Search results for: strategic supplier selection
2692 Precise Electrochemical Metal Recovery from Emerging Waste Streams
Authors: Wei Jin
Abstract:
Efficient and selective metal recovery from emerging solid waste, such as spent lithium batteries, electronic waste and SCR catalysts, is of great importance from both environmental and resource considerations. In order to overcome the bottlenecks of long flow-sheet and severe secondary pollution in conventional processes, the rational design of 2-electron oxygen reduction reaction (ORR) and capacitive deionization (CDI) nanomaterials were developed for the precise electrochemical metal recovery. It has been demonstrated that the modified carbon nanomaterials can be employed as 2e ORR to produce H2O2 in aqueous solution, in which the metal can be leached out from the solid waste as ions. Moreover, the multi-component metallic solution can be electrochemically extracted with good efficiency and selectivity with the nanoporous aerogel. Each system presents stable performance for long-term operation and can be used in industrial solid waste treatment. This study provides a materials-oriented, cleaner metal recovery approach for strategic metal resources sustainability.Keywords: electrochemistry, metal recovery, waste steams, nanomaterials
Procedia PDF Downloads 112691 Diagnosis of the Lubrification System of a Gas Turbine Using the Adaptive Neuro-Fuzzy Inference System
Authors: H. Mahdjoub, B. Hamaidi, B. Zerouali, S. Rouabhia
Abstract:
The issue of fault detection and diagnosis (FDD) has gained widespread industrial interest in process condition monitoring applications. Accordingly, the use of neuro-fuzzy technic seems very promising. This paper treats a diagnosis modeling a strategic equipment of an industrial installation. We propose a diagnostic tool based on adaptive neuro-fuzzy inference system (ANFIS). The neuro-fuzzy network provides an abductive diagnosis. Moreover, it takes into account the uncertainties on the maintenance knowledge by giving a fuzzy characterization of each cause. This work was carried out with real data of a lubrication circuit from the gas turbine. The machine of interest is a gas turbine placed in a gas compressor station at South Industrial Centre (SIC Hassi Messaoud Ouargla, Algeria). We have defined the zones of good and bad functioning, and the results are presented to demonstrate the advantages of the proposed method.Keywords: fault detection and diagnosis, lubrication system, turbine, ANFIS, training, pattern recognition
Procedia PDF Downloads 4902690 Teaching Turn-Taking Rules and Pragmatic Principles to Empower EFL Students and Enhance Their Learning in Speaking Modules
Authors: O. F. Elkommos
Abstract:
Teaching and learning EFL speaking modules is one of the most challenging productive modules for both instructors and learners. In a student-centered interactive communicative language teaching approach, learners and instructors should be aware of the fact that the target language must be taught as/for communication. The student must be empowered by tools that will work on more than one level of their communicative competence. Communicative learning will need a teaching and learning methodology that will address the goal. Teaching turn-taking rules, pragmatic principles and speech acts will enhance students' sociolinguistic competence, strategic competence together with discourse competence. Sociolinguistic competence entails the mastering of speech act conventions and illocutionary acts of refusing, agreeing/disagreeing; emotive acts like, thanking, apologizing, inviting, offering; directives like, ordering, requesting, advising, and hinting, among others. Strategic competence includes enlightening students’ consciousness of the various particular turn-taking systemic rules of organizing techniques of opening and closing conversation, adjacency pairs, interrupting, back-channeling, asking for/giving opinion, agreeing/disagreeing, using natural fillers for pauses, gaps, speaker select, self-select, and silence among others. Students will have the tools to manage a conversation. Students are engaged in opportunities of experiencing the natural language not as a mere extra student talking time but rather an empowerment of knowing and using the strategies. They will have the component items they need to use as well as the opportunity to communicate in the target language using topics of their interest and choice. This enhances students' communicative abilities. Available websites and textbooks now use one or more of these tools of turn-taking or pragmatics. These will be students' support in self-study in their independent learning study hours. This will be their reinforcement practice on e-Learning interactive activities. The students' target is to be able to communicate the intended meaning to an addressee that is in turn able to infer that intended meaning. The combination of these tools will be assertive and encouraging to the student to beat the struggle with what to say, how to say it, and when to say it. Teaching the rules, principles and techniques is an act of awareness raising method engaging students in activities that will lead to their pragmatic discourse competence. The aim of the paper is to show how the suggested pragmatic model will empower students with tools and systems that would support their learning. Supporting students with turn taking rules, speech act theory, applying both to texts and practical analysis and using it in speaking classes empowers students’ pragmatic discourse competence and assists them to understand language and its context. They become more spontaneous and ready to learn the discourse pragmatic dimension of the speaking techniques and suitable content. Students showed a better performance and a good motivation to learn. The model is therefore suggested for speaking modules in EFL classes.Keywords: communicative competence, EFL, empowering learners, enhance learning, speech acts, teaching speaking, turn taking, learner centred, pragmatics
Procedia PDF Downloads 1762689 Transit Network Design Problem Issues and Challenges
Authors: Mahmoud Owais
Abstract:
Public Transit (P.T) is very important means to reduce traffic congestion, to improve urban environmental conditions and consequently affects people social lives. Planning, designing and management of P.T are the key issues for offering a competitive mode that can compete with the private transportation. These transportation planning, designing and management issues are addressed in the Transit Network Design Problem (TNDP). It deals with a complete hierarchy of decision making process. It includes strategic, tactical and operational decisions. The main body of TNDP is two stages, namely; route design stage and frequency setting. The TNDP is extensively studied in the last five decades; however the research gate is still widely open due to its many practical and modeling challenges. In this paper, a comprehensive background is given to illustrate the issues and challenges related to the TNDP to help in directing the incoming researches towards the untouched areas of the problem.Keywords: frequency setting, network design, transit planning, urban planning
Procedia PDF Downloads 3852688 Case-Based Reasoning Approach for Process Planning of Internal Thread Cold Extrusion
Authors: D. Zhang, H. Y. Du, G. W. Li, J. Zeng, D. W. Zuo, Y. P. You
Abstract:
For the difficult issues of process selection, case-based reasoning technology is applied to computer aided process planning system for cold form tapping of internal threads on the basis of similarity in the process. A model is established based on the analysis of process planning. Case representation and similarity computing method are given. Confidence degree is used to evaluate the case. Rule-based reuse strategy is presented. The scheme is illustrated and verified by practical application. The case shows the design results with the proposed method are effective.Keywords: case-based reasoning, internal thread, cold extrusion, process planning
Procedia PDF Downloads 5112687 A Failure Investigations of High-Temperature Hydrogen Attack at Plat Forming Unit Furnace Elbow
Authors: Altoumi Alndalusi
Abstract:
High-temperature hydrogen attack (HTHA) failure is the common phenomena at elevated temperature in hydrogen environment in oil and gas field. The failure occurred once after four years at the internal surface of Platforming elbow. Both visual and microscopic examinations revealed that the failure was initiated due to blistering forming followed by large cracking at the inner surface. Crack morphology showed that the crack depth was about 50% of material wall thickness and its behavior generally was intergranular. This study concluded that the main reason led to failure due to incorrect material selection comparing to the platforming conditions.Keywords: decarburization, failure, heat affected zone, morphology, partial pressure, plate form
Procedia PDF Downloads 1562686 A Critical Review of Mechanization in Rice Farming in Indonesia
Authors: K. Suheiti, P. Soni, Yardha
Abstract:
Challenges ahead of Indonesian agricultural development include increasing rural welfare, food needs, and the provision of employment through resource optimization that are laid out in agribusiness system. The agricultural system also responsive to the changing strategic environment. However, mounting pressure of population increase and changes in land-uses, require intensive use of agricultural land with modern agricultural machinery. Similarly, environmentally friendly technologies should continue to be developed in an effort to build and develop a good farming practice model. This paper explains the development of agricultural mechanization in Indonesia, particularly on rice production. The method of the research was analyze secondary data, tabulation and interpretation. The result showed, there was a variety of tools and agricultural machinery that have been produced and used by farmers to support national food security. The role of mechanization was needed to support national rice production and food security achievement.Keywords: farming, Indonesia, mechanization, rice
Procedia PDF Downloads 4962685 Application of Deep Learning and Ensemble Methods for Biomarker Discovery in Diabetic Nephropathy through Fibrosis and Propionate Metabolism Pathways
Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei
Abstract:
Diabetic nephropathy (DN) is a major complication of diabetes, with fibrosis and propionate metabolism playing critical roles in its progression. Identifying biomarkers linked to these pathways may provide novel insights into DN diagnosis and treatment. This study aims to identify biomarkers associated with fibrosis and propionate metabolism in DN. Analyze the biological pathways and regulatory mechanisms of these biomarkers. Develop a machine learning model to predict DN-related biomarkers and validate their functional roles. Publicly available transcriptome datasets related to DN (GSE96804 and GSE104948) were obtained from the GEO database (https://www.ncbi.nlm.nih.gov/gds), and 924 propionate metabolism-related genes (PMRGs) and 656 fibrosis-related genes (FRGs) were identified. The analysis began with the extraction of DN-differentially expressed genes (DN-DEGs) and propionate metabolism-related DEGs (PM-DEGs), followed by the intersection of these with fibrosis-related genes to identify key intersected genes. Instead of relying on traditional models, we employed a combination of deep neural networks (DNNs) and ensemble methods such as Gradient Boosting Machines (GBM) and XGBoost to enhance feature selection and biomarker discovery. Recursive feature elimination (RFE) was coupled with these advanced algorithms to refine the selection of the most critical biomarkers. Functional validation was conducted using convolutional neural networks (CNN) for gene set enrichment and immunoinfiltration analysis, revealing seven significant biomarkers—SLC37A4, ACOX2, GPD1, ACE2, SLC9A3, AGT, and PLG. These biomarkers are involved in critical biological processes such as fatty acid metabolism and glomerular development, providing a mechanistic link to DN progression. Furthermore, a TF–miRNA–mRNA regulatory network was constructed using natural language processing models to identify 8 transcription factors and 60 miRNAs that regulate these biomarkers, while a drug–gene interaction network revealed potential therapeutic targets such as UROKINASE–PLG and ATENOLOL–AGT. This integrative approach, leveraging deep learning and ensemble models, not only enhances the accuracy of biomarker discovery but also offers new perspectives on DN diagnosis and treatment, specifically targeting fibrosis and propionate metabolism pathways.Keywords: diabetic nephropathy, deep neural networks, gradient boosting machines (GBM), XGBoost
