Search results for: decision aiding processes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9162

Search results for: decision aiding processes

7932 Investigating the Regulation System of the Synchronous Motor Excitation Mode Serving as a Reactive Power Source

Authors: Baghdasaryan Marinka, Ulikyan Azatuhi

Abstract:

The efficient usage of the compensation abilities of the electrical drive synchronous motors used in production processes can essentially improve the technical and economic indices of the process.  Reducing the flows of the reactive electrical energy due to the compensation of reactive power allows to significantly reduce the load losses of power in the electrical networks. As a result of analyzing the scientific works devoted to the issues of regulating the excitation of the synchronous motors, the need for comprehensive investigation and estimation of the excitation mode has been substantiated. By means of the obtained transmission functions, in the Simulink environment of the software package MATLAB, the transition processes of the excitation mode have been studied. As a result of obtaining and estimating the graph of the Nyquist plot and the transient process, the necessity of developing the Proportional-Integral-Derivative (PID) regulator has been justified. The transient processes of the system of the PID regulator have been investigated, and the amplitude–phase characteristics of the system have been estimated. The analysis of the obtained results has shown that the regulation indices of the developed system have been improved. The developed system can be successfully applied for regulating the excitation voltage of different-power synchronous motors, operating with a changing load, ensuring a value of the power coefficient close to 1.

Keywords: transition process, synchronous motor, excitation mode, regulator, reactive power

Procedia PDF Downloads 235
7931 Performance Comparison of ADTree and Naive Bayes Algorithms for Spam Filtering

Authors: Thanh Nguyen, Andrei Doncescu, Pierre Siegel

Abstract:

Classification is an important data mining technique and could be used as data filtering in artificial intelligence. The broad application of classification for all kind of data leads to be used in nearly every field of our modern life. Classification helps us to put together different items according to the feature items decided as interesting and useful. In this paper, we compare two classification methods Naïve Bayes and ADTree use to detect spam e-mail. This choice is motivated by the fact that Naive Bayes algorithm is based on probability calculus while ADTree algorithm is based on decision tree. The parameter settings of the above classifiers use the maximization of true positive rate and minimization of false positive rate. The experiment results present classification accuracy and cost analysis in view of optimal classifier choice for Spam Detection. It is point out the number of attributes to obtain a tradeoff between number of them and the classification accuracy.

Keywords: classification, data mining, spam filtering, naive bayes, decision tree

Procedia PDF Downloads 411
7930 Proposal of a Model Supporting Decision-Making Based on Multi-Objective Optimization Analysis on Information Security Risk Treatment

Authors: Ritsuko Kawasaki (Aiba), Takeshi Hiromatsu

Abstract:

Management is required to understand all information security risks within an organization, and to make decisions on which information security risks should be treated in what level by allocating how much amount of cost. However, such decision-making is not usually easy, because various measures for risk treatment must be selected with the suitable application levels. In addition, some measures may have objectives conflicting with each other. It also makes the selection difficult. Moreover, risks generally have trends and it also should be considered in risk treatment. Therefore, this paper provides the extension of the model proposed in the previous study. The original model supports the selection of measures by applying a combination of weighted average method and goal programming method for multi-objective analysis to find an optimal solution. The extended model includes the notion of weights to the risks, and the larger weight means the priority of the risk.

Keywords: information security risk treatment, selection of risk measures, risk acceptance, multi-objective optimization

Procedia PDF Downloads 461
7929 Utilizing Literature Review and Shared Decision-Making to Support a Patient Make the Decision: A Case Study of Virtual Reality for Postoperative Pain

Authors: Pei-Ru Yang, Yu-Chen Lin, Jia-Min Wu

Abstract:

Background: A 58-year-old man with a history of osteoporosis and diabetes presented with chronic pain in his left knee due to severe knee joint degeneration. The knee replacement surgery was recommended by the doctor. But the patient suffered from low pain tolerance and wondered if virtual reality could relieve acute postoperative wound pain. Methods: We used the PICO (patient, intervention, comparison, and outcome) approach to generate indexed keywords and searched systematic review articles from 2017 to 2021 on the Cochran Library, PubMed, and Clinical Key databases. Results: The initial literature results included 38 articles, including 12 Cochrane library articles and 26 PubMed articles. One article was selected for further analysis after removing duplicates and off-topic articles. The eight trials included in this article were published between 2013 and 2019 and recruited a total of 723 participants. The studies, conducted in India, Lebanon, Iran, South Korea, Spain, and China, included adults who underwent hemorrhoidectomy, dental surgery, craniotomy or spine surgery, episiotomy repair, and knee surgery, with a mean age (24.1 ± 4.1 to 73.3 ± 6.5). Virtual reality is an emerging non-drug postoperative analgesia method. The findings showed that pain control was reduced by a mean of 1.48 points (95% CI: -2.02 to -0.95, p-value < 0.0001) in minor surgery and 0.32 points in major surgery (95% CI: -0.53 to -0.11, p-value < 0.03), and the overall postoperative satisfaction has improved. Discussion: Postoperative pain is a common clinical problem in surgical patients. Research has confirmed that virtual reality can create an immersive interactive environment, communicate with patients, and effectively relieve postoperative pain. However, virtual reality requires the purchase of hardware and software and other related computer equipment, and its high cost is a disadvantage. We selected the best literature based on clinical questions to answer the patient's question and used share decision making (SDM) to help the patient make decisions based on the clinical situation after knee replacement surgery to improve the quality of patient-centered care.

Keywords: knee replacement surgery, postoperative pain, share decision making, virtual reality

Procedia PDF Downloads 69
7928 Effect of Freeze-Thaw (F-T) Processes on the Engineering and Textural Properties of Nevşehir Stone (Nevşehir / Turkey)

Authors: İsmail İnce, Mustafa Fener

Abstract:

Natural stones used as building materials are exposed to various direct or indirect atmospheric effects depending on the climatic and seasonal conditions. Stones deteriorate partially or fully as a result of these effects. Freezing and thawing (F-T) process is the most important interaction. Nevşehir is located in the Central Anatolia region in Turkey and it has a typical continental climate with cold, snowy winters and hot, dry summers. Effects of freeze-thaw processes were widely observed on the building stones used in the region. Pyroclastic rocks, which are named as Nevşehir stone in the region, have been used in most of these buildings. The purpose of this study is to investigate the variations in engineering and textural properties of Nevşehir stone during different F-T cycles.

Keywords: Nevşehir stone, freeze-thaw, engineering properties, textural properties

Procedia PDF Downloads 980
7927 Public Participation for an Effective Flood Risk Management: Building Social Capacities in Ribera Alta Del Ebro, Spain

Authors: Alba Ballester Ciuró, Marc Pares Franzi

Abstract:

While coming decades are likely to see a higher flood risk in Europe and greater socio-economic damages, traditional flood risk management has become inefficient. In response to that, new approaches such as capacity building and public participation have recently been incorporated in natural hazards mitigation policy (i.e. Sendai Framework for Action, Intergovernmental Panel on Climate Change reports and EU Floods Directive). By integrating capacity building and public participation, we present a research concerning the promotion of participatory social capacity building actions for flood risk mitigation at the local level. Social capacities have been defined as the resources and abilities available at individual and collective level that can be used to anticipate, respond to, cope with, recover from and adapt to external stressors. Social capacity building is understood as a process of identifying communities’ social capacities and of applying collaborative strategies to improve them. This paper presents a proposal of systematization of participatory social capacity building process for flood risk mitigation, and its implementation in a high risk of flooding area in the Ebro river basin: Ribera Alta del Ebro. To develop this process, we designed and tested a tool that allows measuring and building five types of social capacities: knowledge, motivation, networks, participation and finance. The tool implementation has allowed us to assess social capacities in the area. Upon the results of the assessment we have developed a co-decision process with stakeholders and flood risk management authorities on which participatory activities could be employed to improve social capacities for flood risk mitigation. Based on the results of this process, and focused on the weaker social capacities, we developed a set of participatory actions in the area oriented to general public and stakeholders: informative sessions on flood risk management plan and flood insurances, interpretative river descents on flood risk management (with journalists, teachers, and general public), interpretative visit to the floodplain, workshop on agricultural insurance, deliberative workshop on project funding, deliberative workshops in schools on flood risk management (playing with a flood risk model). The combination of obtaining data through a mixed-methods approach of qualitative inquiry and quantitative surveys, as well as action research through co-decision processes and pilot participatory activities, show us the significant impact of public participation on social capacity building for flood risk mitigation and contributes to the understanding of which main factors intervene in this process.

