical and Empirical Study
Authors: Handan Ertaş
Abstract:
The aim of the study is to determine the relationship between organizational trust level and organizational justice of Municipality officials. Correlational method has been used via descriptive survey model and Organizational Justice Perception Scale, Organizational Trust Inventory and Interpersonal Trust Scale have been applied to 353 participants who work in Konya Metropolitan Municipality and central district municipalities in the study. Frequency as statistical method, Independent Samples t test for binary groups, One Way-ANOVA analyses for multi-groups and Pearson Correlation analysis have been used to determine the relation in the data analysis process. It has been determined in the outcomes of the study that participants have high level of organizational trust, “Interpersonal Trust” is in the first place and there is a significant difference in the favor of male officials in terms of Trust on the Organization Itself and Interpersonal Trust. It has also been understood that officials in district municipalities have higher perception level in all dimensions, there is a significant difference in Trust on the Organization sub-dimension and work status is an important factor on organizational trust perception. Moreover, the study has shown that organizational justice implementations are important in raising trust of official on the organization, administrator and colleagues, and there is a parallel relation between Organizational Trust components and Organizational Trust dimensions.Keywords: organizational trust level, organizational justice perceptions, staff, Konya
Procedia PDF Downloads 3474224 A Diagnostic Comparative Analysis of on Simultaneous Localization and Mapping (SLAM) Models for Indoor and Outdoor Route Planning and Obstacle Avoidance
Authors: Seyed Esmail Seyedi Bariran, Khairul Salleh Mohamed Sahari
Abstract:
In robotics literature, the simultaneous localization and mapping (SLAM) is commonly associated with a priori-posteriori problem. The autonomous vehicle needs a neutral map to spontaneously track its local position, i.e., “localization” while at the same time a precise path estimation of the environment state is required for effective route planning and obstacle avoidance. On the other hand, the environmental noise factors can significantly intensify the inherent uncertainties in using odometry information and measurements obtained from the robot’s exteroceptive sensor which in return directly affect the overall performance of the corresponding SLAM. Therefore, the current work is primarily dedicated to provide a diagnostic analysis of six SLAM algorithms including FastSLAM, L-SLAM, GraphSLAM, Grid SLAM and DP-SLAM. A SLAM simulated environment consisting of two sets of landmark locations and robot waypoints was set based on modified EKF and UKF in MATLAB using two separate maps for indoor and outdoor route planning subject to natural and artificial obstacles. The simulation results are expected to provide an unbiased platform to compare the estimation performances of the five SLAM models as well as on the reliability of each SLAM model for indoor and outdoor applications.Keywords: route planning, obstacle, estimation performance, FastSLAM, L-SLAM, GraphSLAM, Grid SLAM, DP-SLAM
Procedia PDF Downloads 4444223 Numerical Investigation of the Flow Around Multi-Element Airfoils
Authors: Taylan Ozturk, Osama Maklad
Abstract:
This study examines the aerodynamic and flow properties of a multi-element airfoil using computational fluid dynamics (CFD) research. This computational analysis aims to optimize slat design concerning lift-drag coefficients and to determine the ideal gap size between the main airfoil and the front flap. It examines the influence of varying angles of attack and the effects of varied Reynolds numbers. A NACA 2412 airfoil, equipped with custom-designed front and rear flaps, was modeled in SolidWorks and simulated in ANSYS Fluent utilizing the k-ω SST turbulence model. This study quantifies lift and drag coefficients, turbulent kinetic energy, and vorticity magnitude across various configurations. The results clearly indicate that the slat-optimized design geometry featuring a 4 mm gap provides the best performance regarding both lift and drag, with maximum efficiency achieved at a 4-degree angle of attack. Furthermore, the results indicate the initiation of stall conditions beyond 20 degrees and demonstrate how an increase in Reynolds numbers influences flow separation and turbulence patterns. In addition, the maximum L/D ratio which is 36.18 achieved. These findings enhance the comprehension of multi-element airfoil behavior, directly impacting aircraft design and operation, particularly in high-lift situations.Keywords: multi-element airfoil, CFD simulation, aerodynamic characteristics, Reynolds number analysis
Procedia PDF Downloads 214222 The Impact of Transformational Leadership and Interpersonal Interaction on Mentoring Function
Authors: Ching-Yuan Huang, Rhay-Hung Weng, Yi-Ting Chen
Abstract:
Mentoring functions will improve new nurses' job performance, provide support with new nurses, and then reduce the turnover rate of them. This study explored the impact of transformational leadership and interpersonal interaction on mentoring functions. We employed a questionnaire survey to collect data and selected a sample of new nurses from three hospitals in Taiwan. A total of 306 valid surveys were obtained. Multiple regression model analysis was conducted to test the study hypothesis. Inspirational motivation, idealized influence, and individualized consideration had a positive influence on overall mentoring function, but intellectual stimulation had a positive influence on career development function only. Perceived similarity and interaction frequency also had positive influences on mentoring functions. When the shift overlap rate exceeded 80%, mentoring function experienced a negative result. The transformational leadership of mentors actually would improve the mentoring functions among new staff nurses. Perceived similarity and interaction frequency between mentees and mentors also had a positive influence on mentoring functions. Managers should enhance the transformational leadership of mentors by designing leadership training and motivation programs. Furthermore, nursing managers should promote the interaction between new staff nurses and their mentors, but the shift overlap rate should not exceed 80%.Keywords: interpersonal interaction, mentoring function, mentor, new nurse, transformational leadership
Procedia PDF Downloads 3324221 Fraud Detection in Credit Cards with Machine Learning
Authors: Anjali Chouksey, Riya Nimje, Jahanvi Saraf
Abstract:
Online transactions have increased dramatically in this new ‘social-distancing’ era. With online transactions, Fraud in online payments has also increased significantly. Frauds are a significant problem in various industries like insurance companies, baking, etc. These frauds include leaking sensitive information related to the credit card, which can be easily misused. Due to the government also pushing online transactions, E-commerce is on a boom. But due to increasing frauds in online payments, these E-commerce industries are suffering a great loss of trust from their customers. These companies are finding credit card fraud to be a big problem. People have started using online payment options and thus are becoming easy targets of credit card fraud. In this research paper, we will be discussing machine learning algorithms. We have used a decision tree, XGBOOST, k-nearest neighbour, logistic-regression, random forest, and SVM on a dataset in which there are transactions done online mode using credit cards. We will test all these algorithms for detecting fraud cases using the confusion matrix, F1 score, and calculating the accuracy score for each model to identify which algorithm can be used in detecting frauds.Keywords: machine learning, fraud detection, artificial intelligence, decision tree, k nearest neighbour, random forest, XGBOOST, logistic regression, support vector machine
Procedia PDF Downloads 1484220 Enhanced Image Representation for Deep Belief Network Classification of Hyperspectral Images
Authors: Khitem Amiri, Mohamed Farah
Abstract:
Image classification is a challenging task and is gaining lots of interest since it helps us to understand the content of images. Recently Deep Learning (DL) based methods gave very interesting results on several benchmarks. For Hyperspectral images (HSI), the application of DL techniques is still challenging due to the scarcity of labeled data and to the curse of dimensionality. Among other approaches, Deep Belief Network (DBN) based approaches gave a fair classification accuracy. In this paper, we address the problem of the curse of dimensionality by reducing the number of bands and replacing the HSI channels by the channels representing radiometric indices. Therefore, instead of using all the HSI bands, we compute the radiometric indices such as NDVI (Normalized Difference Vegetation Index), NDWI (Normalized Difference Water Index), etc, and we use the combination of these indices as input for the Deep Belief Network (DBN) based classification model. Thus, we keep almost all the pertinent spectral information while reducing considerably the size of the image. In order to test our image representation, we applied our method on several HSI datasets including the Indian pines dataset, Jasper Ridge data and it gave comparable results to the state of the art methods while reducing considerably the time of training and testing.Keywords: hyperspectral images, deep belief network, radiometric indices, image classification
Procedia PDF Downloads 2804219 Recommendations Using Online Water Quality Sensors for Chlorinated Drinking Water Monitoring at Drinking Water Distribution Systems Exposed to Glyphosate
Authors: Angela Maria Fasnacht
Abstract:
Detection of anomalies due to contaminants’ presence, also known as early detection systems in water treatment plants, has become a critical point that deserves an in-depth study for their improvement and adaptation to current requirements. The design of these systems requires a detailed analysis and processing of the data in real-time, so it is necessary to apply various statistical methods appropriate to the data generated, such as Spearman’s Correlation, Factor Analysis, Cross-Correlation, and k-fold Cross-validation. Statistical analysis and methods allow the evaluation of large data sets to model the behavior of variables; in this sense, statistical treatment or analysis could be considered a vital step to be able to develop advanced models focused on machine learning that allows optimized data management in real-time, applied to early detection systems in water treatment processes. These techniques facilitate the development of new technologies used in advanced sensors. In this work, these methods were applied to identify the possible correlations between the measured parameters and the presence of the glyphosate contaminant in the single-pass system. The interaction between the initial concentration of glyphosate and the location of the sensors on the reading of the reported parameters was studied.Keywords: glyphosate, emergent contaminants, machine learning, probes, sensors, predictive
Procedia PDF Downloads 1234218 Fault Tolerant Control System Using a Multiple Time Scale SMC Technique and a Geometric Approach
Authors: Ghodbane Azeddine, Saad Maarouf, Boland Jean-Francois, Thibeault Claude
Abstract:
This paper proposes a new design of an active fault-tolerant flight control system against abrupt actuator faults. This overall system combines a multiple time scale sliding mode controller for fault compensation and a geometric approach for fault detection and diagnosis. The proposed control system is able to accommodate several kinds of partial and total actuator failures, by using available healthy redundancy actuators. The overall system first estimates the correct fault information using the geometric approach. Then, and based on that, a new reconfigurable control law is designed based on the multiple time scale sliding mode technique for on-line compensating the effect of such faults. This approach takes advantages of the fact that there are significant difference between the time scales of aircraft states that have a slow dynamics and those that have a fast dynamics. The closed-loop stability of the overall system is proved using Lyapunov technique. A case study of the non-linear model of the F16 fighter, subject to the rudder total loss of control confirms the effectiveness of the proposed approach.Keywords: actuator faults, fault detection and diagnosis, fault tolerant flight control, sliding mode control, multiple time scale approximation, geometric approach for fault reconstruction, lyapunov stability
Procedia PDF Downloads 3704217 Protective Effects of Vitamin C and Vitamin E on Experimentally Induced Testicular Torsion and Detorsion in Rat Model
Authors: Anu Vinod Ranade
Abstract:
Aim: To evaluate and compare the effects of Vitamin C and Vitamin E on experimentally induced testicular torsion and detorsion in rats. Methods: Forty Male Wistar Albino rats were divided into five groups. Animals in the Group I underwent Sham operation, Group II consisted of animals that were subjected to torsion for three hours followed by detorsion for 24 hours without any treatment. While Group III, IV and V were orally pretreated with Vitamin C (40mg/kg.bw), vitamin E (100mg/kg.bw) and a combination of Vitamin C and vitamin E respectively for a period of 30 days. The testes of the experimental groups were manually rotated to 720° clockwise for three hours and counter rotated for 24 hours to induce ischemia and reperfusion. Sequential biopsies were performed and the testes were collected at the end of 24 hours of detrosion for morphological evaluation. Result: There was a significant decrease in the standard tubular diameter and the epithelial height of the seminiferous tubules in the untreated group when compared to Sham controls. The standard tubular diameter and seminiferous epithelial height showed near normal values when animals were pretreated with Vitamin C and Vitamin E individually or in combination. Conclusion: The results showed that pretreatment of with antioxidants vitamin E and vitamin C when administered prior to testicular torsion in rats significantly reduced the torsion and detorsion induced histopathlogical injury.Keywords: vitamin C, vitamin E, standard tubular diameter, standard epithelial height, testicular torsion
Procedia PDF Downloads 3164216 Loan Supply and Asset Price Volatility: An Experimental Study
Authors: Gabriele Iannotta
Abstract:
This paper investigates credit cycles by means of an experiment based on a Kiyotaki & Moore (1997) model with heterogeneous expectations. The aim is to examine how a credit squeeze caused by high lender-level risk perceptions affects the real prices of a collateralised asset, with a special focus on the macroeconomic implications of rising price volatility in terms of total welfare and the number of bankruptcies that occur. To do that, a learning-to-forecast experiment (LtFE) has been run where participants are asked to predict the future price of land and then rewarded based on the accuracy of their forecasts. The setting includes one lender and five borrowers in each of the twelve sessions split between six control groups (G1) and six treatment groups (G2). The only difference is that while in G1 the lender always satisfies borrowers’ loan demand (bankruptcies permitting), in G2 he/she closes the entire credit market in case three or more bankruptcies occur in the previous round. Experimental results show that negative risk-driven supply shocks amplify the volatility of collateral prices. This uncertainty worsens the agents’ ability to predict the future value of land and, as a consequence, the number of defaults increases and the total welfare deteriorates.Keywords: Behavioural Macroeconomics, Credit Cycle, Experimental Economics, Heterogeneous Expectations, Learning-to-Forecast Experiment