Procedia PDF Downloads 92684 Examining the Links between Fish Behaviour and Physiology for Resilience in the Anthropocene
Authors: Lauren A. Bailey, Amber R. Childs, Nicola C. James, Murray I. Duncan, Alexander Winkler, Warren M. Potts
Abstract:
Changes in behaviour and physiology are the most important responses of marine life to anthropogenic impacts such as climate change and over-fishing. Behavioural changes (such as a shift in distribution or changes in phenology) can ensure that a species remains in an environment suited for its optimal physiological performance. However, if marine life is unable to shift their distribution, they are reliant on physiological adaptation (either by broadening their metabolic curves to tolerate a range of stressors or by shifting their metabolic curves to maximize their performance at extreme stressors). However, since there are links between fish physiology and behaviour, changes to either of these traits may have reciprocal interactions. This paper reviews the current knowledge of the links between the behaviour and physiology of fishes, discusses these in the context of exploitation and climate change, and makes recommendations for future research needs. The review revealed that our understanding of the links between fish behaviour and physiology is rudimentary. However, both are hypothesized to be linked to stress responses along the hypothalamic pituitary axis. The link between physiological capacity and behaviour is particularly important as both determine the response of an individual to a changing climate and are under selection by fisheries. While it appears that all types of capture fisheries are likely to reduce the adaptive potential of fished populations to climate stressors, angling, which is primarily associated with recreational fishing, may induce fission of natural populations by removing individuals with bold behavioural traits and potentially the physiological traits required to facilitate behavioural change. Future research should focus on assessing how the links between physiological capacity and behaviour influence catchability, the response to climate change drivers, and post-release recovery. The plasticity of phenotypic traits should be examined under a range of stressors of differing intensity in several species and life history stages. Future studies should also assess plasticity (fission or fusion) in the phenotypic structuring of social hierarchy and how this influences habitat selection. Ultimately, to fully understand how physiology is influenced by the selective processes driven by fisheries, long-term monitoring of the physiological and behavioural structure of fished populations, their fitness, and catch rates are required.Keywords: climate change, metabolic shifts, over-fishing, phenotypic plasticity, stress response
Procedia PDF Downloads 1182683 Portfolio Restructuring of Banks: The Impact on Performance and Risk
Authors: Hannes Koester
Abstract:
Driven by difficult market conditions and increasing regulations, many banks are making the strategic decision to restructure their portfolio by divesting several business segments. Using a unique dataset of 727 portfolio restructuring announcements by 161 international listed banks over the period 1999 to 2015, we investigate the impact of restructuring measurements on the stock performance as well as on the banks’ profitability and risk. Employing the event study methodology, we detect positive stock market reactions on the announcement of restructuring measurements. These positive stock market reactions indicate that shareholders reward banks’ specialization activities. However, the results of the system GMM regressions show a negative relation between restructuring measurements and banks’ return on assets and a positive relation towards the individual and systemic risk of banks. These empirical results indicate that there is no guarantee that portfolio restructurings will result in a more profitable and less risky institution.Keywords: bank performance, bank risk, divestiture, restructuring, systemic risk
Procedia PDF Downloads 3172682 Integrating Circular Economy Framework into Life Cycle Analysis: An Exploratory Study Applied to Geothermal Power Generation Technologies
Authors: Jingyi Li, Laurence Stamford, Alejandro Gallego-Schmid
Abstract:
Renewable electricity has become an indispensable contributor to achieving net-zero by the mid-century to tackle climate change. Unlike solar, wind, or hydro, geothermal was stagnant in its electricity production development for decades. However, with the significant breakthrough made in recent years, especially the implementation of enhanced geothermal systems (EGS) in various regions globally, geothermal electricity could play a pivotal role in alleviating greenhouse gas emissions. Life cycle assessment has been applied to analyze specific geothermal power generation technologies, which proposed suggestions to optimize its environmental performance. For instance, selecting a high heat gradient region enables a higher flow rate from the production well and extends the technical lifespan. Although such process-level improvements have been made, the significance of geothermal power generation technologies so far has not explicitly displayed its competitiveness on a broader horizon. Therefore, this review-based study integrates a circular economy framework into life cycle assessment, clarifying the underlying added values for geothermal power plants to complete the sustainability profile. The derived results have provided an enlarged platform to discuss geothermal power generation technologies: (i) recover the heat and electricity from the process to reduce the fossil fuel requirements; (ii) recycle the construction materials, such as copper, steel, and aluminum for future projects; (iii) extract the lithium ions from geothermal brine and make geothermal reservoir become a potential supplier of the lithium battery industry; (iv) repurpose the abandoned oil and gas wells to build geothermal power plants; (v) integrate geothermal energy with other available renewable energies (e.g., solar and wind) to provide heat and electricity as a hybrid system at different weather; (vi) rethink the fluids used in stimulation process (EGS only), replace water with CO2 to achieve negative emissions from the system. These results provided a new perspective to the researchers, investors, and policymakers to rethink the role of geothermal in the energy supply network.Keywords: climate, renewable energy, R strategies, sustainability