Keywords: flood risk management, public participation, risk reduction, social capacities, vulnerability assessment

Procedia PDF Downloads 211
7926 GIS Model for Sanitary Landfill Site Selection Based on Geotechnical Parameters

Authors: Hecson Christian, Joel Macwan

Abstract:

Landfill site selection in an urban area is a critical issue in the planning process. With the growth of the urbanization, it has a mammoth impact on the economy, ecology, and environmental health of the region. Outsized amount of wastes are produced and the problem gets soared every day. Hence, selection of ideal site for sanitary landfill is a challenge for urban planners and solid waste managers. Disposal site is a function of many parameters. Among all, Geotechnical parameters are very vital as the same is related to surrounding open land. Moreover, the accessible safe and acceptable land is also scarce. Therefore, in this paper geotechnical parameters are used to develop a GIS model to identify an ideal location for landfill purpose. Metropolitan city of Surat is highly populated and fastest growing urban area in India. The research objectives are to conduct field experiments to collect data and to transfer the facts in GIS platform to evolve a model, to find ideal location. Planners’ preferences were obtained to use analytical hierarchical process (AHP) to find weights of each parameter. Integration of GIS and Multi-Criteria Decision Analysis (MCDA) techniques are applied to improve decision-making. It augments an environment for transformation and combination of geographical data and planners’ preferences. GIS performs deterministic overlay and buffer operations. MCDA methods evaluate alternatives based on the decision makers’ subjective values and priorities. Research results have shown many alternative locations. Economic analysis of selected site from actual operations point of view is not included in this research.

Keywords: GIS, AHP, MCDA, Geo-technical

Procedia PDF Downloads 145
7925 Modernization and Modernity: The Professional Education Concept in the Political Discourse of the Legislative Congress of Minas Gerais (1892-1930)

Authors: Milene Magalhães Pinto, Irlen Antônio Gonçalves

Abstract:

The purpose of this paper is to discuss how the historical processes of organization and reform of professional education contributed with the educational projects for the training/education starting from the idea of modernization of Brazil by way of industry and skilled worker. In the discourse of Congress Legislative of Minas Gerais is possible to identify the role of education as a mediating body of construction processes and rationalization modernizing of the country. The hypothesis is that education is an important instrument for promoting progress and citizenship and the way to form the professional who would serve the social and economic purposes of modernization of Brazil in the nineteenth and twentieth centuries. In this sense, we investigate the relationship of the concept of professional education with the ideas of modernization and modernity.

Keywords: education, modernization and education, legislative congress of Minas Gerais, professional education

Procedia PDF Downloads 523
7924 Mixotrophic Cultivation of Microalgae as a Feasible Strategy for Carotenoid Production

Authors: Jian Li

Abstract:

Carotenoids area group of metabolites in mostly photosynthetic organisms such as plants and microalgae and have wide applications in cosmetics, food, feed, and health industries. Although phototrophic cultivation of microalgae has been developed to produce some carotenoids for decades, most carotenoids are currently synthesized chemically at industrial scales because of affordable production costs. Chemical carotenoids are regarded not as safe for human beings as natural carotenoids and are restricted only for animal feed markets, and the industries call for inexpensive sources of natural products. Microalgae grow much quicker in mixotrophy than in phototrophy, and thus mixotrophic cultivation processes have great potential to reduce the production cost of carotenoids from microalgae. However, much more expensive photobioreactor systems and more strictly controlled sterile processes are needed to avoid contamination by heterotrophic organisms during mixotrophic cultivation processes, which makes mixotrophy, in fact, much more expensive than phototrophic cultivation. Recently technical breakthroughs have been reported to overcome contamination problems in photobioreactor systems traditionally used for phototrophic cultivation, and a much lower process cost of mixotrophic cultivation than that of phototrophic cultivation might be achieved for carotenoid production. These reviews intend to summarize recent technical advancements in mixotrophic cultivation of microalgae, to evaluate the economic viability of carotenoid production from mixotrophically cultivated microalgae, and to prospect mixotrophy as a strategy to produce a variety of carotenoids for industrial applications.

