Search results for: efficient technologies
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8106

Search results for: efficient technologies

6876 An Interdisciplinary Maturity Model for Accompanying Sustainable Digital Transformation Processes in a Smart Residential Quarter

Authors: Wesley Preßler, Lucie Schmidt

Abstract:

Digital transformation is playing an increasingly important role in the development of smart residential quarters. In order to accompany and steer this process and ultimately make the success of the transformation efforts measurable, it is helpful to use an appropriate maturity model. However, conventional maturity models for digital transformation focus primarily on the evaluation of processes and neglect the information and power imbalances between the stakeholders, which affects the validity of the results. The Multi-Generation Smart Community (mGeSCo) research project is developing an interdisciplinary maturity model that integrates the dimensions of digital literacy, interpretive patterns, and technology acceptance to address this gap. As part of the mGeSCo project, the technological development of selected dimensions in the Smart Quarter Jena-Lobeda (Germany) is being investigated. A specific maturity model, based on Cohen's Smart Cities Wheel, evaluates the central dimensions Working, Living, Housing and Caring. To improve the reliability and relevance of the maturity assessment, the factors Digital Literacy, Interpretive Patterns and Technology Acceptance are integrated into the developed model. The digital literacy dimension examines stakeholders' skills in using digital technologies, which influence their perception and assessment of technological maturity. Digital literacy is measured by means of surveys, interviews, and participant observation, using the European Commission's Digital Literacy Framework (DigComp) as a basis. Interpretations of digital technologies provide information about how individuals perceive technologies and ascribe meaning to them. However, these are not mere assessments, prejudices, or stereotyped perceptions but collective patterns, rules, attributions of meaning and the cultural repertoire that leads to these opinions and attitudes. Understanding these interpretations helps in assessing the overarching readiness of stakeholders to digitally transform a/their neighborhood. This involves examining people's attitudes, beliefs, and values about technology adoption, as well as their perceptions of the benefits and risks associated with digital tools. These insights provide important data for a holistic view and inform the steps needed to prepare individuals in the neighborhood for a digital transformation. Technology acceptance is another crucial factor for successful digital transformation to examine the willingness of individuals to adopt and use new technologies. Surveys or questionnaires based on Davis' Technology Acceptance Model can be used to complement interpretive patterns to measure neighborhood acceptance of digital technologies. Integrating the dimensions of digital literacy, interpretive patterns and technology acceptance enables the development of a roadmap with clear prerequisites for initiating a digital transformation process in the neighborhood. During the process, maturity is measured at different points in time and compared with changes in the aforementioned dimensions to ensure sustainable transformation. Participation, co-creation, and co-production are essential concepts for a successful and inclusive digital transformation in the neighborhood context. This interdisciplinary maturity model helps to improve the assessment and monitoring of sustainable digital transformation processes in smart residential quarters. It enables a more comprehensive recording of the factors that influence the success of such processes and supports the development of targeted measures to promote digital transformation in the neighborhood context.

Keywords: digital transformation, interdisciplinary, maturity model, neighborhood

Procedia PDF Downloads 77
6875 Preservation of High Quality Fruit Products: Microwave Freeze Drying as a Substitute for the Conventional Freeze Drying Process

Authors: Sabine Ambros, Ulrich Kulozik

Abstract:

Berries such as blue- and raspberries belong to the most valuable fruits. To preserve the characteristic flavor and the high contents of vitamins and anthocyanins, the very sensitive berries are usually dried by lyophilization. As this method is very time- and energy-consuming, the dried fruit is extremely expensive. However, healthy snack foods are growing in popularity. Especially dried fruit free of any additives or additional sugar are more and more asked for. To make these products affordable, the fruits have to be dried by a method that is more energy-efficient than freeze drying but reveals the same high product quality. The additional insertion of microwaves to a freeze drying process was examined in this work to overcome the inconveniences of freeze drying. As microwaves penetrate the product volumetrically, sublimation takes place simultaneously all over the product and leads to a many times shorter process duration. A range of microwave and pressure settings was applied to find the optimum drying condition. The influence of the process parameters microwave power and chamber pressure on drying kinetics, product temperature and product quality was investigated to find the best condition for an energy-efficient process with high product quality. The product quality was evaluated by rehydration capacitiy, crispiness, shrinkage, color, vitamin C content and antioxidative capacity. The conclusion could be drawn that microwave freeze dried berries were almost equal to freeze dried fruit in all measured quality parameters or even could overcome it. Additionally, sensory evaluations could confirm the analytical studies. Drying time could be reduced by more than 75% at much lower energy consumption rates. Thus, an energy-efficient and cost saving method compared to the conventional freeze drying technique for the gentle production of tasty fruit or vegetable snacks has been found. This technique will make dried high-quality snacks available for many of consumers.

Keywords: blueberries, freeze drying, microwave freeze drying, process parameters, product quality

Procedia PDF Downloads 238
6874 Analysis of Short Counter-Flow Heat Exchanger (SCFHE) Using Non-Circular Micro-Tubes Operated on Water-CuO Nanofluid

Authors: Avdhesh K. Sharma

Abstract:

Key, in the development of energy-efficient micro-scale heat exchanger devices, is to select large heat transfer surface to volume ratio without much expanse on re-circulated pumps. The increased interest in short heat exchanger (SHE) is due to accessibility of advanced technologies for manufacturing of micro-tubes in range of 1 micron m - 1 mm. Such SHE using micro-tubes are highly effective for high flux heat transfer technologies. Nanofluids, are used to enhance the thermal conductivity of re-circulated coolant and thus enhances heat transfer rate further. Higher viscosity associated with nanofluid expands more pumping power. Thus, there is a trade-off between heat transfer rate and pressure drop with geometry of micro-tubes. Herein, a novel design of short counter flow heat exchanger (SCFHE) using non-circular micro-tubes flooded with CuO-water nanofluid is conceptualized by varying the ratio of surface area to cross-sectional area of micro-tubes. A framework for comparative analysis of SCFHE using micro-tubes non-circular shape flooded by CuO-water nanofluid is presented. In SCFHE concept, micro-tubes having various geometrical shapes (viz., triangular, rectangular and trapezoidal) has been arranged row-wise to facilitate two aspects: (1) allowing easy flow distribution for cold and hot stream, and (2) maximizing the thermal interactions with neighboring channels. Adequate distribution of rows for cold and hot flow streams enables above two aspects. For comparative analysis, a specific volume or cross-section area is assigned to each elemental cell (which includes flow area and area corresponds to half wall thickness). A specific volume or cross-section area is assumed to be constant for each elemental cell (which includes flow area and half wall thickness area) and variation in surface area is allowed by selecting different geometry of micro-tubes in SCFHE. Effective thermal conductivity model for CuO-water nanofluid has been adopted, while the viscosity values for water based nanofluids are obtained empirically. Correlations for Nusselt number (Nu) and Poiseuille number (Po) for micro-tubes have been derived or adopted. Entrance effect is accounted for. Thermal and hydrodynamic performances of SCFHE are defined in terms of effectiveness and pressure drop or pumping power, respectively. For defining the overall performance index of SCFHE, two links are employed. First one relates heat transfer between the fluid streams q and pumping power PP as (=qj/PPj); while another link relates effectiveness eff and pressure drop dP as (=effj/dPj). For analysis, the inlet temperatures of hot and cold streams are varied in usual range of 20dC-65dC. Fully turbulent regime is seldom encountered in micro-tubes and transition of flow regime occurs much early (i.e., ~Re=1000). Thus, Re is fixed at 900, however, the uncertainty in Re due to addition of nanoparticles in base fluid is quantified by averaging of Re. Moreover, for minimizing error, volumetric concentration is limited to range 0% to ≤4% only. Such framework may be helpful in utilizing maximum peripheral surface area of SCFHE without any serious severity on pumping power and towards developing advanced short heat exchangers.

Keywords: CuO-water nanofluid, non-circular micro-tubes, performance index, short counter flow heat exchanger

Procedia PDF Downloads 213
6873 Modeling the Saltatory Conduction in Myelinated Axons by Order Reduction

Authors: Ruxandra Barbulescu, Daniel Ioan, Gabriela Ciuprina

Abstract:

The saltatory conduction is the way the action potential is transmitted along a myelinated axon. The potential diffuses along the myelinated compartments and it is regenerated in the Ranvier nodes due to the ion channels allowing the flow across the membrane. For an efficient simulation of populations of neurons, it is important to use reduced order models both for myelinated compartments and for Ranvier nodes and to have control over their accuracy and inner parameters. The paper presents a reduced order model of this neural system which allows an efficient simulation method for the saltatory conduction in myelinated axons. This model is obtained by concatenating reduced order linear models of 1D myelinated compartments and nonlinear 0D models of Ranvier nodes. The models for the myelinated compartments are selected from a series of spatially distributed models developed and hierarchized according to their modeling errors. The extracted model described by a nonlinear PDE of hyperbolic type is able to reproduce the saltatory conduction with acceptable accuracy and takes into account the finite propagation speed of potential. Finally, this model is again reduced in order to make it suitable for the inclusion in large-scale neural circuits.

Keywords: action potential, myelinated segments, nonlinear models, Ranvier nodes, reduced order models, saltatory conduction

Procedia PDF Downloads 161
6872 Use of Artificial Neural Networks to Estimate Evapotranspiration for Efficient Irrigation Management

Authors: Adriana Postal, Silvio C. Sampaio, Marcio A. Villas Boas, Josué P. Castro

Abstract:

This study deals with the estimation of reference evapotranspiration (ET₀) in an agricultural context, focusing on efficient irrigation management to meet the growing interest in the sustainable management of water resources. Given the importance of water in agriculture and its scarcity in many regions, efficient use of this resource is essential to ensure food security and environmental sustainability. The methodology used involved the application of artificial intelligence techniques, specifically Multilayer Perceptron (MLP) Artificial Neural Networks (ANNs), to predict ET₀ in the state of Paraná, Brazil. The models were trained and validated with meteorological data from the Brazilian National Institute of Meteorology (INMET), together with data obtained from a producer's weather station in the western region of Paraná. Two optimizers (SGD and Adam) and different meteorological variables, such as temperature, humidity, solar radiation, and wind speed, were explored as inputs to the models. Nineteen configurations with different input variables were tested; amidst them, configuration 9, with 8 input variables, was identified as the most efficient of all. Configuration 10, with 4 input variables, was considered the most effective, considering the smallest number of variables. The main conclusions of this study show that MLP ANNs are capable of accurately estimating ET₀, providing a valuable tool for irrigation management in agriculture. Both configurations (9 and 10) showed promising performance in predicting ET₀. The validation of the models with cultivator data underlined the practical relevance of these tools and confirmed their generalization ability for different field conditions. The results of the statistical metrics, including Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Coefficient of Determination (R²), showed excellent agreement between the model predictions and the observed data, with MAE as low as 0.01 mm/day and 0.03 mm/day, respectively. In addition, the models achieved an R² between 0.99 and 1, indicating a satisfactory fit to the real data. This agreement was also confirmed by the Kolmogorov-Smirnov test, which evaluates the agreement of the predictions with the statistical behavior of the real data and yields values between 0.02 and 0.04 for the producer data. In addition, the results of this study suggest that the developed technique can be applied to other locations by using specific data from these sites to further improve ET₀ predictions and thus contribute to sustainable irrigation management in different agricultural regions. The study has some limitations, such as the use of a single ANN architecture and two optimizers, the validation with data from only one producer, and the possible underestimation of the influence of seasonality and local climate variability. An irrigation management application using the most efficient models from this study is already under development. Future research can explore different ANN architectures and optimization techniques, validate models with data from multiple producers and regions, and investigate the model's response to different seasonal and climatic conditions.

Keywords: agricultural technology, neural networks in agriculture, water efficiency, water use optimization

Procedia PDF Downloads 48
6871 Corporate Social Responsibility (CSR) and Energy Efficiency: Empirical Evidence from the Manufacturing Sector of India

Authors: Baikunthanath Sahoo, Santosh Kumar Sahu, Krishna Malakar

Abstract:

With the essence of global environmental sustainability and green business management, the wind of business research moved towards Corporate Social Responsibility. In addition to international and national treaties, businesses have also started realising environmental protection and energy efficiency through CSR as part of business strategy in response to climate change. Considering the ambitious emission reduction target and rapid economic development of India, this study is an attempt to explore the effect of CSR on the energy efficiency management of manufacturing firms in India. By using firm-level data, the panel fixed effect model shows that the CSR dummy variable is negatively influencing the energy intensity or technically, they are energy efficient. The result demonstrates that in the presence of CSR, all the production economic variables are significant. The result also shows that doing environmental expenditure does not improve energy efficiency might be because very few firms are motivated to do such expenditure and also not common to all sectors. The interactive effect model result conforms that without considering CSR dummy as an intervening variable only Manufacturers of Chemical and Chemical products, Manufacturers of Pharmaceutical, medical chemical, and botanical products firms energy intensity low but after considering CSR in their business practices all six sub-sector firms become energy efficient. The empirical result also validate that firms are continuously engaged in CSR activities they are highly energy efficient. It is an important motivational factor for firms to become economically and environmentally sustainable in the corporate world. This analysis would help business practitioners to know how to manage today’s profitability and tomorrow’s sustainability to achieve a comparative advantage in the emerging market economy. The paper concludes that reducing energy consumption as part of their social responsibility to care for the environment, will need collaborative efforts of business society and policy bodies.