Procedia PDF Downloads 1372681 Impacts on Regional Economy by the Upgrade of Railway Infrastructure
Authors: Dimitrios J. Dimitriou, Maria F. Sartzetaki
Abstract:
Transport is often the key driver for growth, especially for regions providing key opportunities for connectivity between busy areas and mature markets. Even though the benefits of transports are essential, limited research is published regarding the linkage of inland transport systems and other business sectors, the spillover effects on regional economy and the overall contribution to regional development. This paper deals with the determination of the key socioeconomic benefits on regions caused by the upgrade and the modernization of a railway corridor. The analysis framework is following a four-step analysis, providing key messages to planners, managers and decision makers. The provided case study is the upgrade of the railway corridor in North Greece, which is a very sensitive region suffering long time from economic stress. The application results are essential for comparisons with other destinations and provide key messages regarding the relationship of railway and economic development.Keywords: regional development, economic impact assessment variables, railway infrastructure, strategic planning
Procedia PDF Downloads 3092680 Analysis of the Development of Mining Companies Social Corporate Responsibility Based on the Rating Score
Authors: Tatiana Ponomarenko, Oksana Marinina, Marina Nevskaya
Abstract:
Modern corporate social responsibility (CSR) is a sphere of multilevel responsibility of a company toward society represented by various stakeholders. The relevance of CSR management grows due to the active development of socially responsible investing (principles for responsible investment) taking into account factors of environmental, social and corporate governance (ESG), growing attention of the investment community in general to the long-term stability of companies and the quality of control of nonfinancial risks. The modern approach to CSR strategic management is aimed at the creation of trustful relationships with stakeholders, on the basis of which a contribution to the sustainable development of companies, regions, and national economics is insured. However, the practical concepts of social responsibility in mining companies are different, which leads to various degrees of application of CSR. A number of companies implement CSR using a traditional (limited) understanding of responsibility toward employees and counteragents, the others understand CSR much wider and try to use leverages of efficient cooperation. As in large mining companies the scope of CSR measures is diverse and characterized by different indices, the study was aimed at evaluating CSR efficiency on the basis of a proprietary methodology and determining the level of development of CSR management in terms of anti-crisis, reactive and proactive development. The methodology of the research includes analysis of integrated global reporting initiative (GRI) reports of large mining companies; choice of most representative sectoral agents by a criterion of the regularity of issuance and publication of reports; calculation of indices of evaluation of CSR level of the selected companies in dynamics. The methodology of evaluation of CSR level is based on a rating score of changes in standard indices of GRI reports by economic, environmental, and social directions. Result. By the results of the analysis, companies of fuel and energy and metallurgic complexes, in overwhelming majority, reflecting three indices out of a wide range of possible indicators of SDGs (Sustainable Development Goals), were selected for the study. The evaluation of the scopes of CSR of the companies Gazprom, LUKOIL, Metalloinvest, Nornikel, Rosneft, Severstal, SIBUR, SUEK corresponds to the reactive type of development according to a scale of CSR strategic management, which is the average value out of the possible values. The chief drawback is that companies, in the process of analyzing global goals, often choose the goals which relate to their own activities, paying insufficient attention to the interests of the stakeholders inside the country. This fact evidences the necessity of searching for more effective mechanisms of CSR control. Acknowledgment: This article is prepared within grant support of the RFBR, project 19-510-44013 'Development of the concept of mineral resources value formation in the context of sustainable development in resource-oriented economies'.Keywords: sustainable development, corporate social responsibility, development strategies, efficiency assessment
Procedia PDF Downloads 1342679 A Design of the Organic Rankine Cycle for the Low Temperature Waste Heat
Abstract:
A presentation of the design of the Organic Rankine Cycle (ORC) with heat regeneration and super-heating processes is a subject of this paper. The maximum temperature level in the ORC is considered to be 110°C and the maximum pressure varies up to 2.5MPa. The selection process of the appropriate working fluids, thermal design and calculation of the cycle and its components are described. With respect to the safety, toxicity, flammability, price and thermal cycle efficiency, the working fluid selected is R134a. As a particular example, the thermal design of the condenser used for the ORC engine with a theoretical thermal power of 179 kW was introduced. The minimal heat transfer area for a completed condensation was determined to be approximately 520m2.Keywords: organic rankine cycle, thermal efficiency, working fluids, environmental engineering
Procedia PDF Downloads 4602678 Optimal ECG Sampling Frequency for Multiscale Entropy-Based HRV
Authors: Manjit Singh
Abstract:
Multiscale entropy (MSE) is an extensively used index to provide a general understanding of multiple complexity of physiologic mechanism of heart rate variability (HRV) that operates on a wide range of time scales. Accurate selection of electrocardiogram (ECG) sampling frequency is an essential concern for clinically significant HRV quantification; high ECG sampling rate increase memory requirements and processing time, whereas low sampling rate degrade signal quality and results in clinically misinterpreted HRV. In this work, the impact of ECG sampling frequency on MSE based HRV have been quantified. MSE measures are found to be sensitive to ECG sampling frequency and effect of sampling frequency will be a function of time scale.Keywords: ECG (electrocardiogram), heart rate variability (HRV), multiscale entropy, sampling frequency
Procedia PDF Downloads 2712677 The Challenges of Citizen Engagement in Urban Transformation: Key Learnings from Three European Cities
Authors: Idoia Landa Oregi, Itsaso Gonzalez Ochoantesana, Olatz Nicolas Buxens, Carlo Ferretti
Abstract:
The impact of citizens in urban transformations has become increasingly important in the pursuit of creating citizen-centered cities. Citizens at the forefront of the urban transformation process are key to establishing resilient, sustainable, and inclusive cities that cater to the needs of all residents. Therefore, collecting data and information directly from citizens is crucial for the sustainable development of cities. Within this context, public participation becomes a pillar for acquiring the necessary information from citizens. Public participation in urban transformation processes establishes a more responsive, equitable, and resilient urban environment. This approach cultivates a sense of shared responsibility and collective progress in building cities that truly serve the well-being of all residents. However, the implementation of public participation practices often overlooks strategies to effectively engage citizens in the processes, resulting in non-successful participatory outcomes. Therefore, this research focuses on identifying and analyzing the critical aspects of citizen engagement during the same participatory urban transformation process in different European contexts: Ermua (Spain), Elva (Estonia) and Matera (Italy). The participatory neighborhood regeneration process is divided into three main stages, to turn social districts into inclusive and smart neighborhoods: (i) the strategic level, (ii) the design level, and (iii) the implementation level. In the initial stage, the focus is on diagnosing the neighborhood and creating a shared vision with the community. The second stage centers around collaboratively designing various action plans to foster inclusivity and intelligence while pushing local economic development within the district. Finally, the third stage ensures the proper co-implementation of the designed actions in the neighborhood. To this date, the presented results critically analyze the key aspects of engagement in the first stage of the methodology, the strategic plan, in the three above-mentioned contexts. It is a multifaceted study that incorporates three case studies to shed light on the various perspectives and strategies adopted by each city. The results indicate that despite of the various cultural contexts, all cities face similar barriers when seeking to enhance engagement. Accordingly, the study identifies specific challenges within the participatory approach across the three cities such as the existence of discontented citizens, communication gaps, inconsistent participation, or administration resistance. Consequently, key learnings of the process indicate that a collaborative sphere needs to be cultivated, educating both citizens and administrations in the aspects of co-governance, giving these practices the appropriate space and their own communication channels. This study is part of the DROP project, funded by the European Union, which aims to develop a citizen-centered urban renewal methodology to transform the social districts into smart and inclusive neighborhoods.Keywords: citizen-centred cities, engagement, public participation, urban transformation
Procedia PDF Downloads 682676 Data Management and Analytics for Intelligent Grid
Authors: G. Julius P. Roy, Prateek Saxena, Sanjeev Singh
Abstract:
Power distribution utilities two decades ago would collect data from its customers not later than a period of at least one month. The origin of SmartGrid and AMI has subsequently increased the sampling frequency leading to 1000 to 10000 fold increase in data quantity. This increase is notable and this steered to coin the tern Big Data in utilities. Power distribution industry is one of the largest to handle huge and complex data for keeping history and also to turn the data in to significance. Majority of the utilities around the globe are adopting SmartGrid technologies as a mass implementation and are primarily focusing on strategic interdependence and synergies of the big data coming from new information sources like AMI and intelligent SCADA, there is a rising need for new models of data management and resurrected focus on analytics to dissect data into descriptive, predictive and dictatorial subsets. The goal of this paper is to is to bring load disaggregation into smart energy toolkit for commercial usage.Keywords: data management, analytics, energy data analytics, smart grid, smart utilities
Procedia PDF Downloads 7802675 Design On Demand (DoD): Spiral Model of The Lifecycle of Products in The Personal 3D-Printed Products' Market
Authors: Zuk Nechemia Turbovich
Abstract:
This paper introduces DoD, a contextual spiral model that describes the lifecycle of products intended for manufacturing using Personal 3D Printers (P3DP). The study is based on a review of the desktop P3DPs market that shows that the combination of digital connectivity, coupled with the potential ownership of P3DP by home users, is radically changing the form of the product lifecycle, comparatively to familiar lifecycle paradigms. The paper presents the change in the design process, considering the characterization of product types in the P3DP market and the possibility of having a direct dialogue between end-user and product designers. The model, as an updated paradigm, provides a strategic perspective on product design and tools for success, understanding that design is subject to rapid and continuous improvement and that products are subject to repair, update, and customization. The paper will include a review of real cases.Keywords: lifecycle, mass-customization, personal 3d-printing, user involvement
