Search results for: human lung carcinoma cell lines
11299 Political Perspectives Regarding International Laws
Authors: Hamid Vahidkia
Abstract:
This exposition investigates the connection between two viewpoints on the nature of human rights. Agreeing with the “political” or “practical” point of view, human rights are claims that people have against certain regulation structures in specific present-day states, in the ethicalness of interface they have in settings that incorporate them. Agreeing with the more conventional “humanist” or “naturalistic” viewpoint, human rights are pre-institutional claims that people have against all other people in the ethicalness of interface characteristic of their common humankind. This paper contends that once we recognize the two viewpoints in their best light, we are able to see that they are complementary, and, in reality, we require both to form a great standardizing sense of the modern home of human rights. It clarifies how humanist and political contemplations can and ought to work in couple to account for the concept, substance, and legitimization of human rights.Keywords: politics, human rights, humanities, mankind, law
Procedia PDF Downloads 5911298 Interwoven Realms: The Relationship Between Textiles, Fashion, and Architecture
Authors: Toktam mehrabani
Abstract:
Textiles, fashion, and architecture, though seemingly disparate fields, share a deep and evolving relationship. This paper explores the intersection of these disciplines, examining how the tactile, structural, and aesthetic qualities of textiles have influenced both fashion and architecture over time. By investigating historical and contemporary examples, this paper seeks to unravel the ways in which textiles and fashion have not only shaped architectural design but have also acted as a bridge between functionality, art, and human experience in the built environment.Textiles have been integral to human culture since the dawn of civilization. Their presence transcends mere functionality, serving as a medium for artistic expression, cultural identity, and social commentary. Fashion, derived from textiles, has long been associated with personal identity and societal trends, while architecture reflects human needs, environmental context, and cultural values. This paper posits that the relationship between textiles, fashion, and architecture is more interconnected than often perceived, with each influencing and inspiring the other across time. Textiles in Architectural Design: From ancient draperies in temples to tapestries in castles, textiles have adorned structures, softening rigid spaces and adding layers of warmth and luxury. Fabric screens and curtains have also served functional purposes, such as controlling light, acoustics, and temperature. Fashion as Architectural Expression: Renaissance and Baroque fashion used exaggerated forms, corsetry, and layers to mirror the grandiosity of architectural styles of the time. Clothing acted as wearable architecture, with structured garments mirroring the strong lines and curves of buildings..Structural Textiles in Architecture: In the 21st century, textiles are no longer just decorative; they have become integral to architectural innovation. Materials like tensile fabrics and smart textiles are used in creating flexible, lightweight structures. Iconic examples include Frei Otto’s work with tensile membranes, seen in the Munich Olympic Stadium.Technological advancements have drastically transformed the relationship between textiles, fashion, and architecture. Digital tools like 3D printing and laser cutting allow designers in both fields to push the limits of form and structure. Smart textiles that react to environmental stimuli are being explored for use in both wearable technology and adaptable architecture, such as facades that change in response to weather conditions. Textiles, fashion, and architecture are inextricably linked through their shared exploration of form, structure, and expression. This interdisciplinary relationship continues to evolve, driven by technological advancements and a growing emphasis on sustainability. As fashion becomes more architectural in its construction and architecture more fluid in its forms, the lines between these disciplines blur, offering new possibilities for creativity and functionality in both wearable and built environments.Keywords: textiles in architecture, fashion and architecture, textile architecture, structural textiles, wearable architecture, architectural fashion
Procedia PDF Downloads 2911297 Effects of Bipolar Plate Coating Layer on Performance Degradation of High-Temperature Proton Exchange Membrane Fuel Cell
Authors: Chen-Yu Chen, Ping-Hsueh We, Wei-Mon Yan
Abstract:
Over the past few centuries, human requirements for energy have been met by burning fossil fuels. However, exploiting this resource has led to global warming and innumerable environmental issues. Thus, finding alternative solutions to the growing demands for energy has recently been driving the development of low-carbon and even zero-carbon energy sources. Wind power and solar energy are good options but they have the problem of unstable power output due to unpredictable weather conditions. To overcome this problem, a reliable and efficient energy storage sub-system is required in future distributed-power systems. Among all kinds of energy storage technologies, the fuel cell system with hydrogen storage is a promising option because it is suitable for large-scale and long-term energy storage. The high-temperature proton exchange membrane fuel cell (HT-PEMFC) with metallic bipolar plates is a promising fuel cell system because an HT-PEMFC can tolerate a higher CO concentration and the utilization of metallic bipolar plates can reduce the cost of the fuel cell stack. However, the operating life of metallic bipolar plates is a critical issue because of the corrosion phenomenon. As a result, in this work, we try to apply different coating layer on the metal surface and to investigate the protection performance of the coating layers. The tested bipolar plates include uncoated SS304 bipolar plates, titanium nitride (TiN) coated SS304 bipolar plates and chromium nitride (CrN) coated SS304 bipolar plates. The results show that the TiN coated SS304 bipolar plate has the lowest contact resistance and through-plane resistance and has the best cell performance and operating life among all tested bipolar plates. The long-term in-situ fuel cell tests show that the HT-PEMFC with TiN coated SS304 bipolar plates has the lowest performance decay rate. The second lowest is CrN coated SS304 bipolar plate. The uncoated SS304 bipolar plate has the worst performance decay rate. The performance decay rates with TiN coated SS304, CrN coated SS304 and uncoated SS304 bipolar plates are 5.324×10⁻³ % h⁻¹, 4.513×10⁻² % h⁻¹ and 7.870×10⁻² % h⁻¹, respectively. In addition, the EIS results indicate that the uncoated SS304 bipolar plate has the highest growth rate of ohmic resistance. However, the ohmic resistance with the TiN coated SS304 bipolar plates only increases slightly with time. The growth rate of ohmic resistances with TiN coated SS304, CrN coated SS304 and SS304 bipolar plates are 2.85×10⁻³ h⁻¹, 3.56×10⁻³ h⁻¹, and 4.33×10⁻³ h⁻¹, respectively. On the other hand, the charge transfer resistances with these three bipolar plates all increase with time, but the growth rates are all similar. In addition, the effective catalyst surface areas with all bipolar plates do not change significantly with time. Thus, it is inferred that the major reason for the performance degradation is the elevated ohmic resistance with time, which is associated with the corrosion and oxidation phenomena on the surface of the stainless steel bipolar plates.Keywords: coating layer, high-temperature proton exchange membrane fuel cell, metallic bipolar plate, performance degradation
Procedia PDF Downloads 28111296 Cloning and Expression of Human Interleukin 15: A Promising Candidate for Cytokine Immunotherapy
Authors: Sadaf Ilyas
