Search results for: nursing interventions classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4634

Search results for: nursing interventions classification

3404 Real-World Prevalence of Musculoskeletal Disorders in Nigeria

Authors: F. Fatoye, C. E. Mbada, T. Gebrye, A. O. Ogunsola, C. Fatoye, O. Oyewole

Abstract:

Musculoskeletal disorders (MSDs) are a major cause of pain and disability. It is likely to become a greater economic and public health burden that is unnecessary. Thus, reliable prevalence figures are important for both clinicians and policy-makers to plan health care needs for those affected with the disease. This study estimated hospital based real-world prevalence of MSDs in Nigeria. A review of medical charts for adult patients attending Physiotherapy Outpatient Clinic at the Obafemi Awolowo University Teaching Hospitals Complex, Osun State, Nigeria between 2009 and 2018 was carried out to identify common MSDs including low back pain (LBP), cervical spondylosis (CSD), post immobilization stiffness (PIS), sprain, osteoarthritis (OA), and other conditions. Occupational class of the patients was determined using the International Labour Classification (ILO). Data were analysed using descriptive statistics of frequency and percentages. Overall, medical charts of 3,340 patients were reviewed within the span of ten years (2009 to 2018). Majority of the patients (62.8%) were in the middle class, and the remaining were in low class (25.1%) and high class (10.5%) category. An overall prevalence of 47.35% of MSD was found within the span of ten years. Of this, the prevalence of LBP, CSD, PIS, sprain, OA, and other conditions was 21.6%, 10%, 18.9%, 2%, 6.3%, and 41.3%, respectively. The highest (14.2%) and lowest (10.5%) prevalence of MSDs was recorded in the year of 2012 and 2018, respectively. The prevalence of MSDs is considerably high among Nigerian patients attending outpatient a physiotherapy clinic. The high prevalence of MSDs underscores the need for clinicians and decision makers to put in place appropriate strategies to reduce the prevalence of these conditions. In addition, they should plan and evaluate healthcare services to improve the health outcomes of patients with MSDs. Further studies are required to determine the economic burden of the condition and examine the clinical and cost-effectiveness of physiotherapy interventions for patients with MSDs.

Keywords: musculoskeletal disorders, Nigeria, prevalence, real world

Procedia PDF Downloads 172
3403 Engagement Analysis Using DAiSEE Dataset

Authors: Naman Solanki, Souraj Mondal

Abstract:

With the world moving towards online communication, the video datastore has exploded in the past few years. Consequently, it has become crucial to analyse participant’s engagement levels in online communication videos. Engagement prediction of people in videos can be useful in many domains, like education, client meetings, dating, etc. Video-level or frame-level prediction of engagement for a user involves the development of robust models that can capture facial micro-emotions efficiently. For the development of an engagement prediction model, it is necessary to have a widely-accepted standard dataset for engagement analysis. DAiSEE is one of the datasets which consist of in-the-wild data and has a gold standard annotation for engagement prediction. Earlier research done using the DAiSEE dataset involved training and testing standard models like CNN-based models, but the results were not satisfactory according to industry standards. In this paper, a multi-level classification approach has been introduced to create a more robust model for engagement analysis using the DAiSEE dataset. This approach has recorded testing accuracies of 0.638, 0.7728, 0.8195, and 0.866 for predicting boredom level, engagement level, confusion level, and frustration level, respectively.

Keywords: computer vision, engagement prediction, deep learning, multi-level classification

Procedia PDF Downloads 114
3402 Improving the Management of Delirium of Surgical Inpatients

Authors: Shammael Selorfia

Abstract:

The Quality improvement project aimed to improve junior doctors and nurses’ knowledge and confidence in diagnosing and managing delirium on inpatient surgical wards in a tertiary hospital. The study aimed to develop a standardised assessment and management checklist for all staff working with patients who were presenting with signs of delirium. The aim of the study was to increase confidence of staff at dealing with delirium and improve the quality of referrals that were being sent to the Mental Health Liaison team over a 6-month period. A significant proportion of time was being spent by the Mental Health Liaison triage nurses on referrals for delirium. Data showed 28% of all delirium referrals from surgical teams were being closed at triage reflecting a poor standard of quality of those referrals. A qualitative survey of junior doctors in 6 surgical specialties in a UK tertiary hospital was conducted. These specialties include general surgery, vascular, plastic, urology, neurosurgery, and orthopaedics. The standardised checklist was distributed to all surgical wards. A comparison was made between the Mental health team caseload of delirium before intervention was compared and after. A Qualitative survey at end of 3-month cycle and compare overall caseload on Mental Health Liaison team to pre-QIP data with aim to improve quality of referrals and reduce workload on Mental Health Liaison team. At the end of the project cycle, we demonstrated an improvement in the quality of referrals with a decrease in the percentage of referrals being closed at triage by 8%. Our surveys also indicated an increase in the knowledge of official trust delirium guidelines and confidence at managing the patients. This project highlights that a new approach to delirium using multi-component interventions is needed, where the diagnosis of delirium is shared amongst medical and nursing staff, and everyone plays role in management. The key is improving awareness of delirium and encouraging the use of recognized diagnostic tools and official guidelines. Recommendations were made to the trust on how to implement a long-lasting change.