Keywords: CSR, Energy Efficiency, Indian manufacturing Sector, Business strategy

Procedia PDF Downloads 82
6870 Indirect Solar Desalination: Value Engineering and Cost Benefit Analysis

Authors: Grace Rachid, Mutasem El Fadel, Mahmoud Al Hindi, Ibrahim Jamali, Daniel Abdel Nour

Abstract:

This study examines the feasibility of indirect solar desalination in oil producing countries in the Middle East and North Africa (MENA) region. It relies on value engineering (VE) and cost-benefit with sensitivity analyses to identify optimal coupling configurations of desalination and solar energy technologies. A comparative return on investment was assessed as a function of water costs for varied plant capacities (25,000 to 75,000 m3/day), project lifetimes (15 to 25 years), and discount rates (5 to 15%) taking into consideration water and energy subsidies, land cost as well as environmental externalities in the form of carbon credit related to greenhouse gas (GHG) emissions reduction. The results showed reverse osmosis (RO) coupled with photovoltaic technologies (PVs) as the most promising configuration, robust across different prices for Brent oil, discount rates, as well as different project lifetimes. Environmental externalities and subsidies analysis revealed that a 16% reduction in existing subsidy on water tariffs would ensure economic viability. Additionally, while land costs affect investment attractiveness, the viability of RO coupled with PV remains possible for a land purchase cost < $ 80/m2 or a lease rate < $1/m2/yr. Beyond those rates, further subsidy lifting is required.

Keywords: solar energy, desalination, value engineering, CBA, carbon credit, subsidies

Procedia PDF Downloads 576
6869 An Accurate Brain Tumor Segmentation for High Graded Glioma Using Deep Learning

Authors: Sajeeha Ansar, Asad Ali Safi, Sheikh Ziauddin, Ahmad R. Shahid, Faraz Ahsan

Abstract:

Gliomas are most challenging and aggressive type of tumors which appear in different sizes, locations, and scattered boundaries. CNN is most efficient deep learning approach with outstanding capability of solving image analysis problems. A fully automatic deep learning based 2D-CNN model for brain tumor segmentation is presented in this paper. We used small convolution filters (3 x 3) to make architecture deeper. We increased convolutional layers for efficient learning of complex features from large dataset. We achieved better results by pushing convolutional layers up to 16 layers for HGG model. We achieved reliable and accurate results through fine-tuning among dataset and hyper-parameters. Pre-processing of this model includes generation of brain pipeline, intensity normalization, bias correction and data augmentation. We used the BRATS-2015, and Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.81 for complete, 0.79 for core, 0.80 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture.

Keywords: brain tumor segmentation, convolutional neural networks, deep learning, HGG

Procedia PDF Downloads 256
6868 Comparison of Steel and Composite Analysis of a Multi-Storey Building

Authors: Çiğdem Avcı Karataş

Abstract:

Mitigation of structural damage caused by earthquake and reduction of fatality is one of the main concerns of engineers in seismic prone zones of the world. To achieve this aim many technologies have been developed in the last decades and applied in construction and retrofit of structures. On the one hand Turkey is well-known a country of high level of seismicity; on the other hand steel-composite structures appear competitive today in this country by comparison with other types of structures, for example only-steel or concrete structures. Composite construction is the dominant form of construction for the multi-storey building sector. The reason why composite construction is often so good can be expressed in one simple way - concrete is good in compression and steel is good in tension. By joining the two materials together structurally these strengths can be exploited to result in a highly efficient design. The reduced self-weight of composite elements has a knock-on effect by reducing the forces in those elements supporting them, including the foundations. The floor depth reductions that can be achieved using composite construction can also provide significant benefits in terms of the costs of services and the building envelope. The scope of this paper covers analysis, materials take-off, cost analysis and economic comparisons of a multi-storey building with composite and steel frames. The aim of this work is to show that designing load carrying systems as composite is more economical than designing as steel. Design of the nine stories building which is under consideration is done according to the regulation of the 2007, Turkish Earthquake Code and by using static and dynamic analysis methods. For the analyses of the steel and composite systems, plastic analysis methods have been used and whereas steel system analyses have been checked in compliance with EC3 and composite system analyses have been checked in compliance with EC4. At the end of the comparisons, it is revealed that composite load carrying systems analysis is more economical than the steel load carrying systems analysis considering the materials to be used in the load carrying system and the workmanship to be spent for this job.

Keywords: composite analysis, earthquake, steel, multi-storey building

Procedia PDF Downloads 571
6867 Constructed Wetlands: A Sustainable Approach for Waste Water Treatment

Authors: S. Sehar, S. Khan, N. Ali, S. Ahmed

Abstract:

In the last decade, the hunt for cost-effective, eco-friendly and energy sustainable technologies for waste water treatment are gaining much attention due to emerging water crisis and rapidly depleting existing water reservoirs all over the world. In this scenario, constructed wetland being a “green technology” could be a reliable mean for waste water treatment especially in small communities due to cost-effectiveness, ease in management, less energy consumption and sludge production. Therefore, a low cost, lab-scale sub-surface flow hybrid constructed wetland (SS-HCW) was established for domestic waste water treatment.It was observed that not only the presence but also choice of suitable vegetation along with hydraulic retention time (HRT) are key intervening ingredients which directly influence pollutant removals in constructed wetlands. Another important aspect of vegetation is that it may facilitate microbial attachment in rhizosphere, thus promote biofilm formation via microbial interactions. The major factors that influence initial aggregation and subsequent biofilm formation i.e. divalent cations (Ca2+) and extra cellular DNA (eDNA) were also studied in detail. The presence of Ca2+ in constructed wetland demonstrate superior performances in terms of effluent quality, i.e BOD5, COD, TDS, TSS, and PO4- than in absence of Ca2+. Finally, light and scanning electron microscopies coupled with EDS were carried out to get more insights into the mechanics of biofilm formation with or without Ca addition. Therefore, the same strategy can be implemented in other waste water treatment technologies.