Abstract:
Recombinant cytokines have been employed successfully as potential therapeutic agent. Some cytokine therapies are already used as a part of clinical practice, ranging from early exploratory trials to well established therapies that have already received approval. Interleukin 15 is a pleiotropic cytokine having multiple roles in peripheral innate and adaptive immune cell function. It regulates the activation, proliferation and maturation of NK cells, T-cells, monocytes/macrophages and granulocytes, and the interactions between them thus acting as a bridge between innate and adaptive immune responses. Unraveling the biology of IL-15 has revealed some interesting surprises that may point toward some of the first therapeutic applications for this cytokine. In this study, the human interleukin 15 gene was isolated, amplified and ligated to a TA vector which was then transfected to a bacterial host, E. coli Top10F’. The sequence of cloned gene was confirmed and it showed 100% homology with the reported sequence. The confirmed gene was then subcloned in pET Expression system to study the IPTG induced expression of IL-15 gene. Positive expression was obtained for number of clones that showed 15 kd band of IL-15 in SDS-PAGE analysis, indicating the successful strain development that can be studied further to assess the potential therapeutic intervention of this cytokine in relevance to human diseases.Keywords: Interleukin 15, pET expression system, immune therapy, protein purification
Procedia PDF Downloads 41311295 Possible Exposure of Persons with Cardiac Pacemakers to Extremely Low Frequency (ELF) Electric and Magnetic Fields
Authors: Leena Korpinen, Rauno Pääkkönen, Fabriziomaria Gobba, Vesa Virtanen
Abstract:
The number of persons with implanted cardiac pacemakers (PM) has increased in Western countries. The aim of this paper is to investigate the possible situations where persons with a PM may be exposed to extremely low frequency (ELF) electric (EF) and magnetic fields (MF) that may disturb their PM. Based on our earlier studies, it is possible to find such high public exposure to EFs only in some places near 400 kV power lines, where an EF may disturb a PM in unipolar mode. Such EFs cannot be found near 110 kV power lines. Disturbing MFs can be found near welding machines. However, we do not have measurement data from welding. Based on literature and earlier studies at Tampere University of Technology, it is difficult to find public EF or MF exposure that is high enough to interfere with PMs.Keywords: cardiac pacemaker, electric field, magnetic field, electrical engineering
Procedia PDF Downloads 43211294 DNA Damage and Apoptosis Induced in Drosophila melanogaster Exposed to Different Duration of 2400 MHz Radio Frequency-Electromagnetic Fields Radiation
Authors: Neha Singh, Anuj Ranjan, Tanu Jindal
Abstract:
Over the last decade, the exponential growth of mobile communication has been accompanied by a parallel increase in density of electromagnetic fields (EMF). The continued expansion of mobile phone usage raises important questions as EMF, especially radio frequency (RF), have long been suspected of having biological effects. In the present experiments, we studied the effects of RF-EMF on cell death (apoptosis) and DNA damage of a well- tested biological model, Drosophila melanogaster exposed to 2400 MHz frequency for different time duration i.e. 2 hrs, 4 hrs, 6 hrs,8 hrs, 10 hrs, and 12 hrs each day for five continuous days in ambient temperature and humidity conditions inside an exposure chamber. The flies were grouped into control, sham-exposed, and exposed with 100 flies in each group. In this study, well-known techniques like Comet Assay and TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) Assay were used to detect DNA damage and for apoptosis studies, respectively. Experiments results showed DNA damage in the brain cells of Drosophila which increases as the duration of exposure increases when observed under the observed when we compared results of control, sham-exposed, and exposed group which indicates that EMF radiation-induced stress in the organism that leads to DNA damage and cell death. The process of apoptosis and mutation follows similar pathway for all eukaryotic cells; therefore, studying apoptosis and genotoxicity in Drosophila makes similar relevance for human beings as well.Keywords: cell death, apoptosis, Comet Assay, DNA damage, Drosophila, electromagnetic fields, EMF, radio frequency, RF, TUNEL assay
Procedia PDF Downloads 16911293 PNIPAAm-MAA Nanoparticles as Delivery Vehicles for Curcumin Against MCF-7 Breast Cancer Cells
Authors: H. Tayefih, F. farajzade ahari, F. Zarghami, V. Zeighamian, N. Zarghami, Y. Pilehvar-soltanahmadi
Abstract:
Breast cancer is the most frequently occurring cancer among women throughout the world. Natural compounds such as curcumin hold promise to treat a variety of cancers including breast cancer. However, curcumin's therapeutic application is limited, due to its rapid degradation and poor aqueous solubility. On the other hand, previous studies have stated that drug delivery using nanoparticles might improve the therapeutic response to anticancer drugs. Poly (N-isopropylacrylamide-co-methacrylic acid) (PNIPAAm–MAA) is one of the hydrogel copolymers utilized in the drug delivery system for cancer therapy. The aim of this study was to examine the cytotoxic potential of curcumin encapsulated within the NIPAAm-MAA nanoparticle, on the MCF-7 breast cancer cell line. In this work, polymeric nanoparticles were synthesized through the free radical mechanism, and curcumin was encapsulated into NIPAAm-MAA nanoparticles. Then, the cytotoxic effect of curcumin-loaded NIPAAm-MAA on the MCF-7 breast cancer cell line was measured by MTT assays. The evaluation of the results showed that curcumin-loaded NIPAAm-MAA has more cytotoxic effect on the MCF-7 cell line and efficiently inhibited the growth of the breast cancer cell population, compared with free curcumin. In conclusion, this study indicates that curcumin-loaded NIPAAm-MAA suppresses the growth of the MCF-7 cell line. Overall, it is concluded that encapsulating curcumin into the NIPAAm-MAA copolymer could open up new avenues for breast cancer treatment.Keywords: PNIPAAm-MAA, breast cancer, curcumin, drug delivery
Procedia PDF Downloads 37411292 Studies on Anaemia in Camels (Camelus dromedarius) Brought for Slaughter at Sokoto Metropolitan Abattoir: A Preliminary Report
Authors: Y. S. Baraya, B. Umar, A. Aliyu, A. A. Raji, K. A. N. Esievo
Abstract:
This study was performed to determine the presence of anaemia in randomly selected apparently healthy camels (Camelus dromedarius) brought for slaughter at the Sokoto metropolitan abattoir, Sokoto State, Nigeria. The camels were derived from both sexes, different age groups, functional usages and kept at various localities within and outside Sokoto town. In the study area, studies involving camels were limited in particular the emphasis on the anaemic status of camels brought daily for human consumption. A total of eighty (80) blood samples were collected once a week from these camels within the period of eight (8) weeks to investigate the haematological variations especially packed cell volume (PCV). The PCV analysis revealed anaemia in more than fifty (50) % of the camels studied. However, the actual cause of the anaemia was not investigated but could be caused by infectious agent like protozoan parasite Trypanosoma specie and non-infectious cause such as nutritional deficiency. The PCV examination as a simple, inexpensive and reliable procedure could be part of the routine ante-mortem assessment to evaluate camels for the existence of anaemia since many of the causes of anaemia besides being affecting the meat quality could also be of zoonotic significance.Keywords: anaemia, camels, packed cell volume, Sokoto abattoir
Procedia PDF Downloads 37211291 Based on MR Spectroscopy, Metabolite Ratio Analysis of MRI Images for Metastatic Lesion
Authors: Hossain A, Hossain S.