Procedia PDF Downloads 1832674 Solution of Insurance Pricing Model Giving Optimum Premium Level for Both Insured and Insurer by Game Theory
Authors: Betul Zehra Karagul
Abstract:
A game consists of strategies that each actor has in his/her own choice strategies, and a game regulates the certain rules in the strategies that the actors choose, express how they evaluate their knowledge and the utility of output results. Game theory examines the human behaviors (preferences) of strategic situations in which each actor of a game regards the action that others will make in spite of his own moves. There is a balance between each player playing a game with the final number of players and the player with a certain probability of choosing the players, and this is called Nash equilibrium. The insurance is a two-person game where the insurer and insured are the actors. Both sides have the right to act in favor of utility functions. The insured has to pay a premium to buy the insurance cover. The insured will want to pay a low premium while the insurer is willing to get a high premium. In this study, the state of equilibrium for insurance pricing was examined in terms of the insurer and insured with game theory.Keywords: game theory, insurance pricing, Nash equilibrium, utility function
Procedia PDF Downloads 3632673 An Analysis of Sequential Pattern Mining on Databases Using Approximate Sequential Patterns
Authors: J. Suneetha, Vijayalaxmi
Abstract:
Sequential Pattern Mining involves applying data mining methods to large data repositories to extract usage patterns. Sequential pattern mining methodologies used to analyze the data and identify patterns. The patterns have been used to implement efficient systems can recommend on previously observed patterns, in making predictions, improve usability of systems, detecting events, and in general help in making strategic product decisions. In this paper, identified performance of approximate sequential pattern mining defines as identifying patterns approximately shared with many sequences. Approximate sequential patterns can effectively summarize and represent the databases by identifying the underlying trends in the data. Conducting an extensive and systematic performance over synthetic and real data. The results demonstrate that ApproxMAP effective and scalable in mining large sequences databases with long patterns.Keywords: multiple data, performance analysis, sequential pattern, sequence database scalability
Procedia PDF Downloads 3442672 A Multi-Criteria Decision Making Approach for Disassembly-To-Order Systems under Uncertainty
Authors: Ammar Y. Alqahtani
Abstract:
In order to minimize the negative impact on the environment, it is essential to manage the waste that generated from the premature disposal of end-of-life (EOL) products properly. Consequently, government and international organizations introduced new policies and regulations to minimize the amount of waste being sent to landfills. Moreover, the consumers’ awareness regards environment has forced original equipment manufacturers to consider being more environmentally conscious. Therefore, manufacturers have thought of different ways to deal with waste generated from EOL products viz., remanufacturing, reusing, recycling, or disposing of EOL products. The rate of depletion of virgin natural resources and their dependency on the natural resources can be reduced by manufacturers when EOL products are treated as remanufactured, reused, or recycled, as well as this will cut on the amount of harmful waste sent to landfills. However, disposal of EOL products contributes to the problem and therefore is used as a last option. Number of EOL need to be estimated in order to fulfill the components demand. Then, disassembly process needs to be performed to extract individual components and subassemblies. Smart products, built with sensors embedded and network connectivity to enable the collection and exchange of data, utilize sensors that are implanted into products during production. These sensors are used for remanufacturers to predict an optimal warranty policy and time period that should be offered to customers who purchase remanufactured components and products. Sensor-provided data can help to evaluate the overall condition of a product, as well as the remaining lives of product components, prior to perform a disassembly process. In this paper, a multi-period disassembly-to-order (DTO) model is developed that takes into consideration the different system uncertainties. The DTO model is solved using Nonlinear Programming (NLP) in multiple periods. A DTO system is considered where a variety of EOL products are purchased for disassembly. The model’s main objective is to determine the best combination of EOL products to be purchased from every supplier in each period which maximized the total profit of the system while satisfying the demand. This paper also addressed the impact of sensor embedded products on the cost of warranties. Lastly, this paper presented and analyzed a case study involving various simulation conditions to illustrate the applicability of the model.Keywords: closed-loop supply chains, environmentally conscious manufacturing, product recovery, reverse logistics
Procedia PDF Downloads 1372671 Cosmetic Recommendation Approach Using Machine Learning
Authors: Shakila N. Senarath, Dinesh Asanka, Janaka Wijayanayake
Abstract:
The necessity of cosmetic products is arising to fulfill consumer needs of personality appearance and hygiene. A cosmetic product consists of various chemical ingredients which may help to keep the skin healthy or may lead to damages. Every chemical ingredient in a cosmetic product does not perform on every human. The most appropriate way to select a healthy cosmetic product is to identify the texture of the body first and select the most suitable product with safe ingredients. Therefore, the selection process of cosmetic products is complicated. Consumer surveys have shown most of the time, the selection process of cosmetic products is done in an improper way by consumers. From this study, a content-based system is suggested that recommends cosmetic products for the human factors. To such an extent, the skin type, gender and price range will be considered as human factors. The proposed system will be implemented by using Machine Learning. Consumer skin type, gender and price range will be taken as inputs to the system. The skin type of consumer will be derived by using the Baumann Skin Type Questionnaire, which is a value-based approach that includes several numbers of questions to derive the user’s skin type to one of the 16 skin types according to the Bauman Skin Type indicator (BSTI). Two datasets are collected for further research proceedings. The user data set was collected using a questionnaire given to the public. Those are the user dataset and the cosmetic dataset. Product details are included in the cosmetic dataset, which belongs to 5 different kinds of product categories (Moisturizer, Cleanser, Sun protector, Face Mask, Eye Cream). An alternate approach of TF-IDF (Term Frequency – Inverse Document Frequency) is applied to vectorize cosmetic ingredients in the generic cosmetic products dataset and user-preferred dataset. Using the IF-IPF vectors, each user-preferred products dataset and generic cosmetic products dataset can be represented as sparse vectors. The similarity between each user-preferred product and generic cosmetic product will be calculated using the cosine similarity method. For the recommendation process, a similarity matrix can be used. Higher the similarity, higher the match for consumer. Sorting a user column from similarity matrix in a descending order, the recommended products can be retrieved in ascending order. Even though results return a list of similar products, and since the user information has been gathered, such as gender and the price ranges for product purchasing, further optimization can be done by considering and giving weights for those parameters once after a set of recommended products for a user has been retrieved.Keywords: content-based filtering, cosmetics, machine learning, recommendation system
Procedia PDF Downloads 1342670 Business Strategy, Crisis and Digitalization
Authors: Flora Xu, Marta Fernandez Olmos
Abstract:
This article is mainly about critical assessment and comprehensive understanding of the business strategy in the post COVID-19 scenario. This study aims to elucidate how companies are responding to the unique challenges posed by the pandemic and how these measures are shaping the future of the business environment. The pandemic has exposed the fragility and flexibility of the global supply chain, and procurement and production strategies should be reconsidered. It should increase the diversity of suppliers and the flexibility of the supply chain, and some companies are considering transferring their survival to the local market. This can increase local employment and reduce international transportation disruptions and customs issues. By shortening the distance between production and market, companies can respond more quickly to changes in demand and unforeseen events. The demand for remote work and online solutions will increase the adoption of digital technology and accelerate the digital transformation of many organizations. Marketing and communication strategies need to adapt to a constantly changing environment. The business resilience strategy was emphasized as a key component of the response to the COVID-19. The company is seeking to strengthen its risk management capabilities and develop a business continuity plan to cope with future unexpected disruptions. The pandemic has reconfigured human resource practices and changed the way companies manage their employees. Remote work has become the norm, and companies focus on managing workers' health and well-being, as well as flexible work policies to ensure operations and support for employees during crises. This change in human resources practice has a lasting impact on how companies apply talent and labor management in the post COVID-19 world. The pandemic has prompted a significant review of business strategies as companies adapt to constantly changing environments and seek to ensure their sustainability and profitability in times of crisis. This strategic reassessment has led to product diversification, exploring international markets and adapting to the changing market. Companies have responded to the unprecedented challenges brought by the COVID-19. The COVID-19 has promoted innovation effort in key areas and focused on the responsibility in today's business strategy for sustainability and the importance of corporate society. The important challenge of formulating and implementing business strategies in uncertain times. These challenges include making quick and agile decisions in turbulent environments, risk management, and adaptability to constantly changing market conditions. The COVID-19 highlights the importance of strategic planning and informed decision-making - making in a business environment characterized by uncertainty and complexity. In short, the pandemic has reconfigured the way companies handle business strategies and emphasized the necessity of preparing for future challenges in a business world marked by uncertainty and complexity.Keywords: business strategy, crisis, digitalization, uncertainty
Procedia PDF Downloads 182669 An ANOVA Approach for the Process Parameters Optimization of Al-Si Alloy Sand Casting
Authors: Manjinder Bajwa, Mahipal Singh, Manish Nagpal
Abstract:
This research paper aims to propose a novel approach using ANOVA technique for the strategic investigation of process parameters and their effects on the mechanical properties of Aluminium alloy cast. The two process parameters considered here were permeability of sand and pouring temperature of aluminium alloy. ANOVA has been employed for the first time to determine the effects of these selected parameters on the impact strength of alloy. The experimental results show that this proposed technique has great potential for analyzing sand casting process. Using this approach we have determined the treatment mean square, response mean square and mean square of error as 8.54, 8.255 and 0.435 respectively. The research concluded that at the 5% level of significance, permeability of sand is the more significant parameter influencing the impact strength of cast alloy.Keywords: aluminium alloy, pouring temperature, permeability of sand, impact strength, ANOVA
Procedia PDF Downloads 4482668 Investigating the Chemical Structure of Drinking Water in Domestic Areas of Kuwait by Appling GIS Technology