Keywords: microalgae, carotenoid, mixotrophy, biotechnology

Procedia PDF Downloads 158
7923 Redefining Infrastructure as Code Orchestration Using AI

Authors: Georges Bou Ghantous

Abstract:

This research delves into the transformative impact of Artificial Intelligence (AI) on Infrastructure as Code (IaaC) practices, specifically focusing on the redefinition of infrastructure orchestration. By harnessing AI technologies such as machine learning algorithms and predictive analytics, organizations can achieve unprecedented levels of efficiency and optimization in managing their infrastructure resources. AI-driven IaaC introduces proactive decision-making through predictive insights, enabling organizations to anticipate and address potential issues before they arise. Dynamic resource scaling, facilitated by AI, ensures that infrastructure resources can seamlessly adapt to fluctuating workloads and changing business requirements. Through case studies and best practices, this paper sheds light on the tangible benefits and challenges associated with AI-driven IaaC transformation, providing valuable insights for organizations navigating the evolving landscape of digital infrastructure management.

Keywords: artificial intelligence, infrastructure as code, efficiency optimization, predictive insights, dynamic resource scaling, proactive decision-making

Procedia PDF Downloads 34
7922 Decision Support System for Fetus Status Evaluation Using Cardiotocograms

Authors: Oyebade K. Oyedotun

Abstract:

The cardiotocogram is a technical recording of the heartbeat rate and uterine contractions of a fetus during pregnancy. During pregnancy, several complications can occur to both the mother and the fetus; hence it is very crucial that medical experts are able to find technical means to check the healthiness of the mother and especially the fetus. It is very important that the fetus develops as expected in stages during the pregnancy period; however, the task of monitoring the health status of the fetus is not that which is easily achieved as the fetus is not wholly physically available to medical experts for inspection. Hence, doctors have to resort to some other tests that can give an indication of the status of the fetus. One of such diagnostic test is to obtain cardiotocograms of the fetus. From the analysis of the cardiotocograms, medical experts can determine the status of the fetus, and therefore necessary medical interventions. Generally, medical experts classify examined cardiotocograms into ‘normal’, ‘suspect’, or ‘pathological’. This work presents an artificial neural network based decision support system which can filter cardiotocograms data, producing the corresponding statuses of the fetuses. The capability of artificial neural network to explore the cardiotocogram data and learn features that distinguish one class from the others has been exploited in this research. In this research, feedforward and radial basis neural networks were trained on a publicly available database to classify the processed cardiotocogram data into one of the three classes: ‘normal’, ‘suspect’, or ‘pathological’. Classification accuracies of 87.8% and 89.2% were achieved during the test phase of the trained network for the feedforward and radial basis neural networks respectively. It is the hope that while the system described in this work may not be a complete replacement for a medical expert in fetus status evaluation, it can significantly reinforce the confidence in medical diagnosis reached by experts.

Keywords: decision support, cardiotocogram, classification, neural networks

Procedia PDF Downloads 332
7921 The Design of a Mixed Matrix Model for Activity Levels Extraction and Sub Processes Classification of a Work Project (Case: Great Tehran Electrical Distribution Company)

Authors: Elham Allahmoradi, Bahman Allahmoradi, Ali Bonyadi Naeini

Abstract:

Complex systems have many aspects. A variety of methods have been developed to analyze these systems. The most efficient of these methods should not only be simple, but also provide useful and comprehensive information about many aspects of the system. Matrix methods are considered the most commonly methods used to analyze and design systems. Each matrix method can examine a particular aspect of the system. If these methods are combined, managers can access to more comprehensive and broader information about the system. This study was conducted in four steps. In the first step, a process model of a real project has been extracted through IDEF3. In the second step, activity levels have been attained by writing a process model in the form of a design structure matrix (DSM) and sorting it through triangulation algorithm (TA). In the third step, sub-processes have been obtained by writing the process model in the form of an interface structure matrix (ISM) and clustering it through cluster identification algorithm (CIA). In the fourth step, a mixed model has been developed to provide a unified picture of the project structure through the simultaneous presentation of activities and sub-processes. Finally, the paper is completed with a conclusion.