Abstract:
Introduction: In a small cohort, we sought to assess the magnetic resonance spectroscopy's (MRS) ability to predict the presence of metastatic lesions. Method: A Popular Diagnostic Centre Limited enrolled patients with neuroepithelial tumors. The 1H CSI MRS of the brain allows us to detect changes in the concentration of specific metabolites caused by metastatic lesions. Among these metabolites are N-acetyl-aspartate (NNA), creatine (Cr), and choline (Cho). For Cho, NAA, Cr, and Cr₂, the metabolic ratio was calculated using the division method. Results: The NAA values were 0.63 and 5.65 for tumor cells, 1.86 and 5.66 for normal cells, and 1.86 and 5.66 for normal cells 2. NAA values for normal cells 1 were 1.84, 10.6, and 1.86 for normal cells 2, respectively. Cho levels were as low as 0.8 and 10.53 in the tumor cell, compared to 1.12 and 2.7 in the normal cell 1 and 1.24 and 6.36 in the normal cell 2. Cho/Cr₂ barely distinguished itself from the other ratios in terms of significance. For tumor cells, the ratios of Cho/NAA, Cho/Cr₂, NAA/Cho, and NAA/Cr₂ were significant. Normal cell 1 had significant Cho/NAA, Cho/Cr, NAA/Cho, and NAA/Cr ratios. Conclusion: The clinical result can be improved by using 1H-MRSI to guide the size of resection for metastatic lesions. Even though it is non-invasive and doesn't present any difficulties during the procedure, MRS has been shown to predict the detection of metastatic lesions.Keywords: metabolite ratio, MRI images, metastatic lesion, MR spectroscopy, N-acetyl-aspartate
Procedia PDF Downloads 9611290 Influence of BaTiO₃ on the Biological Behaviour of Hydroxyapatite: Collagen Composites
Authors: Cristina Busuioc, Georgeta Voicu, Sorin-Ion Jinga
Abstract:
The human bone presents in its dry form piezoelectric properties, which means that a mechanical stress results in electric polarization and an applied electric field causes strain. The immediate consequence was the revealing of piezoelectricity role in bone remodelling, as well as the integration of ceramic materials with piezoelectric behaviour in the composition of unitary or composite biomaterials. Thus, we prepared hydroxyapatite - collagen hybrid materials with barium titanate addition in order to achieve a better osseointegration. Barium titanate powder synthesized by a combined sol-gel-hydrothermal method, commercial hydroxyapatite and laboratory extracted collagen gel were employed as starting materials. Before the composites, fabrication, the powder with piezoelectric features was characterized in detail from the compositional, structural, morphological and electrical point of view. The next step was to elucidate the influence of barium titanate presence especially on the biological properties of the final materials. The biocompatibility of the hybrid supports without or with piezoelectric addition was investigated on mouse osteoblast cells through LDH cytotoxicity assay, LIVE/DEAD cell viability assay, and MTT cell proliferation assay. All results indicated that the analysed materials do not exert cytotoxic effects and present the ability to sustain cell survival and to promote their proliferation. In conclusion, barium titanate nanoparticles exhibit a good biocompatibility and osteoinductive properties, while the derived composite materials based on hydroxyapatite as oxide phase and collagen as polymeric phase can be successfully used for tissue engineering applications.Keywords: barium titanate, hybrid composites, piezoelectricity, tissue engineering
Procedia PDF Downloads 32211289 Level of Awareness of Genetic Counselling in Benue State Nigeria: Its Advocacy on the Inheritance of Sickle Cell Disease
Authors: Agi Sunday
Abstract:
A descriptive analysis of reported cases of sickle cell disease and the level of awareness about genetic counselling in 30 hospitals were carried out. Additionally, 150 individuals between ages 16-45 were randomly selected for evaluation of genetic counselling awareness. The main tools for this study were questionnaires which were taken to hospitals, and individuals completed the others. The numbers of reported cases of sickle cell disease recorded in private, public and teaching hospitals were 14 and 57; 143 and 89; 272 and 57 for the periods of 1995-2000 and 2001-2005, respectively. A general informal genetic counselling took place mostly in the hospitals visited. 122 (86%) individuals had the knowledge of genetic disease and only 43 (30.3%) individuals have been exposed to genetic counselling. 64% of individuals agreed that genetic counselling would help in the prevention of genetic disease.Keywords: sickle disease, genetic counseling, genetic testing, advocacy
Procedia PDF Downloads 38911288 Chemical Composition of Essential Oil and in vitro Antibacterial and Anticancer Activity of the Hydroalcolic Extract from Coronilla varia
Authors: A. A. Dehpour, B. Eslami, S. Rezaie, S. F. Hashemian, F. Shafie, M. Kiaie
Abstract:
The aims of study were investigation on chemical composition essential oil and the effect of extract of Coronilla varia on antimicrobial and cytotoxicity activity. The essential oils of Coronilla varia is obtained by hydrodistillation and analyzed by (GC/MS) for determining their chemical composition and identification of their components. Antibacterial activity of plant extract was determined by disc diffusion method. The effect of hydroalcolic extracts from Cornilla varia investigated on MCF7 cancer cell line by MTT assay. The major components were Caryophyllene Oxide (60.19%), Alphacadinol (4.13%) and Homoadantaneca Robexylic Acid (3.31%). The extracts from Coronilla varia had interesting activity against Proteus mirabilis in the concentration of 700 µg/disc and did not show any activity against Staphylococus aureus, Bacillus subtillis, Klebsiella pneumonia and Entrobacter cloacae. The positive control, Ampicillin, Chloramphenicol and Cenphalothin had shown zone of inhibition resistant all bacteria. Corohilla varia ethanol extract could inhibit the proliferation of MCF7 cell line in RPMI 1640 medium. IC50 5(mg/ml) was the optimum concentration of extract from Coronilla varia inhibition of cell line growth. The MCF7 cancer cell line and Proteus mirabilis were more sensitive to Coronilla varia ethanol extract.Keywords: Coronilla varia, essential oil, antibacterial, anticancer, hela cell line
Procedia PDF Downloads 39011287 Adaptations to Hamilton's Rule in Human Populations
Authors: Monty Vacura
Abstract:
Hamilton’s Rule is a universal law of biology expressed in protists, plants and animals. When applied to human populations, this model explains: 1) Origin of religion in society as a biopsychological need selected to increase population size; 2) Instincts of racism expressed through intergroup competition; 3) Simultaneous selection for human cooperation and conflict, love and hate; 4) Connection between sporting events and instinctive social messaging for stimulating offensive and defensive responses; 5) Pathway to reduce human sacrifice. This chapter discusses the deep psychological influences of Hamilton’s Rule. Suggestions are provided to reduce human deaths via our instinctive sacrificial behavior, by consciously monitoring Hamilton’s Rule variables highlighted throughout our media outlets.Keywords: psychology, Hamilton’s rule, evolution, human instincts
Procedia PDF Downloads 6011286 The Effects of Highly Active Antiretroviral Therapy (HAART) on the Expression of Muc1 and P65 in a Cervical Cancer Cell Line, HCS-2
Authors: K. R. Thabethe, G. A. Adefolaju, M. J. Hosie
Abstract:
Cervical cancer is the third most commonly diagnosed cancer globally and it is one of three AIDS defining malignancies. Highly active antiretroviral therapy (HAART) is a combination of three or more antiretroviral drugs and has been shown to play a significant role in reducing the incidence of some AIDS defining malignancies, although its effect on cervical cancer is still unclear. The aim of this study was to investigate the relationship between cervical cancer and HAART. This was achieved by studying the expression of two signalling molecules expressed in cervical cancer; MUC1 and P65. Following the 24 hour treatment of a cervical cancer cell line, HCS-2, with drugs which are commonly used as part of HAART at their clinical plasma concentrations, real-time qPCR and immunofluorescence were used in order to study gene and protein expression. A one way ANOVA followed by a Tukey Kramer Post Hoc test was conducted using JMP 11 software on both sets of data. The drug classified as a protease inhibitor (PI) (i.e. LPV/r) reduced MUC1 and P65 gene and protein expression more than the other drug tested. PIs are known to play a significant role in cell death, therefore the cells were thought to be more susceptible to cell death following treatment with PIs. In conclusion, the drugs used, especially the PI showed some anticancer effects by facilitating cell death through decreased gene and protein expression of MUC1 and P65 and present promising agents for cancer treatment.Keywords: cervical cancer, haart, MUC1, P65
Procedia PDF Downloads 33311285 Good Governance and Human Development: Case of Rwanda
Authors: Hatun Korkmaz
Abstract:
Todays, the developing countries of the world widely face challenges of economic growth, political, social and human development. One of the ways to achieve economic, political and human development is good governance. Without an improvement in good governance, the objectives of human development cannot be achieved. The good governance has become a key issue over preceding two decades and it is the very important component of good economic growth and human development. This paper argues that good governance impacts positively human development with the case of Rwanda. Rwanda is a good example of this subject. In this paper, firstly we explained that what is good governance and human development and how we measure them. Then we researched the relationship between good governance and human development in case of Rwanda with the indexes of many international institutions which are researching in this topics. Rwanda has recorded the 'best progress' since the year 2000, making it the ‘most successful' about governance. Rwanda is seen as one of the top ten countries in the region in terms of relative peace, political stability and economic progress. Part of the reason for Rwanda's success is accountability, which comprises access to information, elimination of corruption and bureaucracy and transparency in public service, which variables cumulatively earned it 72.1 percent. According to this research If countries want batter growth and human development then good reforms of good governance is needed.Keywords: human development, Rwanda, good governance, governance, development
Procedia PDF Downloads 24411284 Metagenomics, Urinary Microbiome, and Chronic Prostatitis
Authors: Elmira Davasaz Tabrizi, Mushteba Sevil, Ercan Arican
Abstract:
Directly or indirectly, the human microbiome, or the population of bacteria and other microorganisms living in the human body, has been linked with human health. Various research has examined the connection with both illness status and the composition of the human microbiome, even though current studies indicate that the gut microbiome influences the mucosa and immune system. A significant amount of effort is being put into understanding the human microbiome's natural history in terms of health outcomes while also expanding our comprehension of the molecular connections between the microbiome and the host. To maintain health and avoid disease, these efforts ultimately seek to find efficient methods for recovering human microbial communities. This review article describes how the human microbiome leads to chronic diseases and discusses evidence for an important significant disorder that is related to the microbiome and linked to prostate cancer: chronic prostatitis (CP).Keywords: urobiome, chronic prostatitis, metagenomic, urinary microbiome
Procedia PDF Downloads 7511283 CRISPR/Cas9 Based Gene Stacking in Plants for Virus Resistance Using Site-Specific Recombinases
Authors: Sabin Aslam, Sultan Habibullah Khan, James G. Thomson, Abhaya M. Dandekar
Abstract:
Losses due to viral diseases are posing a serious threat to crop production. A quick breakdown of resistance to viruses like Cotton Leaf Curl Virus (CLCuV) demands the application of a proficient technology to engineer durable resistance. Gene stacking has recently emerged as a potential approach for integrating multiple genes in crop plants. In the present study, recombinase technology has been used for site-specific gene stacking. A target vector (pG-Rec) was designed for engineering a predetermined specific site in the plant genome whereby genes can be stacked repeatedly. Using Agrobacterium-mediated transformation, the pG-Rec was transformed into Coker-312 along with Nicotiana tabacum L. cv. Xanthi and Nicotiana benthamiana. The transgene analysis of target lines was conducted through junction PCR. The transgene positive target lines were used for further transformations to site-specifically stack two genes of interest using Bxb1 and PhiC31 recombinases. In the first instance, Cas9 driven by multiplex gRNAs (for Rep gene of CLCuV) was site-specifically integrated into the target lines and determined by the junction PCR and real-time PCR. The resulting plants were subsequently used to stack the second gene of interest (AVP3 gene from Arabidopsis for enhancing cotton plant growth). The addition of the genes is simultaneously achieved with the removal of marker genes for recycling with the next round of gene stacking. Consequently, transgenic marker-free plants were produced with two genes stacked at the specific site. These transgenic plants can be potential germplasm to introduce resistance against various strains of cotton leaf curl virus (CLCuV) and abiotic stresses. The results of the research demonstrate gene stacking in crop plants, a technology that can be used to introduce multiple genes sequentially at predefined genomic sites. The current climate change scenario highlights the use of such technologies so that gigantic environmental issues can be tackled by several traits in a single step. After evaluating virus resistance in the resulting plants, the lines can be a primer to initiate stacking of further genes in Cotton for other traits as well as molecular breeding with elite cotton lines.Keywords: cotton, CRISPR/Cas9, gene stacking, genome editing, recombinases
Procedia PDF Downloads 15511282 Simulation-Based Diversity Management in Human-Robot Collaborative Scenarios
Authors: Titanilla Komenda, Viktorio Malisa
Abstract:
In this paper, the influence of diversity-related factors on the design of collaborative scenarios is analysed. Based on the evaluation, a framework for simulating human-robot-collaboration is presented that considers both human factors as well as the overall system performance. The implementation of the model is shown on a real-life scenario from industry and validated in terms of traceability, safety and physical limitations. By comparing scenarios that consider diversity with those only meeting system performance, an overall understanding of individually adapted human-robot-collaborative workspaces is reached. A diversity-related guideline for human-robot-collaborations provides a summary of the research and aids in optimizing future applications. Finally, limitations and future amendments of the model are discussed.Keywords: diversity, human-machine system, human-robot collaboration, simulation
Procedia PDF Downloads 30411281 Screening of Potential Cytotoxic Activities of Some Medicinal Plants of Saudi Arabia
Authors: Syed Farooq Adil, Merajuddinkhan, Mujeeb Khan, Hamad Z. Alkhathlan
Abstract:
Phytochemicals from plant extracts belong to an important source of natural products which have demonstrated excellent cytotoxic activities. However, plants of different origins exhibit diverse chemical compositions and bioactivities. Therefore, the discovery of plants based new anticancer agents from different parts of the world is always challenging. In this study, methanolic extracts of different parts of 11 plants from Saudi Arabia have been tested in vitro for their anticancer potential on human liver cancer cell line (HepG2). Particularly, for this study, plants from Asteraceae, Resedaceae, and Polygonaceae families were chosen on the basis of locally available ethnobotanical data and their medicinal properties. Among 12 tested extract samples, three samples obtained from Artemisia monosperma stem, Ochradenus baccatus aerial parts, and Pulicaria glutinosa stem have demonstrated interesting cytotoxic activities with a cell viability of 29.3%, 28.4% and 24.2%, respectively. Whereas, four plant extracts including Calendula arvensis aerial parts, Scorzonera musilii whole plant, A. monosperma leaves show moderate anticancer properties bearing a cell viability ranging from 11.9 to 16.7%. The remaining extracts have shown poor cytotoxic activities. Subsequently, GC-MS analysis of methanolic extracts of the four most active plants extracts such as C. comosum, O. baccatus, P. glutinosa and A. monosperma detected the presence of 41 phytomolecules. Among which 3-(4-hydroxyphenyl) propionitrile (1), 8,11-octadecadiynoic acid methyl ester (2), 6,7-dimethoxycoumarin (3), and 1-(2-hydroxyphenyl) ethenone (4) were found to be the lead compounds of C. comosum, O. baccatus P. glutinosa and A. monosperma, respectively.Keywords: medicinal plants, asteraceae, polygonaceae, hepg2
Procedia PDF Downloads 12711280 The Importance of including All Data in a Linear Model for the Analysis of RNAseq Data
Authors: Roxane A. Legaie, Kjiana E. Schwab, Caroline E. Gargett
Abstract:
Studies looking at the changes in gene expression from RNAseq data often make use of linear models. It is also common practice to focus on a subset of data for a comparison of interest, leaving aside the samples not involved in this particular comparison. This work shows the importance of including all observations in the modeling process to better estimate variance parameters, even when the samples included are not directly used in the comparison under test. The human endometrium is a dynamic tissue, which undergoes cycles of growth and regression with each menstrual cycle. The mesenchymal stem cells (MSCs) present in the endometrium are likely responsible for this remarkable regenerative capacity. However recent studies suggest that MSCs also plays a role in the pathogenesis of endometriosis, one of the most common medical conditions affecting the lower abdomen in women in which the endometrial tissue grows outside the womb. In this study we compared gene expression profiles between MSCs and non-stem cell counterparts (‘non-MSC’) obtained from women with (‘E’) or without (‘noE’) endometriosis from RNAseq. Raw read counts were used for differential expression analysis using a linear model with the limma-voom R package, including either all samples in the study or only the samples belonging to the subset of interest (e.g. for the comparison ‘E vs noE in MSC cells’, including only MSC samples from E and noE patients but not the non-MSC ones). Using the full dataset we identified about 100 differentially expressed (DE) genes between E and noE samples in MSC samples (adj.p-val < 0.05 and |logFC|>1) while only 9 DE genes were identified when using only the subset of data (MSC samples only). Important genes known to be involved in endometriosis such as KLF9 and RND3 were missed in the latter case. When looking at the MSC vs non-MSC cells comparison, the linear model including all samples identified 260 genes for noE samples (including the stem cell marker SUSD2) while the subset analysis did not identify any DE genes. When looking at E samples, 12 genes were identified with the first approach and only 1 with the subset approach. Although the stem cell marker RGS5 was found in both cases, the subset test missed important genes involved in stem cell differentiation such as NOTCH3 and other potentially related genes to be used for further investigation and pathway analysis.Keywords: differential expression, endometriosis, linear model, RNAseq