Keywords: delirium, surgery, quality, improvement

Procedia PDF Downloads 81
3401 Data Mining Model for Predicting the Status of HIV Patients during Drug Regimen Change

Authors: Ermias A. Tegegn, Million Meshesha

Abstract:

Human Immunodeficiency Virus and Acquired Immunodeficiency Syndrome (HIV/AIDS) is a major cause of death for most African countries. Ethiopia is one of the seriously affected countries in sub Saharan Africa. Previously in Ethiopia, having HIV/AIDS was almost equivalent to a death sentence. With the introduction of Antiretroviral Therapy (ART), HIV/AIDS has become chronic, but manageable disease. The study focused on a data mining technique to predict future living status of HIV/AIDS patients at the time of drug regimen change when the patients become toxic to the currently taking ART drug combination. The data is taken from University of Gondar Hospital ART program database. Hybrid methodology is followed to explore the application of data mining on ART program dataset. Data cleaning, handling missing values and data transformation were used for preprocessing the data. WEKA 3.7.9 data mining tools, classification algorithms, and expertise are utilized as means to address the research problem. By using four different classification algorithms, (i.e., J48 Classifier, PART rule induction, Naïve Bayes and Neural network) and by adjusting their parameters thirty-two models were built on the pre-processed University of Gondar ART program dataset. The performances of the models were evaluated using the standard metrics of accuracy, precision, recall, and F-measure. The most effective model to predict the status of HIV patients with drug regimen substitution is pruned J48 decision tree with a classification accuracy of 98.01%. This study extracts interesting attributes such as Ever taking Cotrim, Ever taking TbRx, CD4 count, Age, Weight, and Gender so as to predict the status of drug regimen substitution. The outcome of this study can be used as an assistant tool for the clinician to help them make more appropriate drug regimen substitution. Future research directions are forwarded to come up with an applicable system in the area of the study.

Keywords: HIV drug regimen, data mining, hybrid methodology, predictive model

Procedia PDF Downloads 142
3400 Prospects for Sustainable Chemistry in South Africa: A Plural Healthcare System

Authors: Ntokozo C. Mthembu

Abstract:

The notion of sustainable chemistry has become significant in the discourse for a global post-colonial era, including South Africa, especially when it comes to access to the general health system and related policies in relation to disease or ease of human life. In view of the stubborn vestiges of coloniality in the daily lives of indigenous African people in general, the fundamentals of present Western medical and traditional medicine systems and related policies in the democratic era were examined in this study. The situation of traditional healers in relation to current policy was also reviewed. The advent of democracy in South Africa brought about a variety of development opportunities and limitations, particularly with respect to indigenous African knowledge systems such as traditional medicine. There were high hopes that the limitations of previous narrow cultural perspectives would be rectified in the democratic era through development interventions, but some sections of society, such as traditional healers, remain marginalised. The Afrocentric perspective was explored in dissecting government interventions related to traditional medicine. This article highlights that multiple medical systems should be adopted and that health policies should be aligned in order to guarantee mutual respect and to address the remnants of colonialism in South Africa, Africa and the broader global community.

Keywords: traditional healing system, healers, pluralist healthcare system, post-colonial era

Procedia PDF Downloads 149
3399 Leveraging Artificial Intelligence to Analyze the Interplay between Social Vulnerability Index and Mobility Dynamics in Pandemics

Authors: Joshua Harrell, Gideon Osei Bonsu, Susan Garza, Clarence Conner, Da’Neisha Harris, Emma Bukoswki, Zohreh Safari

Abstract:

The Social Vulnerability Index (SVI) stands as a pivotal tool for gauging community resilience amidst diverse stressors, including pandemics like COVID-19. This paper synthesizes recent research and underscores the significance of SVI in elucidating the differential impacts of crises on communities. Drawing on studies by Fox et al. (2023) and Mah et al. (2023), we delve into the application of SVI alongside emerging data sources to uncover nuanced insights into community vulnerability. Specifically, we explore the utilization of SVI in conjunction with mobility data from platforms like SafeGraph to probe the intricate relationship between social vulnerability and mobility dynamics during the COVID-19 pandemic. By leveraging 16 community variables derived from the American Community Survey, including socioeconomic status and demographic characteristics, SVI offers actionable intelligence for guiding targeted interventions and resource allocation. Building upon recent advancements, this paper contributes to the discourse on harnessing AI techniques to mitigate health disparities and fortify public health resilience in the face of pandemics and other crises.

Keywords: social vulnerability index, mobility dynamics, data analytics, health equity, pandemic preparedness, targeted interventions, data integration

Procedia PDF Downloads 64
3398 An Ensemble Deep Learning Architecture for Imbalanced Classification of Thoracic Surgery Patients

Authors: Saba Ebrahimi, Saeed Ahmadian, Hedie Ashrafi

Abstract:

Selecting appropriate patients for surgery is one of the main issues in thoracic surgery (TS). Both short-term and long-term risks and benefits of surgery must be considered in the patient selection criteria. There are some limitations in the existing datasets of TS patients because of missing values of attributes and imbalanced distribution of survival classes. In this study, a novel ensemble architecture of deep learning networks is proposed based on stacking different linear and non-linear layers to deal with imbalance datasets. The categorical and numerical features are split using different layers with ability to shrink the unnecessary features. Then, after extracting the insight from the raw features, a novel biased-kernel layer is applied to reinforce the gradient of the minority class and cause the network to be trained better comparing the current methods. Finally, the performance and advantages of our proposed model over the existing models are examined for predicting patient survival after thoracic surgery using a real-life clinical data for lung cancer patients.

Keywords: deep learning, ensemble models, imbalanced classification, lung cancer, TS patient selection

Procedia PDF Downloads 145
3397 Analysis of Big Data on Leisure Activities and Depression for the Disabled

Authors: Hee-Jung Seo, Yunjung Lee, Areum Han, Heeyoung Park, Se-Hyuk Park

Abstract:

The purpose of this study was to analyze the relationship between happiness and depression among people with disabilities and to analyze the social phenomenon of leisure activities among them to promote physical and leisure activities for people with disabilities. The research methods included analyzing differences in happiness according to depression classification. A total of 281 people with disabilities were analyzed using SPSS WIN Ver. 29.0. In addition, the SumTrend platform was used to analyze terms related to 'leisure activities for the disabled.' The findings can be summarized into two main points: First, there were significant differences in happiness according to depression classification. Second, there were 20 mentions before COVID-19, 34 mentions after COVID-19, and currently 43 mentions, with high positive rates observed in each period. Based on these results, the following conclusions were drawn: First, measures for people with disabilities include strengthening online resources and services, social distancing response policies, improving accessibility, and providing support and financial assistance. Second, measures for non-disabled individuals emphasize the need for education and information provision, promoting dialogue and interaction, ensuring accessibility, and promoting inclusive cultural awareness and attitude change.