Procedia PDF Downloads 1254215 The Effects of Metformin And PCL-sorafenib Nanoparticles Co-treatment on MCF-7 Cell Culture Model of Breast Cancer
Authors: Emad Heydarnia, Aref Sepasi, Nika Asefi, Sara Khakshournia, Javad Mohammadnejad
Abstract:
Background: Despite breakthrough therapeutics in breast cancer, it is one of the main causes of mortality among women worldwide. Thus, drug therapies for treating breast cancer have recently been developed by scientists. Metformin and Sorafenib are well-known therapeutic in breast cancer. In the present study, we combined Sorafenib and PCL-sorafenib with metformin to improve drug absorption and promote therapeutic efficiency. Methods: The MCF-7 cells were treated with Metformin, Sorafenib, or PCL-sorafenib. The growth inhibitory effect of these drugs and cell viability were assessed using MTT and flow cytometry assays, respectively. The expression of targeted genes involved in cell proliferation, signaling, and the cell cycle was measured by Real-time PCR. Results: The results showed that MCF-7 cells treated with Metformin/Sorafenib and PCL-sorafenib/Metformin co-treatment contributed to 50% viability compared to untreated group. Moreover, PI and Annexin V staining tests showed that the cells viability for Metformin/Sorafenib and PCL-sorafenib/Metformin was 38% and 17%, respectively. Furthermore, Sorafenib/Metformin and PCL-sorafenib/Metformin leads to p53 gene expression increase by which they can increase ROS, thereby decreasing GPX4 gene expression. In addition, they affected the expression of BCL2, and BAX genes and altered the cell cycle. Conclusion: Together, the combination of PCL-sorafenib/Metformin and Sorafenib/Metformin increased Sorafenib absorption at lower doses and also leads to apoptosis and oxidative stress increases in MCF-7 cells.Keywords: breast cancer, metformin, nanotechnology, sorafenib
Procedia PDF Downloads 724214 Income Diversification of Small Holder Farmers in Bosso Local Government Area of Niger State, Nigeria
Authors: Oladipo Joseph Ajayi, Yakubu Muhammed, Caleb Galadima
Abstract:
This study was conducted to examine the income diversification of smallholder farmers in Bosso Local Government area of Niger state, Nigeria. The specific objectives were to examine the socio-economic characteristics of the farmers, identify the sources of income among the farmers, determine the pattern of income diversification and evaluate the determinants of income diversification of farmers in the study area. A multi-stage sampling technique was used to select 94 respondents for the study. Primary data were used, and these were collected with aid of a well structured interview schedule. Descriptive statistics, diversity index, and Tobit regression model were employed to analyze the data. The mean age of the farmers was 44 years. The average household size was 8 members per household, and the average farming experience was 12 years. 21.27 percent did not have formal education. It was further found that 69.1 percent of the respondents had an income diversity index of 0.3-0.4. This indicated that their level of income diversification was moderately low. The determinants of income diversification in the study area were education, household size, marital status, and primary income. These variables were positively related to income diversification. The study revealed that diversification into various income sources has helped to increase household income to sustain the family demands even though their level of income diversification was low within the study area.Keywords: diversification, income, households, smallholder farmers
Procedia PDF Downloads 2524213 A Life Cycle Assessment (LCA) of Aluminum Production Process
Authors: Alaa Al Hawari, Mohammad Khader, Wael El Hasan, Mahmoud Alijla, Ammar Manawi, Abdelbaki Benamour
Abstract:
The production of aluminium alloys and ingots -starting from the processing of alumina to aluminium, and the final cast product- was studied using a Life Cycle Assessment (LCA) approach. The studied aluminium supply chain consisted of a carbon plant, a reduction plant, a casting plant, and a power plant. In the LCA model, the environmental loads of the different plants for the production of 1 ton of aluminium metal were investigated. The impact of the aluminium production was assessed in eight impact categories. The results showed that for all of the impact categories the power plant had the highest impact only in the cases of Human Toxicity Potential (HTP) the reduction plant had the highest impact and in the Marine Aquatic Eco-Toxicity Potential (MAETP) the carbon plant had the highest impact. Furthermore, the impact of the carbon plant and the reduction plant combined was almost the same as the impact of the power plant in the case of the Acidification Potential (AP). The carbon plant had a positive impact on the environment when it comes to the Eutrophication Potential (EP) due to the production of clean water in the process. The natural gas based power plant used in the case study had 8.4 times less negative impact on the environment when compared to the heavy fuel based power plant and 10.7 times less negative impact when compared to the hard coal based power plant.Keywords: life cycle assessment, aluminium production, supply chain, ecological impacts