Authors: H. Al-Jabli
Abstract:
The research on the presence of heavy metals and bromate in drinking water is of immense scientific significance due to the potential risks these substances pose to public health. These contaminants are subject to regulatory limits outlined by the National Primary Drinking Water Regulations. Through a comprehensive analysis involving the compilation of existing data and the collection of new data via water sampling in residential areas of Kuwait, the aim is to create detailed maps illustrating the spatial distribution of these substances. Furthermore, the investigation will utilize GRAPHER software to explore correlations among different chemical parameters. By implementing rigorous scientific methodologies, the research will provide valuable insights for the Ministry of Electricity and Water and the Ministry of Health. These insights can inform evidence-based decision-making, facilitate the implementation of corrective measures, and support strategic planning for future infrastructure activities.Keywords: heavy metals, bromate, ozonation, GIS
Procedia PDF Downloads 822667 Adaptations to Hamilton's Rule in Human Populations
Authors: Monty Vacura
Abstract:
Hamilton’s Rule is a universal law of biology expressed in protists, plants and animals. When applied to human populations, this model explains: 1) Origin of religion in society as a biopsychological need selected to increase population size; 2) Instincts of racism expressed through intergroup competition; 3) Simultaneous selection for human cooperation and conflict, love and hate; 4) Connection between sporting events and instinctive social messaging for stimulating offensive and defensive responses; 5) Pathway to reduce human sacrifice. This chapter discusses the deep psychological influences of Hamilton’s Rule. Suggestions are provided to reduce human deaths via our instinctive sacrificial behavior, by consciously monitoring Hamilton’s Rule variables highlighted throughout our media outlets.Keywords: psychology, Hamilton’s rule, evolution, human instincts
Procedia PDF Downloads 602666 A Study of Cloud Computing Solution for Transportation Big Data Processing
Authors: Ilgin Gökaşar, Saman Ghaffarian
Abstract:
The need for fast processed big data of transportation ridership (eg., smartcard data) and traffic operation (e.g., traffic detectors data) which requires a lot of computational power is incontrovertible in Intelligent Transportation Systems. Nowadays cloud computing is one of the important subjects and popular information technology solution for data processing. It enables users to process enormous measure of data without having their own particular computing power. Thus, it can also be a good selection for transportation big data processing as well. This paper intends to examine how the cloud computing can enhance transportation big data process with contrasting its advantages and disadvantages, and discussing cloud computing features.Keywords: big data, cloud computing, Intelligent Transportation Systems, ITS, traffic data processing
Procedia PDF Downloads 4692665 Application of Machine Learning Techniques in Forest Cover-Type Prediction
Authors: Saba Ebrahimi, Hedieh Ashrafi
Abstract:
Predicting the cover type of forests is a challenge for natural resource managers. In this project, we aim to perform a comprehensive comparative study of two well-known classification methods, support vector machine (SVM) and decision tree (DT). The comparison is first performed among different types of each classifier, and then the best of each classifier will be compared by considering different evaluation metrics. The effect of boosting and bagging for decision trees is also explored. Furthermore, the effect of principal component analysis (PCA) and feature selection is also investigated. During the project, the forest cover-type dataset from the remote sensing and GIS program is used in all computations.Keywords: classification methods, support vector machine, decision tree, forest cover-type dataset
Procedia PDF Downloads 2172664 Iran’s Dual Geopolitical Approach towards African States
Authors: Dragos Ardeleanu, Silviu-Valentin Petre
Abstract:
Written to satisfy the needs of Western powers, classical geopolitics bore the stint of Eurocentrism. Both Mackinder’s heartland and Nicholas Spykman’s rimland were intellectual creations set for the purpose of the Anglophone nations dealing with Eurasia. However, while today’s world is moving towards multipolarity, other emerging regional actors are following their own interests using a different geospatial map. Such is the case of Iran which has developed an engagement pattern in Africa, directed mostly towards costal states, in order to break the rimland grip of Arab states and also the international pressure established against Tehran’s nascent nuclear program. Capitalizing on literature review and analysing statements from key public figures, our paper argues that Iranian African geopolitics displays a dual message: on the one hand, it uses tiers-mondiste rhetoric to garner the support of different coastal African states and, on the other hand, it employs Shiism to gain a foothold in strategic parts of the black continent.Keywords: African geopolitics, Iran, Shiism, tiers-mondisme
Procedia PDF Downloads 2172663 A Flexible Pareto Distribution Using α-Power Transformation
Authors: Shumaila Ehtisham
Abstract:
In Statistical Distribution Theory, considering an additional parameter to classical distributions is a usual practice. In this study, a new distribution referred to as α-Power Pareto distribution is introduced by including an extra parameter. Several properties of the proposed distribution including explicit expressions for the moment generating function, mode, quantiles, entropies and order statistics are obtained. Unknown parameters have been estimated by using maximum likelihood estimation technique. Two real datasets have been considered to examine the usefulness of the proposed distribution. It has been observed that α-Power Pareto distribution outperforms while compared to different variants of Pareto distribution on the basis of model selection criteria.Keywords: α-power transformation, maximum likelihood estimation, moment generating function, Pareto distribution
Procedia PDF Downloads 215