Keywords: leisure activities, individuals with disabilities, COVID-19 pandemic, depression

Procedia PDF Downloads 48
3396 Proteomic Analysis of Excretory Secretory Antigen (ESA) from Entamoeba histolytica HM1: IMSS

Authors: N. Othman, J. Ujang, M. N. Ismail, R. Noordin, B. H. Lim

Abstract:

Amoebiasis is caused by the Entamoeba histolytica and still endemic in many parts of the tropical region, worldwide. Currently, there is no available vaccine against amoebiasis. Hence, there is an urgent need to develop a vaccine. The excretory secretory antigen (ESA) of E. histolytica is a suitable biomarker for the vaccine candidate since it can modulate the host immune response. Hence, the objective of this study is to identify the proteome of the ESA towards finding suitable biomarker for the vaccine candidate. The non-gel based and gel-based proteomics analyses were performed to identify proteins. Two kinds of mass spectrometry with different ionization systems were utilized i.e. LC-MS/MS (ESI) and MALDI-TOF/TOF. Then, the functional proteins classification analysis was performed using PANTHER software. Combination of the LC -MS/MS for the non-gel based and MALDI-TOF/TOF for the gel-based approaches identified a total of 273 proteins from the ESA. Both systems identified 29 similar proteins whereby 239 and 5 more proteins were identified by LC-MS/MS and MALDI-TOF/TOF, respectively. Functional classification analysis showed the majority of proteins involved in the metabolic process (24%), primary metabolic process (19%) and protein metabolic process (10%). Thus, this study has revealed the proteome the E. histolytica ESA and the identified proteins merit further investigations as a vaccine candidate.

Keywords: E. histolytica, ESA, proteomics, biomarker

Procedia PDF Downloads 343
3395 Web-Based Alcohol Prevention among Iranian Medical University Students: A Randomized Control Trail

Authors: Farzad Jalilian, Mehdi Mirzaei Alavijeh

Abstract:

Background: E-interventions as a universal approach to prevent a high-risk behavior, such as alcohol drinking. This study was conducted to evaluate web-based alcohol drinking preventative intervention efficiency among medical university students in Iran. Methods: Overall, 150 freshman and sophomore male student’s college students participated in this study as intervention and control group. This was a longitudinal randomized pre- and post-test series control group design panel study to implement a behavior modification based intervention to alcohol drinking prevention among college students. Cross-tabulation, t-test, repeated measures, and GEE by using SPSS statistical package, version 21 was used for the statistical analysis. The participants were followed up for 6 months with data collection scheduled at baseline, 3 and 6 months. The primary outcomes are attitude, self-control, and sensation seeking. Furthermore, the secondary outcome is comparing alcohol drinking among the study groups. Results: It was found significant reduce in average response for an attitude towards alcohol drinking and sensation seeking among intervention group (P < 0.05). But after intervention not significant difference between intervention and control group of improve self-control and reduce alcohol drinking (P > 0.05). Conclusion: Our intervention has been accompanied with reducing alcohol use rate. These findings indicate that e-intervention may be effectiveness approach to address the alcohol prevention among college students.

Keywords: e-interventions, alcohol drinking, students, Iran

Procedia PDF Downloads 414
3394 Using Machine-Learning Methods for Allergen Amino Acid Sequence's Permutations

Authors: Kuei-Ling Sun, Emily Chia-Yu Su

Abstract:

Allergy is a hypersensitive overreaction of the immune system to environmental stimuli, and a major health problem. These overreactions include rashes, sneezing, fever, food allergies, anaphylaxis, asthmatic, shock, or other abnormal conditions. Allergies can be caused by food, insect stings, pollen, animal wool, and other allergens. Their development of allergies is due to both genetic and environmental factors. Allergies involve immunoglobulin E antibodies, a part of the body’s immune system. Immunoglobulin E antibodies will bind to an allergen and then transfer to a receptor on mast cells or basophils triggering the release of inflammatory chemicals such as histamine. Based on the increasingly serious problem of environmental change, changes in lifestyle, air pollution problem, and other factors, in this study, we both collect allergens and non-allergens from several databases and use several machine learning methods for classification, including logistic regression (LR), stepwise regression, decision tree (DT) and neural networks (NN) to do the model comparison and determine the permutations of allergen amino acid’s sequence.

Keywords: allergy, classification, decision tree, logistic regression, machine learning

Procedia PDF Downloads 303
3393 The Analyses of July 15 Coup Attempt through the Turkish Press

Authors: Yasemin Gülşen Yılmaz, Süleyman Hakan Yılmaz, Muhammet Erbay

Abstract:

Military interventions have an important place in the Turkish Political History. Military interventions are commonly called coup in the society. By coup we mean that the armed forces seize political power either by a group of officer in the army or by chain of command. Coups not only weaken but also suspend the democracy in a country. All periods of coup created its own victims. Two military coups which took place in May 27, 1960 and September 12, 1980 are the most important ones in terms of political and social effect in the Turkish Political History. Apart these, March 12, 1971, February 28, 1997 and April 27, 2007 e-memorandum are the periods when Army submitted a memorandum and intervened the political government indirectly. Beside the memorandums and coups there were also many coup attempts that have been experienced in the Turkish Political History. In this study, we examined the coup attempted by FETO’s military members in the evening of July 15, 2016 from the point of the Turkish Press. Cumhuriyet, Haber Türk, Hürriyet, Milliyet, Sabah, Star, Yeni Akit and Yeni Şafak Newspapers which have different publication policies were examined within the scope of the study. The first pages of the newspapers dated July 16, 2016 were examined using content analysis method. The headlines, news, news headlines and the visual materials used for news were examined and the collected data were analysed.