Procedia PDF Downloads 5324212 Electrodynamic Principles for Generation and Wireless Transfer of Energy
Authors: Steven D. P. Moore
Abstract:
An electrical discharge in the air induces an electromagnetic (EM) wave capable of wireless transfer, reception, and conversion back into electrical discharge at a distant location. Following Norton’s ground wave principles, EM wave radiation (EMR) runs parallel to the Earth’s surface. Energy in an EMR wave can move through the air and be focused to create a spark at a distant location, focused by a receiver to generate a local electrical discharge. This local discharge can be amplified and stored but also has the propensity to initiate another EMR wave. In addition to typical EM waves, lightning is also associated with atmospheric events, trans-ionospheric pulse pairs, the most powerful natural EMR signal on the planet. With each lightning strike, regardless of global position, it generates naturally occurring pulse-pairs that are emitted towards space within a narrow cone. An EMR wave can self-propagate, travel at the speed of light, and, if polarized, contain vector properties. If this reflective pulse could be directed by design through structures that have increased probabilities for lighting strikes, it could theoretically travel near the surface of the Earth at light speed towards a selected receiver for local transformation into electrical energy. Through research, there are several influencing parameters that could be modified to model, test, and increase the potential for adopting this technology towards the goal of developing a global grid that utilizes natural sources of energy.Keywords: electricity, sparkgap, wireless, electromagnetic
Procedia PDF Downloads 1904211 Enhancement in Digester Efficiency and Numerical Analysis for Optimal Design Parameters of Biogas Plant Using Design of Experiment Approach
Authors: Rajneesh, Priyanka Singh
Abstract:
Biomass resources have been one of the main energy sources for mankind since the dawn of civilization. There is a vast scope to convert these energy sources into biogas which is a clean, low carbon technology for efficient management and conversion of fermentable organic wastes into a cheap and versatile fuel and bio/organic manure. Thus, in order to enhance the performance of anaerobic digester, an optimizing analysis of resultant parameters (organic dry matter (oDM) content, methane percentage, and biogas yield) has been done for a plug flow anaerobic digester having mesophilic conditions (20-40°C) with the wet fermentation process. Based on the analysis, correlations for oDM, methane percentage, and biogas yield are derived using multiple regression analysis. A statistical model is developed to correlate the operating variables using the design of experiment approach by selecting central composite design (CCD) of a response surface methodology. Results shown in the paper indicates that as the operating temperature increases the efficiency of digester gets improved provided that the pH and hydraulic retention time (HRT) remains constant. Working in an optimized range of carbon-nitrogen ratio for the plug flow digester, the output parameters show a positive change with the variation of dry matter content (DM).Keywords: biogas, digester efficiency, design of experiment, plug flow digester
Procedia PDF Downloads 3784210 Development of Deep Neural Network-Based Strain Values Prediction Models for Full-Scale Reinforced Concrete Frames Using Highly Flexible Sensing Sheets
Authors: Hui Zhang, Sherif Beskhyroun
Abstract:
Structural Health monitoring systems (SHM) are commonly used to identify and assess structural damage. In terms of damage detection, SHM needs to periodically collect data from sensors placed in the structure as damage-sensitive features. This includes abnormal changes caused by the strain field and abnormal symptoms of the structure, such as damage and deterioration. Currently, deploying sensors on a large scale in a building structure is a challenge. In this study, a highly stretchable strain sensors are used in this study to collect data sets of strain generated on the surface of full-size reinforced concrete (RC) frames under extreme cyclic load application. This sensing sheet can be switched freely between the test bending strain and the axial strain to achieve two different configurations. On this basis, the deep neural network prediction model of the frame beam and frame column is established. The training results show that the method can accurately predict the strain value and has good generalization ability. The two deep neural network prediction models will also be deployed in the SHM system in the future as part of the intelligent strain sensor system.Keywords: strain sensing sheets, deep neural networks, strain measurement, SHM system, RC frames
Procedia PDF Downloads 99