Keywords: hybrid constructed wetland, biofilm formation, waste water treatment, waste water

Procedia PDF Downloads 402
6866 PhD Research Design and Descriptive Theory: Theoretical Framework for Development of Integrated Management System

Authors: Samuel Quashie

Abstract:

The importance of theory for PhD construction management research cannot be underestimated, as it requires a sound theoretical basis. Theory efficiency reduces errors in the research problem, solving it by building upon current theory. Provides a structure for examination, enables the efficient development of the construction management field and to it practical real world problems. The aim is to develop the theoretical framework for the application of descriptive theory within the PhD research design To apply the proposed theoretical framework using the case of the topic of ‘integrated management system,’ classifying the phenomena into categories, explore the association between the category–defining attributes and the outcome observed. Forming categorization based upon attributes of phenomena (framework and typologies), and statement of association (models). Predicting (deductive process) and confirming (inductive process). The descriptive theory is important and provides a structure for examination, enables the efficient development of construction management field and to it practical real world problems. In conclusion, the work done in management presents fertile ground for research and theory development.

Keywords: descriptive theory, PhD research design, theoretical framework, construction management

Procedia PDF Downloads 426
6865 Gradient Boosted Trees on Spark Platform for Supervised Learning in Health Care Big Data

Authors: Gayathri Nagarajan, L. D. Dhinesh Babu

Abstract:

Health care is one of the prominent industries that generate voluminous data thereby finding the need of machine learning techniques with big data solutions for efficient processing and prediction. Missing data, incomplete data, real time streaming data, sensitive data, privacy, heterogeneity are few of the common challenges to be addressed for efficient processing and mining of health care data. In comparison with other applications, accuracy and fast processing are of higher importance for health care applications as they are related to the human life directly. Though there are many machine learning techniques and big data solutions used for efficient processing and prediction in health care data, different techniques and different frameworks are proved to be effective for different applications largely depending on the characteristics of the datasets. In this paper, we present a framework that uses ensemble machine learning technique gradient boosted trees for data classification in health care big data. The framework is built on Spark platform which is fast in comparison with other traditional frameworks. Unlike other works that focus on a single technique, our work presents a comparison of six different machine learning techniques along with gradient boosted trees on datasets of different characteristics. Five benchmark health care datasets are considered for experimentation, and the results of different machine learning techniques are discussed in comparison with gradient boosted trees. The metric chosen for comparison is misclassification error rate and the run time of the algorithms. The goal of this paper is to i) Compare the performance of gradient boosted trees with other machine learning techniques in Spark platform specifically for health care big data and ii) Discuss the results from the experiments conducted on datasets of different characteristics thereby drawing inference and conclusion. The experimental results show that the accuracy is largely dependent on the characteristics of the datasets for other machine learning techniques whereas gradient boosting trees yields reasonably stable results in terms of accuracy without largely depending on the dataset characteristics.

Keywords: big data analytics, ensemble machine learning, gradient boosted trees, Spark platform

Procedia PDF Downloads 240
6864 Eradication of Mental Illness through Buddhism

Authors: Deshar Bashu Dev

Abstract:

In this modern age, most people in developed and developing countries are affected by mental illness. There are many mental illnesses, and their differing symptoms impact peoples’ lives in different ways. These illnesses affect the way people think and feel, as well as how they behave with others. Mental illness results from compound interactions between the mind, body, and environment. New technologies and sciences make the world a better place. These technologies are becoming smarter and are being developed every day to help make daily life easier However, people suffer from mental illness in every part of the world. The philosophy propounded by the Buddha, Buddhism, teaches that all life is connected, from the microcosm to macrocosm. In the 2,500 years that elapsed since the death of the Buddha, his disciples have spread his teachings and developed sophisticated psycho-therapeutic methodologies. We can find many examples in Buddhist texts and in the modern age where Buddhist philosophy modern science could not solve. The Noble Eightfold Path, which is one of the main philosophies of Buddhism; it eradicates hatred and ill will and cultivates good deeds, kindness, and compassion. Buddhism, as a practice of dialectic conversation and mindfulness training, is full of rich therapeutic tools that the mental health community has adopted to help people. Similarly, Buddhist meditation is very necessary; it purifies thoughts and avoids unnecessary thinking. This research aims to study different causes of mental illness; analyzes the different approaches to eradicate mental illness problems and provides conclusions and recommendations present solutions through Buddhism in this modern age.

Keywords: mental illness, Buddhism, mindfulness, Buddhist practices

Procedia PDF Downloads 253
6863 Resilient Manufacturing in Times of Mass Customisation: Using Augmented Reality to Improve Training and Operating Practices of EV’s Battery Assembly

Authors: Lorena Caires Moreira, Marcos Kauffman

Abstract:

This paper outlines the results of experimental research on deploying an emerging augmented reality (AR) system for real-time task assistance of highly customized and high-risk manual operations. The focus is on operators’ training capabilities and the aim is to test if such technologies can support achieving higher levels of knowledge retention and accuracy of task execution to improve health and safety (H and S) levels. The proposed solution is tested and validated using a real-world case study of electric vehicles’ battery module assembly. The experimental results revealed that the proposed AR method improved the training practices by increasing the knowledge retention levels from 40% to 84% and improved the accuracy of task execution from 20% to 71%, compared to the traditional paper-based method. The results of this research can be used as a demonstration of how emerging technologies are advancing the choice of manual, hybrid, or fully automated processes by promoting the connected worker (Industry 5.0) and supporting manufacturing in becoming more resilient in times of constant market changes.