Keywords: July 15, news, military coup, press

Procedia PDF Downloads 261
3392 Upgrades for Hydric Supply in Water System Distribution: Use of the Bayesian Network and Technical Expedients

Authors: Elena Carcano, James Ball

Abstract:

This work details the strategies adopted by the Italian Water Utilities during the distribution of water in emergency conditions which glide from earthquakes and droughts to floods and fires. Several water bureaus located over the national territory have been interviewed, and the collected information has been used in a database of potential interventions to be taken. The work discusses the actions adopted by water utilities. These are generally prioritized in order to minimize the social, temporal, and economic burden that the damaged and nearby areas need to support. Actions are defined relying on the Bayesian Network Approach, which constitutes the hard core of any decision support system. The Bayesian Networks give answers to interventions to real and most likely risky cases. The added value of this research consists in supplying the National Bureau, namely Protezione Civile, in charge of managing havoc and catastrophic situations with a univocal plot outline so as to be able to handle actions uniformly at the expense of different local laws or contradictory customs which squander any recovery conditions, proper technical service, and economic aids. The paper is organized as follows: in section 1, the introduction is stated; section 2 provides a brief discussion of BNNs (Bayesian Networks), section 3 introduces the adopted methodology; and in the last sections, results are presented, and conclusions are drawn.

Keywords: hierarchical process, strategic plan, water emergency conditions, water supply

Procedia PDF Downloads 160
3391 Emotion Classification Using Recurrent Neural Network and Scalable Pattern Mining

Authors: Jaishree Ranganathan, MuthuPriya Shanmugakani Velsamy, Shamika Kulkarni, Angelina Tzacheva

Abstract:

Emotions play an important role in everyday life. An-alyzing these emotions or feelings from social media platforms like Twitter, Facebook, blogs, and forums based on user comments and reviews plays an important role in various factors. Some of them include brand monitoring, marketing strategies, reputation, and competitor analysis. The opinions or sentiments mined from such data helps understand the current state of the user. It does not directly provide intuitive insights on what actions to be taken to benefit the end user or business. Actionable Pattern Mining method provides suggestions or actionable recommendations on what changes or actions need to be taken in order to benefit the end user. In this paper, we propose automatic classification of emotions in Twitter data using Recurrent Neural Network - Gated Recurrent Unit. We achieve training accuracy of 87.58% and validation accuracy of 86.16%. Also, we extract action rules with respect to the user emotion that helps to provide actionable suggestion.

Keywords: emotion mining, twitter, recurrent neural network, gated recurrent unit, actionable pattern mining

Procedia PDF Downloads 168
3390 Analysis of Lesotho Wool Production and Quality Trends 2008-2018

Authors: Papali Maqalika

Abstract:

Lesotho farmers produce significant quantities of Merino wool of a quality competitive on the global market and make a substantial impact on the economy of Lesotho. However, even with the economic contribution, the production and quality information and trends of this fibre has been recognised nor documented. This is a sombre shortcoming as Lesotho wool is unknown on international markets. The situation is worsened by the fact that Lesotho wool is auction together with South African wool, trading and benchmarking Lesotho wool are difficult not to mention attempts to advance its production and quality. Based on the information above, available data on Lesotho wool for 10 years were collected and analysed for trends to used in benchmarking where applicable. The fibre properties analysed include fibre diameter (fineness), vegetable matter and yield, application and price. These were selected because they are fundamental in determining fibre quality and price. Production of wool in Lesotho has increased slightly over the ten years covered by this study. It also became apparent that production and quality trends of Lesotho wool are greatly influenced by the farming practices, breed of sheep and climatic conditions. Greater adoption of the merino sheep breed, sheds/barns and sheep coats are suggested as ways to reduce mortality rate (due to extremely cold temperatures), to reduce the vegetable matter on the fibre thus improving the quality and increase yield per sheep and production as a whole. Some farming practices such as the lack of barns, supplementary feeding and veterinary care present constraints in wool production. The districts in the Highlands region were found to have the highest production of mostly wool, this being ascribed to better pastures, climatic, social and other conditions conducive to wool production. The production of Lesotho wool and its quality can be improved further, possibly because of the interventions the Ministry of Agriculture introduced through the Small Agricultural and Development Project (SADP) and other appropriate initiatives by the National Wool and Mohair Growers Association (NWMGA). The challenge however, remains the lack of direct involvement of the wool growers (farmers) in decisions making and policy development, this potentially influences and may lead to the reluctance to adopt the strategies. In some cases, the wool growers do not receive the benefits associated with the interventions immediately. Based on these discoveries; it is recommended that the relevant educators and researchers in wool and textile science, as well as the local wool farmers in Lesotho, be represented in policy and other decision making forums relating to these interventions. In this way, educational campaigns and training workshops will be demand driven with a better chance of adoption and success. This is because the direct beneficiaries will have been involved at inception and they will have a sense of ownership as well as intent to see them through successfully.