Procedia PDF Downloads 43211279 Performance of Osmotic Microbial Fuel Cell in Wastewater Treatment and Electricity Generation: A Critical Review
Authors: Shubhangi R. Deshmukh, Anupam B. Soni
Abstract:
Clean water and electricity are vital services needed in all communities. Bio-degradation of wastewater contaminants and desalination technologies are the best possible alternatives for the global shortage of fresh water supply. Osmotic microbial fuel cell (OMFC) is a versatile technology that uses microorganism (used for biodegradation of organic waste) and membrane technology (used for water purification) for wastewater treatment and energy generation simultaneously. This technology is the combination of microbial fuel cell (MFC) and forward osmosis (FO) processes. OMFC can give more electricity and clean water than the MFC which has a regular proton exchange membrane. FO gives many improvements such as high contamination removal, lower operating energy, raising high proton flux than other pressure-driven membrane technology. Lower concentration polarization lowers the membrane fouling by giving osmotic water recovery without extra cost. In this review paper, we have discussed the principle, mechanism, limitation, and application of OMFC technology reported to date. Also, we have interpreted the experimental data from various literature on the water recovery and electricity generation assessed by a different component of OMFC. The area of producing electricity using OMFC has further scope for research and seems like a promising route to wastewater treatment.Keywords: forward osmosis, microbial fuel cell, osmotic microbial fuel cell, wastewater treatment
Procedia PDF Downloads 18211278 Anticancer Study of Copper and Zinc Complexes with Doxorubicin
Authors: Grzegorz Swiderski, Agata Jablonska-Trypuc, Natalia Popow, Renata Swislocka, Wlodzimierz Lewandowski
Abstract:
Doxorubicin belongs to the group of anthracycline antitumor antibiotics. Because of the wide spectrum of actions, it is one of the most widely used anthracycline antibiotics, including the treatment of breast, ovary, bladder, lung cancers as well as neuroblastoma, lymphoma, leukemia and myeloid leukemia. Antitumor activity of doxorubicin is based on the same mechanisms as for most anthracyclines. Like the metal ions affect the nucleic acids on many biological processes, so the environment of the metal chelates of antibiotics can have a significant effect on the pharmacological properties of drugs. Complexation of anthracyclines with metal ions may contribute to the production of less toxic compounds. In the framework of this study, the composition of complexes obtained in aqueous solutions of doxorubicin with metal ions (Cu2+ and Zn2+). Complexation was analyzed by spectrophotometric titration in aqueous solution at pH 7.0. The pH was adjusted with 0.02M Tris-HCl buffer. The composition of the complexes found was Cu: doxorubicin (1: 2) and a Zn: doxorubicin (1: 1). The effect of Dox, Dox-Cu and Dox-Zn was examined in MCF-7 breast cancer cell line, which were obtained from American Type Culture Collection (ATCC). The compounds were added to the cultured cells for a final concentration in the range of 0,01µM to 0,5µM. The number of MCF-7 cells with division into living and dead, was determined by direct counts of cells with the use of trypan blue dye using LUNA Logos Biosystems cell counter. ApoTox-Glo Triplex Assay (Promega, Madison, Wisconsin, USA) was used according to the manufacturer’s instructions to measure the MCF-7 cells’ viability, cytotoxicity and apoptosis. We observed a decrease in cells proliferation in a dose-dependent manner. An increase in cytotoxicity and decrease in viability in the ApoTox Triplex assay was also showed for all tested compounds. Apoptosis, showed as caspase 3/7 activation, was observed only in Dox treatment. In Dox-Zn and Dox-Cu caspase 3/7 activation was not observed. This work was financially supported by National Science Centre, Poland, under the research project number 2014/13/B/NZ7/02 352.Keywords: anticancer properties, anthracycline antibiotic, doxorubicine, metal complexes
Procedia PDF Downloads 28011277 An Evolutionary Algorithm for Optimal Fuel-Type Configurations in Car Lines
Authors: Charalampos Saridakis, Stelios Tsafarakis
Abstract:
Although environmental concern is on the rise across Europe, current market data indicate that adoption rates of environmentally friendly vehicles remain extremely low. Against this background, the aim of this paper is to a) assess preferences of European consumers for clean-fuel cars and their characteristics and b) design car lines that optimize the combination of fuel types among models in the line-up. In this direction, the authors introduce a new evolutionary mechanism and implement it to stated-preference data derived from a large-scale choice-based conjoint experiment that measures consumer preferences for various factors affecting clean-fuel vehicle (CFV) adoption. The proposed two-step methodology provides interesting insights into how new and existing fuel-types can be combined in a car line that maximizes customer satisfaction.Keywords: clean-fuel vehicles, product line design, conjoint analysis, choice experiment, differential evolution
Procedia PDF Downloads 27911276 Impact of Cytokines Alone and Primed with Macrophages on Balamuthia mandrillaris Interactions with Human Brain Microvascular Endothelial Cells in vitro
Authors: Abdul Matin, Salik Nawaz, Suk-Yul Jung
Abstract:
Balamuthia mandrillaris is well known to cause fatal Balamuthia amoebic encephalitis (BAE). Amoebic transmission into the central nervous system (CNS), haematogenous spread is thought to be the prime step, followed by blood-brain barrier (BBB) dissemination. Macrophages are considered to be the foremost line of defense and present in excessive numbers during amoebic infections. The aim of the present investigation was to evaluate the effects of macrophages alone or primed with cytokines on the biological characteristics of Balamuthia in vitro. Using human brain microvascular endothelial cells (HBMEC), which constitutes the BBB, we have shown that Balamuthia demonstrated > 90% binding and > 70% cytotoxicity to host cells. However, macrophages further increased amoebic binding and Balamuthia-mediated cell cytotoxicity. Furthermore, macrophages exhibited no amoebicidal effect against Balamuthia. Zymography assay demonstrated that macrophages exhibited no inhibitory effect on proteolytic activity of Balamuthia. Overall, to our best knowledge, we have shown for the first time macrophages has no inhibitory effects on the biological properties of Balamuthia in vitro. This also strengthened the concept that how and why Balamuthia can cause infections in both immuno-competent and immuno-compromised individuals.Keywords: Balamuthia mandrillaris, macrophages, cytokines, human brain microvascular endothelial cells, Balamuthia amoebic encephalitis
Procedia PDF Downloads 15611275 Structure Domains Tuning Magnetic Anisotropy and Motivating Novel Electric Behaviors in LaCoO₃ Films
Authors: Dechao Meng, Yongqi Dong, Qiyuan Feng, Zhangzhang Cui, Xiang Hu, Haoliang Huang, Genhao Liang, Huanhua Wang, Hua Zhou, Hawoong Hong, Jinghua Guo, Qingyou Lu, Xiaofang Zhai, Yalin Lu
Abstract:
Great efforts have been taken to reveal the intrinsic origins of emerging ferromagnetism (FM) in strained LaCoO₃ (LCO) films. However, some macro magnetic performances of LCO are still not well understood and even controversial, such as magnetic anisotropy. Determining and understanding magnetic anisotropy might help to find the true causes of FM in turn. Perpendicular magnetic anisotropy (PMA) was the first time to be directly observed in high-quality LCO films with different thickness. The in-plane (IP) and out of plane (OOP) remnant magnetic moment ratio of 30 unit cell (u.c.) films is as large as 20. The easy axis lays in the OOP direction with an IP/OOP coercive field ratio of 10. What's more, the PMA could be simply tuned by changing the thickness. With the thickness increases, the IP/OOP magnetic moment ratio remarkably decrease with magnetic easy axis changing from OOP to IP. Such a huge and tunable PMA performance exhibit strong potentials in fundamental researches or applications. What causes PMA is the first concern. More OOP orbitals occupation may be one of the micro reasons of PMA. A cluster-like magnetic domain pattern was found in 30 u.c. with no obvious color contrasts, similar to that of LaAlO₃/SrTiO₃ films. And the nanosize domains could not be totally switched even at a large OOP magnetic field of 23 T. It indicates strong IP characters or none OOP magnetism of some clusters. The IP magnetic domains might influence the magnetic performance and help to form PMA. Meanwhile some possible nonmagnetic clusters might be the reason why the measured moments of LCO films are smaller than the calculated values 2 μB/Co, one of the biggest confusions in LCO films.What tunes PMA seems much more interesting. Totally different magnetic domain patterns were found in 180 u.c. films with cluster magnetic domains surrounded by < 110 > cross-hatch lines. These lines were regarded as structure domain walls (DWs) determined by 3D reciprocal space mapping (RSM). Two groups of in-plane features with fourfold symmetry were observed near the film diffraction peaks in (002) 3D-RSM. One is along < 110 > directions with a larger intensity, which is well match the lines on the surfaces. The other is much weaker and along < 100 > directions, which is from the normal lattice titling of films deposited on cubic substrates. The < 110 > domain features obtained from (103) and (113) 3D-RSMs exhibit similar evolution of the DWs percentages and magnetic behavior. Structure domains and domain walls are believed to tune PMA performances by transform more IP magnetic moments to OOP. Last but not the least, thick films with lots of structure domains exhibit different electrical transport behaviors. A metal-to-insulator transition (MIT) and an angular dependent negative magnetic resistivity were observed near 150 K, higher than FM transition temperature but similar to that of spin-orbital coupling related 1/4 order diffraction peaks.Keywords: structure domain, magnetic anisotropy, magnetic domain, domain wall, 3D-RSM, strain
Procedia PDF Downloads 15311274 Highly Concentrated Photo Voltaic using Multi-Junction Concentrator Cell
Authors: Oriahi Love Ndidi
Abstract:
High concentration photovoltaic promises a more efficient, higher power output than traditional photovoltaic modules. One of the driving forces of this high system efficiency has been the continuous improvement of III-V multi-junction solar cell efficiencies. Multi-junction solar cells built from III-V semiconductors are being evaluated globally in concentrated photovoltaic systems designed to supplement electricity generation for utility companies. The high efficiency of this III-V multi-junction concentrator cells, with demonstrated efficiency over 40 percent since 2006, strongly reduces the cost of concentrated photovoltaic systems, and makes III-V multi-junction cells the technology of choice for most concentrator systems today.Keywords: cost of multi-junction solar cell, efficiency, photovoltaic systems, reliability
Procedia PDF Downloads 72411273 Understanding Neuronal and Glial Cell Behaviour in Multi-Layer Nanofibre Systems to Support the Development of an in vitro Model of Spinal Cord Injury and Personalised Prostheses for Repair
Authors: H. Pegram, R. Stevens, L. De Girolamo
Abstract:
Aligned electrospun nanofibres act as effective neuronal and glial cell scaffolds that can be layered to contain multiple sheets harboring different cell populations. This allows personalised biofunctional prostheses to be manufactured with both acellular and cellularised layers for the treatment of spinal cord injury. Additionally, the manufacturing route may be configured to produce in-vitro 3D cell based model of spinal cord injury to aid drug development and enhance prosthesis performance. The goal of this investigation was to optimise the multi-layer scaffold design parameters for prosthesis manufacture, to enable the development of multi-layer patient specific implant therapies. The work has also focused on the fabricating aligned nanofibre scaffolds that promote in-vitro neuronal and glial cell population growth, cell-to-cell interaction and long-term survival following trauma to mimic an in-vivo spinal cord lesion. The approach has established reproducible lesions and has identified markers of trauma and regeneration marked by effective neuronal migration across the lesion with glial support. The investigation has advanced the development of an in-vitro model of traumatic spinal cord injury and has identified a route to manufacture prostheses which target the repair spinal cord injury. Evidence collated to investigate the multi-layer concept suggests that physical cues provided by nanofibres provide both a natural extra-cellular matrix (ECM) like environment and controls cell proliferation and migration. Specifically, aligned nanofibre layers act as a guidance system for migrating and elongating neurons. On a larger scale, material type in multi-layer systems also has an influence in inter-layer migration as cell types favour different material types. Results have shown that layering nanofibre membranes create a multi-level scaffold system which can enhance or prohibit cell migration between layers. It is hypothesised that modifying nanofibre layer material permits control over neuronal/glial cell migration. Using this concept, layering of neuronal and glial cells has become possible, in the context of tissue engineering and also modelling in-vitro induced lesions.Keywords: electrospinning, layering, lesion, modeling, nanofibre
Procedia PDF Downloads 13811272 The Using of Hybrid Superparamagnetic Magnetite Nanoparticles (Fe₃O₄)- Graphene Oxide Functionalized Surface with Collagen, to Target the Cancer Stem Cell
Authors: Ahmed Khalaf Reyad Raslan
Abstract:
Cancer stem cells (CSCs) describe a class of pluripotent cancer cells that behave analogously to normal stem cells in their ability to differentiate into the spectrum of cell types observed in tumors. The de-differentiation processes, such as an epithelial-mesenchymal transition (EMT), are known to enhance cellular plasticity. Here, we demonstrate a new hypothesis to use hybrid superparamagnetic magnetite nanoparticles (Fe₃O₄)- graphene oxide functionalized surface with Collagen to target the cancer stem cell as an early detection tool for cancer. We think that with the use of magnetic resonance imaging (MRI) and the new hybrid system would be possible to track the cancer stem cells.Keywords: hydrogel, alginate, reduced graphene oxide, collagen
Procedia PDF Downloads 14511271 Synthesis, Characterization and Cytotoxic Effect of Eu2O3-doped ZnO Nanostructures
Authors: Otilia R. Vasile, Florina C. Ilie, Irina F. Nicoara, Cristina D. Ghitulica, Roxana Trusca, Ovidiu Oprea, Vasile A. Surdu, Bogdan S. Vasile, Ecaterina Adronescu
Abstract:
In this work ZnO nanostructures (nanopowders and nanostars) have been synthesized via a simple sol-gel method. The used methods for synthesizing the nanostructures involve two steps as follows: (1) precipitation of zinc acetate precursor for the synthesis of ZnO nanopowders and zinc chloride precursor for the synthesis of ZnO nanostars and (2) addition of Eu2O3 in different concentrations (1%, 3%, and 5%) using europium acetate as precursor. Detailed crystalline parameters for each of the synthetized species were analysed using X-ray diffraction. Structural transitions were also discussed. The structure and morphology of the as-prepared ZnO nanopowders and nanostars were investigated by electron microscopy. TEM investigations have shown an average particle size range from 23 to 29 nm and polyhedral and spherical morphology with tendency to form aggregates for nanopowders. For nanostars structures, a star-like morphology could be observed. Cytotoxicity tests on MG-63 cell lines were also performed. Photocatalytic activity of ZnO nanopowders have reached higher values compared to ZnO nanostars.Keywords: cytotoxicity, photocatalytic activity, TEM, ZnO
Procedia PDF Downloads 56111270 Magnetic Bio-Nano-Fluids for Hyperthermia
Authors: Z. Kolacinski, L. Szymanski. G. Raniszewski, D. Koza, L. Pietrzak
Abstract:
Magnetic Bio-Nano-Fluid (BNF) can be composed of a buffer fluid such as plasma and magnetic nanoparticles such as iron, nickel, cobalt and their oxides. However iron is one of the best elements for magnetization by electromagnetic radiation. It can be used as a tool for medical diagnosis and treatment. Radio frequency (RF) radiation is able to heat iron nanoparticles due to magnetic hysteresis. Electromagnetic heating of iron nanoparticles and ferro-fluids BNF can be successfully used for non-invasive thermal ablation of cancer cells. Moreover iron atoms can be carried by carbon nanotubes (CNTs) if iron is used as catalyst for CNTs synthesis. Then CNTs became the iron containers and they screen the iron content against oxidation. We will present a method of CNTs addressing to the required cells. For thermal ablation of cancer cells we use radio frequencies for which the interaction with human body should be limited to minimum. Generally, the application of RF energy fields for medical treatment is justified by deep tissue penetration. The highly iron doped CNTs as the carriers creating magnetic fluid will be presented. An excessive catalyst injection method using electrical furnace and microwave plasma reactor will be presented. This way it is possible to grow the Fe filled CNTs on a moving surface in continuous synthesis process. This also allows producing uniform carpet of the Fe filled CNTs carriers. For the experimental work targeted to cell ablation we used RF generator to measure the increase in temperature for some samples like: solution of Fe2O3 in BNF which can be plasma-like buffer, solutions of pure iron of different concentrations in plasma-like buffer and in buffer used for a cell culture, solutions of carbon nanotubes (MWCNTs) of different concentrations in plasma-like buffer and in buffer used for a cell culture. Then the targeted therapies which can be effective if the carriers are able to distinguish the difference between cancerous and healthy cell’s physiology are considered. We have developed an approach based on ligand-receptor or antibody-antigen interactions for the case of colon cancer.Keywords: cancer treatment, carbon nano tubes, drag delivery, hyperthermia, iron
Procedia PDF Downloads 413