Keywords: augmented reality, extended reality, connected worker, XR-assisted operator, manual assembly, industry 5.0, smart training, battery assembly

Procedia PDF Downloads 128
6862 Photocapacitor Integrating Solar Energy Conversion and Energy Storage

Authors: Jihuai Wu, Zeyu Song, Zhang Lan, Liuxue Sun

Abstract:

Solar energy is clean, open, and infinite, but solar radiation on the earth is fluctuating, intermittent, and unstable. So, the sustainable utilization of solar energy requires a combination of high-efficient energy conversion and low-loss energy storage technologies. Hence, a photo capacitor integrated with photo-electrical conversion and electric-chemical storage functions in single device is a cost-effective, volume-effective and functional-effective optimal choice. However, owing to the multiple components, multi-dimensional structure and multiple functions in one device, especially the mismatch of the functional modules, the overall conversion and storage efficiency of the photocapacitors is less than 13%, which seriously limits the development of the integrated system of solar conversion and energy storage. To this end, two typical photocapacitors were studied. A three-terminal photocapacitor was integrated by using perovskite solar cell as solar conversion module and symmetrical supercapacitor as energy storage module. A function portfolio management concept was proposed the relationship among various efficiencies during photovoltaic conversion and energy storage process were clarified. By harmonizing the energy matching between conversion and storage modules and seeking the maximum power points coincide and the maximum efficiency points synchronize, the overall efficiency of the photocapacitor surpassed 18 %, and Joule efficiency was closed to 90%. A voltage adjustable hybrid supercapacitor (VAHSC) was designed as energy storage module, and two Si wafers in series as solar conversion module, a three-terminal photocapacitor was fabricated. The VAHSC effectively harmonizes the energy harvest and storage modules, resulting in the current, voltage, power, and energy match between both modules. The optimal photocapacitor achieved an overall efficiency of 15.49% and Joule efficiency of 86.01%, along with excellent charge/discharge cycle stability. In addition, the Joule efficiency (ηJoule) was defined as the energy ratio of discharge/charge of the devices for the first time.

Keywords: joule efficiency, perovskite solar cell, photocapacitor, silicon solar cell, supercapacitor

Procedia PDF Downloads 86
6861 Fueling Efficient Reporting And Decision-Making In Public Health With Large Data Automation In Remote Areas, Neno Malawi

Authors: Wiseman Emmanuel Nkhomah, Chiyembekezo Kachimanga, Julia Huggins, Fabien Munyaneza

Abstract:

Background: Partners In Health – Malawi introduced one of Operational Researches called Primary Health Care (PHC) Surveys in 2020, which seeks to assess progress of delivery of care in the district. The study consists of 5 long surveys, namely; Facility assessment, General Patient, Provider, Sick Child, Antenatal Care (ANC), primarily conducted in 4 health facilities in Neno district. These facilities include Neno district hospital, Dambe health centre, Chifunga and Matope. Usually, these annual surveys are conducted from January, and the target is to present final report by June. Once data is collected and analyzed, there are a series of reviews that take place before reaching final report. In the first place, the manual process took over 9 months to present final report. Initial findings reported about 76.9% of the data that added up when cross-checked with paper-based sources. Purpose: The aim of this approach is to run away from manually pulling the data, do fresh analysis, and reporting often associated not only with delays in reporting inconsistencies but also with poor quality of data if not done carefully. This automation approach was meant to utilize features of new technologies to create visualizations, reports, and dashboards in Power BI that are directly fished from the data source – CommCare hence only require a single click of a ‘refresh’ button to have the updated information populated in visualizations, reports, and dashboards at once. Methodology: We transformed paper-based questionnaires into electronic using CommCare mobile application. We further connected CommCare Mobile App directly to Power BI using Application Program Interface (API) connection as data pipeline. This provided chance to create visualizations, reports, and dashboards in Power BI. Contrary to the process of manually collecting data in paper-based questionnaires, entering them in ordinary spreadsheets, and conducting analysis every time when preparing for reporting, the team utilized CommCare and Microsoft Power BI technologies. We utilized validations and logics in CommCare to capture data with less errors. We utilized Power BI features to host the reports online by publishing them as cloud-computing process. We switched from sharing ordinary report files to sharing the link to potential recipients hence giving them freedom to dig deep into extra findings within Power BI dashboards and also freedom to export to any formats of their choice. Results: This data automation approach reduced research timelines from the initial 9 months’ duration to 5. It also improved the quality of the data findings from the original 76.9% to 98.9%. This brought confidence to draw conclusions from the findings that help in decision-making and gave opportunities for further researches. Conclusion: These results suggest that automating the research data process has the potential of reducing overall amount of time spent and improving the quality of the data. On this basis, the concept of data automation should be taken into serious consideration when conducting operational research for efficiency and decision-making.

Keywords: reporting, decision-making, power BI, commcare, data automation, visualizations, dashboards

Procedia PDF Downloads 116
6860 Handover for Dense Small Cells Heterogeneous Networks: A Power-Efficient Game Theoretical Approach

Authors: Mohanad Alhabo, Li Zhang, Naveed Nawaz

Abstract:

In this paper, a non-cooperative game method is formulated where all players compete to transmit at higher power. Every base station represents a player in the game. The game is solved by obtaining the Nash equilibrium (NE) where the game converges to optimality. The proposed method, named Power Efficient Handover Game Theoretic (PEHO-GT) approach, aims to control the handover in dense small cell networks. Players optimize their payoff by adjusting the transmission power to improve the performance in terms of throughput, handover, power consumption and load balancing. To select the desired transmission power for a player, the payoff function considers the gain of increasing the transmission power. Then, the cell selection takes place by deploying Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS). A game theoretical method is implemented for heterogeneous networks to validate the improvement obtained. Results reveal that the proposed method gives a throughput improvement while reducing the power consumption and minimizing the frequent handover.

Keywords: energy efficiency, game theory, handover, HetNets, small cells

Procedia PDF Downloads 127
6859 Efficient High Fidelity Signal Reconstruction Based on Level Crossing Sampling

Authors: Negar Riazifar, Nigel G. Stocks

Abstract:

This paper proposes strategies in level crossing (LC) sampling and reconstruction that provide high fidelity signal reconstruction for speech signals; these strategies circumvent the problem of exponentially increasing number of samples as the bit-depth is increased and hence are highly efficient. Specifically, the results indicate that the distribution of the intervals between samples is one of the key factors in the quality of signal reconstruction; including samples with short intervals do not improve the accuracy of the signal reconstruction, whilst samples with large intervals lead to numerical instability. The proposed sampling method, termed reduced conventional level crossing (RCLC) sampling, exploits redundancy between samples to improve the efficiency of the sampling without compromising performance. A reconstruction technique is also proposed that enhances the numerical stability through linear interpolation of samples separated by large intervals. Interpolation is demonstrated to improve the accuracy of the signal reconstruction in addition to the numerical stability. We further demonstrate that the RCLC and interpolation methods can give useful levels of signal recovery even if the average sampling rate is less than the Nyquist rate.