Keywords: lesotho wool, wool quality, wool production, lesotho economy, global market, apparel wool, database, textile science, exports, animal farming practices, intimate apparel, interventions

Procedia PDF Downloads 90
3389 Humanitarianism as the New Face of Religious Practice in Nigeria

Authors: Nicholas Okpe

Abstract:

The world is no more innocent as previously, as it gets more and more engulfed in both man-made and natural disasters and the call for religious intervention becomes intrinsically louder to the extent that any religious inclination that does not devolve into societal or humanitarian adventures makes no meaning. Issues such as wars, conflicts of different dimensions, natural and man made discomforts in form of environmental disturbances have thrown new challenges hitherto unknown to the doorsteps of religious groups especially faith based organizations. In the last two decades, the above speaks volumes in Nigeria such that Chunua Achebe's "things fallen apart" is real today all over Nigeria. An estimated five million people live in internally displaced camps all over the country as a consequence of various forms of social unrest as well as natural disasters. These incidences have brought to the fore the signifance of religion in societal affairs as many groups who through their interventions have often shown to be the hope of the people. The crux of this paper is to examine the role of religion in not only making people to cope with difficult situations they find themselves in, but also giving hope to the many who otherwise are feeling despondent and at the edge of life. Many religious groups have well developed strategies of interventions in various humanitarian situations. Thus, this paper assesses efforts of religions such as christianity, Islam and the indigenous African religion in this respect. It is discovered that the most potent and effective means of attending to humanitarian crisis today in Nigeria is through the various religious and cultural organizations as governments at various levels have lost credibility in such exercises.

Keywords: humanitarianism, religion, practice, nigeria

Procedia PDF Downloads 8
3388 A Pilot Study Based on Online Survey Research Assessing the COVID-19 Impact on the Wellbeing of 15 Dogs Involved in Flemish Animal-Assisted Intervention Projects

Authors: L. Meers, L. Contalbrigo, V. Stevens, O. Ulitina, S. Laufer, W. E. Samuels, S. Normando

Abstract:

Since the COVID-19 pandemic started, there has been concern that domestic animals may help spread SARS-Cov-2. This concern also greatly affected human-animal interaction projects such as animal-assisted interventions (AAI). As a result, institutions and AAI practitioners developed new safety protocols and procedures to control the spread of the SARS-Cov-2 virus during AAI sessions and to guarantee safety for their clients and animals. However, little is known yet about the impact on animals' needs and the possible welfare issues due to these lifestyle adaptions. Fifteen therapists in Flanders, Belgium, who were currently conducting canine-assisted interventions, conducted unstructured observations on how their dogs' (11 mixed breeds, 3 Labradors, 1 terrier aged 2 – 12 years) behaviors changed due to institutional COVID-19 safety protocols. Most (80%) of the respondents reported that their dogs showed sniffing or sneezing after smelling disinfected areas. Two (13%) dogs responded with vomiting and gagging, and three (20%) dogs urinated over disinfected areas. All protocols advise social distancing between participants and animals. When held back, eight (53%) dogs showed self-calming behaviors. Respondents reported that most (73%) dogs responded with flight reactions when seeing humans wearing facial masks. When practitioners threw their used masks in open dustbins, five (33%) dogs tried to take them out with their mouths and play with them; two (13%) Labradors tried to eat them. Taking the dogs' temperatures was the most frequently (53%) used method to supervise their health. However, all dogs showed behaviors as ducking the tail, trying to escape, or biting the animal handler during this procedure. We interpret these results to suggest that dogs tended to react with stress and confusion to the changes in AAI practices they're part of. The health and safety protocols that institutions used were largely borne from recommendations made to protect humans. The participating practitioners appeared to use their knowledge of dog behavior and safety to modify them as best they could—but with more significant concern directed towards the other humans. Given their inter-relatedness and mutual importance for welfare, we advocate for integrated human and animal health and welfare assessments and protocols to provide a framework for "One health" approaches in animal-assisted interventions.

Keywords: animal-assisted therapy, COVID-19 protocol, one health, welfare

Procedia PDF Downloads 201
3387 Represent Light and Shade of Old Beijing: Construction of Historical Picture Display Platform Based on Geographic Information System (GIS)

Authors: Li Niu, Jihong Liang, Lichao Liu, Huidi Chen

Abstract:

With the drawing of ancient palace painter, the layout of Beijing famous architect and the lens under photographers, a series of pictures which described whether emperors or ordinary people, whether gardens or Hutongs, whether historical events or life scenarios has emerged into our society. These precious resources are scattered around and preserved in different places Such as organizations like archives and libraries, along with individuals. The research combined decentralized photographic resources with Geographic Information System (GIS), focusing on the figure, event, time and location of the pictures to map them with geographic information in webpage and to display them productively. In order to meet the demand of reality, we designed a metadata description proposal, which is referred to DC and VRA standards. Another essential procedure is to formulate a four-tier classification system to correspond with the metadata proposals. As for visualization, we used Photo Waterfall and Time Line to display our resources in front end. Last but not the least, leading the Web 2.0 trend, the research developed an artistic, friendly, expandable, universal and user involvement platform to show the historical and culture precipitation of Beijing.

Keywords: historical picture, geographic information system, display platform, four-tier classification system

Procedia PDF Downloads 270
3386 A New Approach of Preprocessing with SVM Optimization Based on PSO for Bearing Fault Diagnosis

Authors: Tawfik Thelaidjia, Salah Chenikher

Abstract:

Bearing fault diagnosis has attracted significant attention over the past few decades. It consists of two major parts: vibration signal feature extraction and condition classification for the extracted features. In this paper, feature extraction from faulty bearing vibration signals is performed by a combination of the signal’s Kurtosis and features obtained through the preprocessing of the vibration signal samples using Db2 discrete wavelet transform at the fifth level of decomposition. In this way, a 7-dimensional vector of the vibration signal feature is obtained. After feature extraction from vibration signal, the support vector machine (SVM) was applied to automate the fault diagnosis procedure. To improve the classification accuracy for bearing fault prediction, particle swarm optimization (PSO) is employed to simultaneously optimize the SVM kernel function parameter and the penalty parameter. The results have shown feasibility and effectiveness of the proposed approach

Keywords: condition monitoring, discrete wavelet transform, fault diagnosis, kurtosis, machine learning, particle swarm optimization, roller bearing, rotating machines, support vector machine, vibration measurement

Procedia PDF Downloads 437
3385 Determining the Effects of Wind-Aided Midge Movement on the Probability of Coexistence of Multiple Bluetongue Virus Serotypes in Patchy Environments

Authors: Francis Mugabi, Kevin Duffy, Joseph J. Y. T Mugisha, Obiora Collins

Abstract:

Bluetongue virus (BTV) has 27 serotypes, with some of them coexisting in patchy (different) environments, which make its control difficult. Wind-aided midge movement is a known mechanism in the spread of BTV. However, its effects on the probability of coexistence of multiple BTV serotypes are not clear. Deterministic and stochastic models for r BTV serotypes in n discrete patches connected by midge and/or cattle movement are formulated and analyzed. For the deterministic model without midge and cattle movement, using the comparison principle, it is shown that if the patch reproduction number R0 < 1, i=1,2,...,n, j=1,2,...,r, all serotypes go extinct. If R^j_i0>1, competitive exclusion takes place. Using numerical simulations, it is shown that when the n patches are connected by midge movement, coexistence takes place. To account for demographic and movement variability, the deterministic model is transformed into a continuous-time Markov chain stochastic model. Utilizing a multitype branching process, it is shown that the midge movement can have a large effect on the probability of coexistence of multiple BTV serotypes. The probability of coexistence can be brought to zero when the control interventions that directly kill the adult midges are applied. These results indicate the significance of wind-aided midge movement and vector control interventions on the coexistence and control of multiple BTV serotypes in patchy environments.

Keywords: bluetongue virus, coexistence, multiple serotypes, midge movement, branching process

Procedia PDF Downloads 150
3384 Predictive Modelling of Aircraft Component Replacement Using Imbalanced Learning and Ensemble Method

Authors: Dangut Maren David, Skaf Zakwan

Abstract:

Adequate monitoring of vehicle component in other to obtain high uptime is the goal of predictive maintenance, the major challenge faced by businesses in industries is the significant cost associated with a delay in service delivery due to system downtime. Most of those businesses are interested in predicting those problems and proactively prevent them in advance before it occurs, which is the core advantage of Prognostic Health Management (PHM) application. The recent emergence of industry 4.0 or industrial internet of things (IIoT) has led to the need for monitoring systems activities and enhancing system-to-system or component-to- component interactions, this has resulted to a large generation of data known as big data. Analysis of big data represents an increasingly important, however, due to complexity inherently in the dataset such as imbalance classification problems, it becomes extremely difficult to build a model with accurate high precision. Data-driven predictive modeling for condition-based maintenance (CBM) has recently drowned research interest with growing attention to both academics and industries. The large data generated from industrial process inherently comes with a different degree of complexity which posed a challenge for analytics. Thus, imbalance classification problem exists perversely in industrial datasets which can affect the performance of learning algorithms yielding to poor classifier accuracy in model development. Misclassification of faults can result in unplanned breakdown leading economic loss. In this paper, an advanced approach for handling imbalance classification problem is proposed and then a prognostic model for predicting aircraft component replacement is developed to predict component replacement in advanced by exploring aircraft historical data, the approached is based on hybrid ensemble-based method which improves the prediction of the minority class during learning, we also investigate the impact of our approach on multiclass imbalance problem. We validate the feasibility and effectiveness in terms of the performance of our approach using real-world aircraft operation and maintenance datasets, which spans over 7 years. Our approach shows better performance compared to other similar approaches. We also validate our approach strength for handling multiclass imbalanced dataset, our results also show good performance compared to other based classifiers.

Keywords: prognostics, data-driven, imbalance classification, deep learning

Procedia PDF Downloads 174
3383 Masked Candlestick Model: A Pre-Trained Model for Trading Prediction

Authors: Ling Qi, Matloob Khushi, Josiah Poon

Abstract:

This paper introduces a pre-trained Masked Candlestick Model (MCM) for trading time-series data. The pre-trained model is based on three core designs. First, we convert trading price data at each data point as a set of normalized elements and produce embeddings of each element. Second, we generate a masked sequence of such embedded elements as inputs for self-supervised learning. Third, we use the encoder mechanism from the transformer to train the inputs. The masked model learns the contextual relations among the sequence of embedded elements, which can aid downstream classification tasks. To evaluate the performance of the pre-trained model, we fine-tune MCM for three different downstream classification tasks to predict future price trends. The fine-tuned models achieved better accuracy rates for all three tasks than the baseline models. To better analyze the effectiveness of MCM, we test the same architecture for three currency pairs, namely EUR/GBP, AUD/USD, and EUR/JPY. The experimentation results demonstrate MCM’s effectiveness on all three currency pairs and indicate the MCM’s capability for signal extraction from trading data.

Keywords: masked language model, transformer, time series prediction, trading prediction, embedding, transfer learning, self-supervised learning

Procedia PDF Downloads 127
3382 Application of Principle Component Analysis for Classification of Random Doppler-Radar Targets during the Surveillance Operations

Authors: G. C. Tikkiwal, Mukesh Upadhyay

Abstract:

During the surveillance operations at war or peace time, the Radar operator gets a scatter of targets over the screen. This may be a tracked vehicle like tank vis-à-vis T72, BMP etc, or it may be a wheeled vehicle like ALS, TATRA, 2.5Tonne, Shaktiman or moving army, moving convoys etc. The Radar operator selects one of the promising targets into Single Target Tracking (STT) mode. Once the target is locked, the operator gets a typical audible signal into his headphones. With reference to the gained experience and training over the time, the operator then identifies the random target. But this process is cumbersome and is solely dependent on the skills of the operator, thus may lead to misclassification of the object. In this paper we present a technique using mathematical and statistical methods like Fast Fourier Transformation (FFT) and Principal Component Analysis (PCA) to identify the random objects. The process of classification is based on transforming the audible signature of target into music octave-notes. The whole methodology is then automated by developing suitable software. This automation increases the efficiency of identification of the random target by reducing the chances of misclassification. This whole study is based on live data.