Keywords: level crossing sampling, numerical stability, speech processing, trigonometric polynomial

Procedia PDF Downloads 145
6858 Challenges and Opportunities of Utilization of Social Media by Business Education Students in Nigeria Universities

Authors: Titus Amodu Umoru

Abstract:

The global economy today is full of sophistication. All over the world, business and marketing practices are undergoing an unprecedented transformation. In realization of this fact, the federal government of Nigeria has put in place a robust transformation agenda in order to put Nigeria in a better position to be a competitive player and in the process transform all sectors of its economy. New technologies, especially the internet, are the driving force behind this transformation. However, technology has inadvertently affected the way businesses are done thus necessitating the acquisition of new skills. In developing countries like Nigeria, citizens are still battling with effective application of those technologies. Obviously, students of business education need to acquire relevant business knowledge to be able to transit into the world of work on graduation from school and compete favourably in the labour market. Therefore, effective utilization of social media by both teachers and students can help extensively in empowering students with the needed skills. Social media which is described as a group of internet-based applications that build on the ideological foundations of Web 2.0, and which allow the creation and exchange of user-generated content, if incorporated into the classroom experience may be the needed answer to unemployment and poverty in Nigeria as beneficiaries can easily connect with existing and potential enterprises and customers, engage with them and reinforce mutual business benefits. Challenges and benefits of social media use in education in Nigeria universities were revealed in this study.

Keywords: business education, challenges, opportunities, utilization, social media

Procedia PDF Downloads 415
6857 A Study of Adaptive Fault Detection Method for GNSS Applications

Authors: Je Young Lee, Hee Sung Kim, Kwang Ho Choi, Joonhoo Lim, Sebum Chun, Hyung Keun Lee

Abstract:

A purpose of this study is to develop efficient detection method for Global Navigation Satellite Systems (GNSS) applications based on adaptive estimation. Due to dependence of radio frequency signals, GNSS measurements are dominated by systematic errors in receiver’s operating environment. Thus, to utilize GNSS for aerospace or ground vehicles requiring high level of safety, unhealthy measurements should be considered seriously. For the reason, this paper proposes adaptive fault detection method to deal with unhealthy measurements in various harsh environments. By the proposed method, the test statistics for fault detection is generated by estimated measurement noise. Pseudorange and carrier-phase measurement noise are obtained at time propagations and measurement updates in process of Carrier-Smoothed Code (CSC) filtering, respectively. Performance of the proposed method was evaluated by field-collected GNSS measurements. To evaluate the fault detection capability, intentional faults were added to measurements. The experimental result shows that the proposed detection method is efficient in detecting unhealthy measurements and improves the accuracy of GNSS positioning under fault occurrence.

Keywords: adaptive estimation, fault detection, GNSS, residual

Procedia PDF Downloads 575
6856 Continuous Processing Approaches for Tunable Asymmetric Photochemical Synthesis

Authors: Amanda C. Evans

Abstract:

Enabling technologies such as continuous processing (CP) approaches can provide the tools needed to control and manipulate reactivities and transform chemical reactions into micro-controlled in-flow processes. Traditional synthetic approaches can be radically transformed by the application of CP, facilitating the pairing of chemical methodologies with technologies from other disciplines. CP supports sustainable processes that controllably generate reaction specificity utilizing supramolecular interactions. Continuous photochemical processing is an emerging field of investigation. The use of light to drive chemical reactivity is not novel, but the controlled use of specific and tunable wavelengths of light to selectively generate molecular structure under continuous processing conditions is an innovative approach towards chemical synthesis. This investigation focuses on the use of circularly polarized (cp) light as a sustainable catalyst for the CP generation of asymmetric molecules. Chiral photolysis has already been achieved under batch, solid-phase conditions: using synchrotron-sourced cp light, asymmetric photolytic selectivities of up to 4.2% enantiomeric excess (e.e.) have been reported. In order to determine the optimal wavelengths to use for irradiation with cp light for any given molecular building block, CD and anisotropy spectra for each building block of interest have been generated in two different solvents (water, hexafluoroisopropanol) across a range of wavelengths (130-400 nm). These spectra are being used to support a series of CP experiments using cp light to generate enantioselectivity.

Keywords: anisotropy, asymmetry, flow chemistry, active pharmaceutical ingredients

Procedia PDF Downloads 157
6855 Design and Fabrication of Piezoelectric Tactile Sensor by Deposition of PVDF-TrFE with Spin-Coating Method for Minimally Invasive Surgery

Authors: Saman Namvarrechi, Armin A. Dormeny, Javad Dargahi, Mojtaba Kahrizi

Abstract:

Since last two decades, minimally invasive surgery (MIS) has grown significantly due to its advantages compared to the traditional open surgery like less physical pain, faster recovery time and better healing condition around incision regions; however, one of the important challenges in MIS is getting an effective sensing feedback within the patient’s body during operations. Therefore, surgeons need efficient tactile sensing like determining the hardness of contact tissue for investigating the patient’s health condition. In such a case, MIS tactile sensors are preferred to be able to provide force/pressure sensing, force position, lump detection, and softness sensing. Among different pressure sensor technologies, the piezoelectric operating principle is the fittest for MIS’s instruments, such as catheters. Using PVDF with its copolymer, TrFE, as a piezoelectric material, is a common method of design and fabrication of a tactile sensor due to its ease of implantation and biocompatibility. In this research, PVDF-TrFE polymer is deposited via spin-coating method and treated with various post-deposition processes to investigate its piezoelectricity and amount of electroactive β phase. These processes include different post thermal annealing, the effect of spin-coating speed, different layer of deposition, and the presence of additional hydrate salt. According to FTIR spectroscopy and SEM images, the amount of the β phase and porosity of each sample is determined. In addition, the optimum experimental study is established by considering every aspect of the fabrication process. This study clearly shows the effective way of deposition and fabrication of a tactile PVDF-TrFE based sensor and an enhancement methodology to have a higher β phase and piezoelectric constant in order to have a better sense of touch at the end effector of biomedical devices.