Keywords: radar target, fft, principal component analysis, eigenvector, octave-notes, dsp

Procedia PDF Downloads 346
3381 Utilising Indigenous Knowledge to Design Dykes in Malawi

Authors: Martin Kleynhans, Margot Soler, Gavin Quibell

Abstract:

Malawi is one of the world’s poorest nations and consequently, the design of flood risk management infrastructure comes with a different set of challenges. There is a lack of good quality hydromet data, both in spatial terms and in the quality thereof and the challenge in the design of flood risk management infrastructure is compounded by the fact that maintenance is almost completely non-existent and that solutions have to be simple to be effective. Solutions should not require any further resources to remain functional after completion, and they should be resilient. They also have to be cost effective. The Lower Shire Valley of Malawi suffers from frequent flood events. Various flood risk management interventions have been designed across the valley during the course of the Shire River Basin Management Project – Phase I, and due to the data poor environment, indigenous knowledge was relied upon to a great extent for hydrological and hydraulic model calibration and verification. However, indigenous knowledge comes with the caveat that it is ‘fuzzy’ and that it can be manipulated for political reasons. The experience in the Lower Shire valley suggests that indigenous knowledge is unlikely to invent a problem where none exists, but that flood depths and extents may be exaggerated to secure prioritization of the intervention. Indigenous knowledge relies on the memory of a community and cannot foresee events that exceed past experience, that could occur differently to those that have occurred in the past, or where flood management interventions change the flow regime. This complicates communication of planned interventions to local inhabitants. Indigenous knowledge is, for the most part, intuitive, but flooding can sometimes be counter intuitive, and the rural poor may have a lower trust of technology. Due to a near complete lack of maintenance of infrastructure, infrastructure has to be designed with no moving parts and no requirement for energy inputs. This precludes pumps, valves, flap gates and sophisticated warning systems. Designs of dykes during this project included ‘flood warning spillways’, that double up as pedestrian and animal crossing points, which provide warning of impending dangerous water levels behind dykes to residents before water levels that could cause a possible dyke failure are reached. Locally available materials and erosion protection using vegetation were used wherever possible to keep costs down.

Keywords: design of dykes in low-income countries, flood warning spillways, indigenous knowledge, Malawi

Procedia PDF Downloads 279
3380 Interior Design: Changing Values

Authors: Kika Ioannou Kazamia

Abstract:

This paper examines the action research cycle of the second phase of longitudinal research on sustainable interior design practices, between two groups of stakeholders, designers and clients. During this phase of the action research, the second step - the change stage - of Lewin’s change management model has been utilized to change values, approaches, and attitudes toward sustainable design practices among the participants. Affective domain learning theory is utilized to attach new values. Learning with the use of information technology, collaborative learning, and problem-based learning are the learning methods implemented toward the acquisition of the objectives. Learning methods, and aims, require the design of interventions with participants' involvement in activities that would lead to the acknowledgment of the benefits of sustainable practices. Interventions are steered to measure participants’ decisions for the worth and relevance of ideas, and experiences; accept or commit to a particular stance or action. The data collection methods used in this action research are observers’ reports, participants' questionnaires, and interviews. The data analyses use both quantitative and qualitative methods. The main beneficial aspect of the quantitative method was to provide the means to separate many factors that obscured the main qualitative findings. The qualitative method allowed data to be categorized, to adapt the deductive approach, and then examine for commonalities that could reflect relevant categories or themes. The results from the data indicate that during the second phase, designers and clients' participants altered their behaviours.

Keywords: design, change, sustainability, learning, practices

Procedia PDF Downloads 77
3379 A Case Study of Deep Learning for Disease Detection in Crops

Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell

Abstract:

In the precision agriculture area, one of the main tasks is the automated detection of diseases in crops. Machine Learning algorithms have been studied in recent decades for such tasks in view of their potential for improving economic outcomes that automated disease detection may attain over crop fields. The latest generation of deep learning convolution neural networks has presented significant results in the area of image classification. In this way, this work has tested the implementation of an architecture of deep learning convolution neural network for the detection of diseases in different types of crops. A data augmentation strategy was used to meet the requirements of the algorithm implemented with a deep learning framework. Two test scenarios were deployed. The first scenario implemented a neural network under images extracted from a controlled environment while the second one took images both from the field and the controlled environment. The results evaluated the generalisation capacity of the neural networks in relation to the two types of images presented. Results yielded a general classification accuracy of 59% in scenario 1 and 96% in scenario 2.

Keywords: convolutional neural networks, deep learning, disease detection, precision agriculture

Procedia PDF Downloads 259
3378 Explainable Graph Attention Networks

Authors: David Pham, Yongfeng Zhang

Abstract:

Graphs are an important structure for data storage and computation. Recent years have seen the success of deep learning on graphs such as Graph Neural Networks (GNN) on various data mining and machine learning tasks. However, most of the deep learning models on graphs cannot easily explain their predictions and are thus often labelled as “black boxes.” For example, Graph Attention Network (GAT) is a frequently used GNN architecture, which adopts an attention mechanism to carefully select the neighborhood nodes for message passing and aggregation. However, it is difficult to explain why certain neighbors are selected while others are not and how the selected neighbors contribute to the final classification result. In this paper, we present a graph learning model called Explainable Graph Attention Network (XGAT), which integrates graph attention modeling and explainability. We use a single model to target both the accuracy and explainability of problem spaces and show that in the context of graph attention modeling, we can design a unified neighborhood selection strategy that selects appropriate neighbor nodes for both better accuracy and enhanced explainability. To justify this, we conduct extensive experiments to better understand the behavior of our model under different conditions and show an increase in both accuracy and explainability.