Keywords: β phase, minimally invasive surgery, piezoelectricity, PVDF-TrFE, tactile sensor

Procedia PDF Downloads 122
6854 Green Crypto Mining: A Quantitative Analysis of the Profitability of Bitcoin Mining Using Excess Wind Energy

Authors: John Dorrell, Matthew Ambrosia, Abilash

Abstract:

This paper employs econometric analysis to quantify the potential profit wind farms can receive by allocating excess wind energy to power bitcoin mining machines. Cryptocurrency mining consumes a substantial amount of electricity worldwide, and wind energy produces a significant amount of energy that is lost because of the intermittent nature of the resource. Supply does not always match consumer demand. By combining the weaknesses of these two technologies, we can improve efficiency and a sustainable path to mine cryptocurrencies. This paper uses historical wind energy from the ERCOT network in Texas and cryptocurrency data from 2000-2021, to create 4-year return on investment projections. Our research model incorporates the price of bitcoin, the price of the miner, the hash rate of the miner relative to the network hash rate, the block reward, the bitcoin transaction fees awarded to the miners, the mining pool fees, the cost of the electricity and the percentage of time the miner will be running to demonstrate that wind farms generate enough excess energy to mine bitcoin profitably. Excess wind energy can be used as a financial battery, which can utilize wasted electricity by changing it into economic energy. The findings of our research determine that wind energy producers can earn profit while not taking away much if any, electricity from the grid. According to our results, Bitcoin mining could give as much as 1347% and 805% return on investment with the starting dates of November 1, 2021, and November 1, 2022, respectively, using wind farm curtailment. This paper is helpful to policymakers and investors in determining efficient and sustainable ways to power our economic future. This paper proposes a practical solution for the problem of crypto mining energy consumption and creates a more sustainable energy future for Bitcoin.

Keywords: bitcoin, mining, economics, energy

Procedia PDF Downloads 33
6853 Study of the Energy Efficiency of Buildings under Tropical Climate with a View to Sustainable Development: Choice of Material Adapted to the Protection of the Environment

Authors: Guarry Montrose, Ted Soubdhan

Abstract:

In the context of sustainable development and climate change, the adaptation of buildings to the climatic context in hot climates is a necessity if we want to improve living conditions in housing and reduce the risks to the health and productivity of occupants due to thermal discomfort in buildings. One can find a wide variety of efficient solutions but with high costs. In developing countries, especially tropical countries, we need to appreciate a technology with a very limited cost that is affordable for everyone, energy efficient and protects the environment. Biosourced insulation is a product based on plant fibers, animal products or products from recyclable paper or clothing. Their development meets the objectives of maintaining biodiversity, reducing waste and protecting the environment. In tropical or hot countries, the aim is to protect the building from solar thermal radiation, a source of discomfort. The aim of this work is in line with the logic of energy control and environmental protection, the approach is to make the occupants of buildings comfortable, reduce their carbon dioxide emissions (CO2) and decrease their energy consumption (energy efficiency). We have chosen to study the thermo-physical properties of banana leaves and sawdust, especially their thermal conductivities, direct measurements were made using the flash method and the hot plate method. We also measured the heat flow on both sides of each sample by the hot box method. The results from these different experiences show that these materials are very efficient used as insulation. We have also conducted a building thermal simulation using banana leaves as one of the materials under Design Builder software. Air-conditioning load as well as CO2 release was used as performance indicator. When the air-conditioned building cell is protected on the roof by banana leaves and integrated into the walls with solar protection of the glazing, it saves up to 64.3% of energy and avoids 57% of CO2 emissions.

Keywords: plant fibers, tropical climates, sustainable development, waste reduction

Procedia PDF Downloads 182
6852 Content-Based Image Retrieval Using HSV Color Space Features

Authors: Hamed Qazanfari, Hamid Hassanpour, Kazem Qazanfari

Abstract:

In this paper, a method is provided for content-based image retrieval. Content-based image retrieval system searches query an image based on its visual content in an image database to retrieve similar images. In this paper, with the aim of simulating the human visual system sensitivity to image's edges and color features, the concept of color difference histogram (CDH) is used. CDH includes the perceptually color difference between two neighboring pixels with regard to colors and edge orientations. Since the HSV color space is close to the human visual system, the CDH is calculated in this color space. In addition, to improve the color features, the color histogram in HSV color space is also used as a feature. Among the extracted features, efficient features are selected using entropy and correlation criteria. The final features extract the content of images most efficiently. The proposed method has been evaluated on three standard databases Corel 5k, Corel 10k and UKBench. Experimental results show that the accuracy of the proposed image retrieval method is significantly improved compared to the recently developed methods.

Keywords: content-based image retrieval, color difference histogram, efficient features selection, entropy, correlation

Procedia PDF Downloads 249
6851 Productivity and Household Welfare Impact of Technology Adoption: A Microeconometric Analysis

Authors: Tigist Mekonnen Melesse

Abstract:

Since rural households are basically entitled to food through own production, improving productivity might lead to enhance the welfare of rural population through higher food availability at the household level and lowering the price of agricultural products. Increasing agricultural productivity through the use of improved technology is one of the desired outcomes from sensible food security and agricultural policy. The ultimate objective of this study was to evaluate the potential impact of improved agricultural technology adoption on smallholders’ crop productivity and welfare. The study is conducted in Ethiopia covering 1500 rural households drawn from four regions and 15 rural villages based on data collected by Ethiopian Rural Household Survey. Endogenous treatment effect model is employed in order to account for the selection bias on adoption decision that is expected from the self-selection of households in technology adoption. The treatment indicator, technology adoption is a binary variable indicating whether the household used improved seeds and chemical fertilizer or not. The outcome variables were cereal crop productivity, measured in real value of production and welfare of households, measured in real per capita consumption expenditure. Results of the analysis indicate that there is positive and significant effect of improved technology use on rural households’ crop productivity and welfare in Ethiopia. Adoption of improved seeds and chemical fertilizer alone will increase the crop productivity by 7.38 and 6.32 percent per year of each. Adoption of such technologies is also found to improve households’ welfare by 1.17 and 0.25 percent per month of each. The combined effect of both technologies when adopted jointly is increasing crop productivity by 5.82 percent and improving welfare by 0.42 percent. Besides, educational level of household head, farm size, labor use, participation in extension program, expenditure for input and number of oxen positively affect crop productivity and household welfare, while large household size negatively affect welfare of households. In our estimation, the average treatment effect of technology adoption (average treatment effect on the treated, ATET) is the same as the average treatment effect (ATE). This implies that the average predicted outcome for the treatment group is similar to the average predicted outcome for the whole population.

Keywords: Endogenous treatment effect, technologies, productivity, welfare, Ethiopia

Procedia PDF Downloads 655
6850 Adsorptive Membrane for Hemodialysis: Potential, Future Prospection and Limitation of MOF as Nanofillers

Authors: Musawira Iftikhar

Abstract:

The field of membrane materials is the most dynamic due to the constantly evolving requirements advancement of materials, to address challenges such as biocompatibility, protein-bound uremic toxins, blood coagulation, auto-immune responses, oxidative stress, and poor clearance of uremic toxins. Hemodialysis is a membrane filtration processes that is currently necessary for daily living of the patients with ESRD. Tens of millions of people with ESRD have benefited from hemodialysis over the past 60–70 years, both in terms of safeguarding life and a longer lifespan. Beyond challenges associated with the efficiency and separative properties of the membranes, ensuring hemocompatibility, or the safe circulation of blood outside the body for four hours every two days, remains a persistent challenge. This review explores the ongoing field of metal–Organic Frameworks (MOFs) and their applications in hemodialysis, offering a comprehensive examination of various MOFs employed to address challenges inherent in traditional hemodialysis methodologies. this This review included includes the experimental work done with various MOFs as a filler such as UiO-66, HKUST-1, MIL-101, and ZIF-8, which together lead to improved adsorption capacities for a range of uremic toxins and proteins. Furthermore, this review highlights how effectively MOF-based hemodialysis membranes remove a variety of uremic toxins, including p-cresol, urea, creatinine, and indoxyl sulfate and potential filler choices for the future. Future research efforts should focus on refining synthesis techniques, enhancing toxin selectivity, and investigating the long-term durability of MOF-based membranes. With these considerations, MOFs emerge as transformative materials in the quest to develop advanced and efficient hemodialysis technologies, holding the promise to significantly enhance patient outcomes and redefine the landscape of renal therapy.

Keywords: membrane, hemodailysis, metal organic frameworks, seperation, protein adsorbtion

Procedia PDF Downloads 56
6849 The Impact of Artificial Intelligence in the Development of Textile and Fashion Industry

Authors: Basem Kamal Abasakhiroun Farag

Abstract:

Fashion, like many other areas of design, has undergone numerous developments over the centuries. The aim of the article is to recognize and evaluate the importance of advanced technologies in fashion design and to examine how they are transforming the role of contemporary fashion designers by transforming the creative process. It also discusses how contemporary culture is involved in such developments and how it influences fashion design in terms of conceptualization and production. The methodology used is based on examining various examples of the use of technology in fashion design and drawing parallels between what was feasible then and what is feasible today. Comparison of case studies, examples of existing fashion designs and experiences with craft methods; We therefore observe patterns that help us predict the direction of future developments in this area. Discussing the technological elements in fashion design helps us understand the driving force behind the trend. The research presented in the article shows that there is a trend towards significantly increasing interest and progress in the field of fashion technology, leading to the emergence of hybrid artisanal methods. In summary, as fashion technologies advance, their role in clothing production is becoming increasingly important, extending far beyond the humble sewing machine.

Keywords: fashion, identity, such, textiles ambient intelligence, proximity sensors, shape memory materials, sound sensing garments, wearable technology bio textiles, fashion trends, nano textiles, new materials, smart textiles, techno textiles fashion design, functional aesthetics, 3D printing.

Procedia PDF Downloads 67
6848 Experimental Study of Reflective Roof as a Passive Cooling Method in Homes Under the Paradigm of Appropriate Technology

Authors: Javier Ascanio Villabona, Brayan Eduardo Tarazona Romero, Camilo Leonardo Sandoval Rodriguez, Arly Dario Rincon, Omar Lengerke Perez

Abstract:

Efficient energy consumption in the housing sector in relation to refrigeration is a concern in the construction and rehabilitation of houses in tropical areas. Thermal comfort is aggravated by heat gain on the roof surface by heat gains. Thus, in the group of passive cooling techniques, one of the practices and technologies in solar control that provide improvements in comfortable conditions are thermal insulation or geometric changes of the roofs. On the other hand, methods with reflection and radiation are the methods used to decrease heat gain by facilitating the removal of excess heat inside a building to maintain a comfortable environment. Since the potential of these techniques varies in different climatic zones, their application in different zones should be examined. This research is based on the experimental study of a prototype of a roof radiator as a method of passive cooling in homes, which was developed through an experimental research methodology making measurements in a prototype built by means of the paradigm of appropriate technology, with the aim of establishing an initial behavior of the internal temperature resulting from the climate of the external environment. As a starting point, a selection matrix was made to identify the typologies of passive cooling systems to model the system and its subsequent implementation, establishing its constructive characteristics. Step followed by the measurement of the climatic variables (outside the prototype) and microclimatic variables (inside the prototype) to obtain a database to be analyzed. As a final result, the decrease in temperature that occurs inside the chamber with respect to the outside temperature was evidenced. likewise, a linearity in its behavior in relation to the variations of the climatic variables.

Keywords: appropriate technology, enveloping, energy efficiency, passive cooling

Procedia PDF Downloads 93
6847 Intelligent Agent-Based Model for the 5G mmWave O2I Technology Adoption

Authors: Robert Joseph M. Licup

Abstract:

The deployment of the fifth-generation (5G) mobile system through mmWave frequencies is the new solution in the requirement to provide higher bandwidth readily available for all users. The usage pattern of the mobile users has moved towards either the work from home or online classes set-up because of the pandemic. Previous mobile technologies can no longer meet the high speed, and bandwidth requirement needed, given the drastic shift of transactions to the home. The millimeter-wave (mmWave) underutilized frequency is utilized by the fifth-generation (5G) cellular networks that support multi-gigabit-per-second (Gbps) transmission. However, due to its short wavelengths, high path loss, directivity, blockage sensitivity, and narrow beamwidth are some of the technical challenges that need to be addressed. Different tools, technologies, and scenarios are explored to support network design, accurate channel modeling, implementation, and deployment effectively. However, there is a big challenge on how the consumer will adopt this solution and maximize the benefits offered by the 5G Technology. This research proposes to study the intricacies of technology diffusion, individual attitude, behaviors, and how technology adoption will be attained. The agent based simulation model shaped by the actual applications, technology solution, and related literature was used to arrive at a computational model. The research examines the different attributes, factors, and intricacies that can affect each identified agent towards technology adoption.

Keywords: agent-based model, AnyLogic, 5G O21, 5G mmWave solutions, technology adoption

Procedia PDF Downloads 108