Keywords: explainable AI, graph attention network, graph neural network, node classification

Procedia PDF Downloads 198
3377 The Implementation of a Nurse-Driven Palliative Care Trigger Tool

Authors: Sawyer Spurry

Abstract:

Problem: Palliative care providers at an academic medical center in Maryland stated medical intensive care unit (MICU) patients are often referred late in their hospital stay. The MICU has performed well below the hospital quality performance metric of 80% of patients who expire with expected outcomes should have received a palliative care consult within 48 hours of admission. Purpose: The purpose of this quality improvement (QI) project is to increase palliative care utilization in the MICU through the implementation of a Nurse-Driven PalliativeTriggerTool to prompt the need for specialty palliative care consult. Methods: MICU nursing staff and providers received education concerning the implications of underused palliative care services and the literature data supporting the use of nurse-driven palliative care tools as a means of increasing utilization of palliative care. A MICU population specific criteria of palliative triggers (Palliative Care Trigger Tool) was formulated by the QI implementation team, palliative care team, and patient care services department. Nursing staff were asked to assess patients daily for the presence of palliative triggers using the Palliative Care Trigger Tool and present findings during bedside rounds. MICU providers were asked to consult palliative medicinegiven the presence of palliative triggers; following interdisciplinary rounds. Rates of palliative consult, given the presence of triggers, were collected via electronic medical record e-data pull, de-identified, and recorded in the data collection tool. Preliminary Results: Over 140 MICU registered nurses were educated on the palliative trigger initiative along with 8 nurse practitioners, 4 intensivists, 2 pulmonary critical care fellows, and 2 palliative medicine physicians. Over 200 patients were admitted to the MICU and screened for palliative triggers during the 15-week implementation period. Primary outcomes showed an increase in palliative care consult rates to those patients presenting with triggers, a decreased mean time from admission to palliative consult, and increased recognition of unmet palliative care needs by MICU nurses and providers. Conclusions: Anticipatory findings of this QI project would suggest a positive correlation between utilizing palliative care trigger criteria and decreased time to palliative care consult. The direct outcomes of effective palliative care results in decreased length of stay, healthcare costs, and moral distress, as well as improved symptom management and quality of life (QOL).

Keywords: palliative care, nursing, quality improvement, trigger tool

Procedia PDF Downloads 194
3376 Enhancing the Aussie Optimism Positive Thinking Skills Program: Short-term Effects on Anxiety and Depression in Youth aged 9-11 Years Old

Authors: Rosanna M. Rooney, Sharinaz Hassan, Maryanne McDevitt, Jacob D. Peckover, Robert T. Kane

Abstract:

Anxiety and depression are the most common mental health problems experienced by Australian children and adolescents. Research into youth mental health points to the importance of considering emotional competence, parental influence on the child’s emotional development, and the fact that cognitions are still developing in childhood when designing and implementing positive psychology interventions. Additionally, research into such interventions has suggested the inclusion of a coaching component aimed at supporting those implementing the intervention enhances the effects of the intervention itself. In light of these findings and given the burden of anxiety and depression in the longer term, it is necessary to enhance the Aussie Optimism Positive Thinking Skills program and evaluate its efficacy in terms of children’s mental health outcomes. It was expected that the enhancement of the emotional and cognitive aspects of the Aussie Optimism Positive Thinking Skills program, the addition of coaching, and the inclusion of a parent manual would lead to significant prevention effects in internalizing problems at post-test, 6- and 18-months after the completion of the intervention. 502 students (9-11 years old) were randomly assigned to the intervention group (n = 347) or control group (n = 155). At each time point (baseline, post-test, 6-month follow-up, and 18-month follow-up), students completed a battery of self-report measures. The ten intervention sessions making up the enhanced Aussie Optimism Positive Thinking Skills program were run weekly. At post-test and 6-month follow-up, the intervention group reported significantly lower depression than the control group, with no group differences at the 18-month follow-up. The intervention group reported significantly lower anxiety than the control group only at the 6-month follow-up, with no group differences in the post-test or at the 18-month follow-up. Results suggest that the enhanced Aussie Optimism Positive Thinking Skills program can reduce depressive and anxious symptoms in the short term and highlight the importance of universally implemented positive psychology interventions.

Keywords: positive psychology, emotional competence, internalizing symptoms, universal implementation

Procedia PDF Downloads 68
3375 Comparing the Detection of Autism Spectrum Disorder within Males and Females Using Machine Learning Techniques

Authors: Joseph Wolff, Jeffrey Eilbott

Abstract:

Autism Spectrum Disorders (ASD) are a spectrum of social disorders characterized by deficits in social communication, verbal ability, and interaction that can vary in severity. In recent years, researchers have used magnetic resonance imaging (MRI) to help detect how neural patterns in individuals with ASD differ from those of neurotypical (NT) controls for classification purposes. This study analyzed the classification of ASD within males and females using functional MRI data. Functional connectivity (FC) correlations among brain regions were used as feature inputs for machine learning algorithms. Analysis was performed on 558 cases from the Autism Brain Imaging Data Exchange (ABIDE) I dataset. When trained specifically on females, the algorithm underperformed in classifying the ASD subset of our testing population. Although the subject size was relatively smaller in the female group, the manual matching of both male and female training groups helps explain the algorithm’s bias, indicating the altered sex abnormalities in functional brain networks compared to typically developing peers. These results highlight the importance of taking sex into account when considering how generalizations of findings on males with ASD apply to females.

Keywords: autism spectrum disorder, machine learning, neuroimaging, sex differences

Procedia PDF Downloads 209