Keywords: integrated definition for process description capture (IDEF3) method, design structure matrix (DSM), interface structure matrix (ism), mixed matrix model, activity level, sub-process

Procedia PDF Downloads 494
7920 A Reliable Multi-Type Vehicle Classification System

Authors: Ghada S. Moussa

Abstract:

Vehicle classification is an important task in traffic surveillance and intelligent transportation systems. Classification of vehicle images is facing several problems such as: high intra-class vehicle variations, occlusion, shadow, illumination. These problems and others must be considered to develop a reliable vehicle classification system. In this study, a reliable multi-type vehicle classification system based on Bag-of-Words (BoW) paradigm is developed. Our proposed system used and compared four well-known classifiers; Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), k-Nearest Neighbour (KNN), and Decision Tree to classify vehicles into four categories: motorcycles, small, medium and large. Experiments on a large dataset show that our approach is efficient and reliable in classifying vehicles with accuracy of 95.7%. The SVM outperforms other classification algorithms in terms of both accuracy and robustness alongside considerable reduction in execution time. The innovativeness of developed system is it can serve as a framework for many vehicle classification systems.

Keywords: vehicle classification, bag-of-words technique, SVM classifier, LDA classifier, KNN classifier, decision tree classifier, SIFT algorithm

Procedia PDF Downloads 358
7919 Unconscious Bias in Judicial Decisions: Legal Genealogy and Disgust in Cases of Private, Adult, Consensual Sexual Acts Leading to Injury

Authors: Susanna Menis

Abstract:

‘Unconscious’ bias is widespread, affecting society on all levels of decision-making and beyond. Placed in the law context, this study will explore the direct effect of the psycho-social and cultural evolution of unconscious bias on how a judicial decision was made. The aim of this study is to contribute to socio-legal scholarship by examining the formation of unconscious bias and its influence on the creation of legal rules that judges believe reflect social solidarity and protect against violence. The study seeks to understand how concepts like criminalization and unlawfulness are constructed by the common law. The study methodology follows two theoretical approaches: historical genealogy and emotions as sociocultural phenomena. Both methods have the ‘tracing back’ of the original formation of a social way of seeing and doing things in common. The significance of this study lies in the importance of reflecting on the ways unconscious bias may be formed; placing judges’ decisions under this spotlight forces us to challenge the status quo, interrogate justice, and seek refinement of the law.

Keywords: legal geneology, emotions, disgust, criminal law

Procedia PDF Downloads 61
7918 Predicting Acceptance and Adoption of Renewable Energy Community solutions: The Prosumer Psychology

Authors: Francois Brambati, Daniele Ruscio, Federica Biassoni, Rebecca Hueting, Alessandra Tedeschi

Abstract:

This research, in the frame of social acceptance of renewable energies and community-based production and consumption models, aims at (1) supporting a data-driven approachable to dealing with climate change and (2) identifying & quantifying the psycho-sociological dimensions and factors that could support the transition from a technology-driven approach to a consumer-driven approach throughout the emerging “prosumer business models.” In addition to the existing Social Acceptance dimensions, this research tries to identify a purely individual psychological fourth dimension to understand processes and factors underling individual acceptance and adoption of renewable energy business models, realizing a Prosumer Acceptance Index. Questionnaire data collection has been performed throughout an online survey platform, combining standardized and ad-hoc questions adapted for the research purposes. To identify the main factors (individual/social) influencing the relation with renewable energy technology (RET) adoption, a Factorial Analysis has been conducted to identify the latent variables that are related to each other, revealing 5 latent psychological factors: Factor 1. Concern about environmental issues: global environmental issues awareness, strong beliefs and pro-environmental attitudes rising concern on environmental issues. Factor 2. Interest in energy sharing: attentiveness to solutions for local community’s collective consumption, to reduce individual environmental impact, sustainably improve the local community, and sell extra energy to the general electricity grid. Factor 3. Concern on climate change: environmental issues consequences on climate change awareness, especially on a global scale level, developing pro-environmental attitudes on global climate change course and sensitivity about behaviours aimed at mitigating such human impact. Factor 4. Social influence: social support seeking from peers. With RET, advice from significant others is looked for internalizing common perceived social norms of the national/geographical region. Factor 5. Impact on bill cost: inclination to adopt a RET when economic incentives from the behaviour perception affect the decision-making process could result in less expensive or unvaried bills. Linear regression has been conducted to identify and quantify the factors that could better predict behavioural intention to become a prosumer. An overall scale measuring “acceptance of a renewable energy solution” was used as the dependent variable, allowing us to quantify the five factors that contribute to measuring: awareness of environmental issues and climate change; environmental attitudes; social influence; and environmental risk perception. Three variables can significantly measure and predict the scores of the “Acceptance in becoming a prosumer” ad hoc scale. Variable 1. Attitude: the agreement to specific environmental issues and global climate change issues of concerns and evaluations towards a behavioural intention. Variable 2. Economic incentive: the perceived behavioural control and its related environmental risk perception, in terms of perceived short-term benefits and long-term costs, both part of the decision-making process as expected outcomes of the behaviour itself. Variable 3. Age: despite fewer economic possibilities, younger adults seem to be more sensitive to environmental dimensions and issues as opposed to older adults. This research can facilitate policymakers and relevant stakeholders to better understand which relevant psycho-sociological factors are intervening in these processes and what and how specifically target when proposing change towards sustainable energy production and consumption.

Keywords: behavioural intention, environmental risk perception, prosumer, renewable energy technology, social acceptance

Procedia PDF Downloads 130
7917 Accounting Management Information System for Convenient Shop in Bangkok Thailand

Authors: Anocha Rojanapanich

Abstract:

The purpose of this research is to develop and design an accounting management information system for convenient shop in Bangkok Thailand. The study applied the System Development Life Cycle (SDLC) for development which began with study and analysis of current data, including the existing system. Then, the system was designed and developed to meet users’ requirements via the internet network by use of application software such as My SQL for database management, Product diversity, Apache HTTP Server for Web Server and PHP Hypertext Preprocessor for an interface between web server, database and users. The system was designed into two subsystems as the main system, or system for head office, and the branch system for branch shops. These consisted of three parts which are classified by user management as shop management, inventory management and Point of Sale (POS) management and importance of cost information for decision making also as well as.

Keywords: accounting management information system, convenient shop, cost information for decision making system, development life cycle

Procedia PDF Downloads 420
7916 EU Policies in Determining Refugee Status

Authors: Adriano Mortada

Abstract:

Human history is rife with conflict, and the question of refugee status determination and their rehabilitation has been up for debate since. Refugee Status Determination is the administrative or legal process by which UNHCR or governments determine whether a person seeking international protection or asylum can be identified as a refugee under international, regional, or national law. Refugee Status Determination is considered to be a vital process in aiding refugees’ realization of their rights under international law. One of the major reasons why the refugee status determination is considered an “issue”, and is one that is much debated upon annually, is the fact that the national bureaucratic systems are rigid and unbending. This is particularly concerning in the 21st century despite human advancement in policy and diplomacy, working in tandem with the United Nations and their charters and resolutions on human rights and dignity. The paper seeks to criticize the European member states' response to the refugee crisis and their inflexible and prejudiced bureaucratic systems when it comes to refugee status determination. The paper looks at multiple case studies as primary evidence and the alternate case studies where the system helped refugees, like those in Jordan, Pakistan, Turkey, and Lebanon. The main concern of the paper is to highlight the bias in the selected European systems, which do not stem from the Human Rights Charter but rather on the basis of geographical backgrounds, cultural and religious affiliations of those seeking refugee status or asylum in their respective countries. The paper hopes to not only create awareness about this issue but also provide a research background to advocacy programs to bring a change in the systems.

Keywords: refugee status determination, human rights, bureaucracy, United Nations, European Union

Procedia PDF Downloads 96
7915 Estimation of the Seismic Response Modification Coefficient in the Superframe Structural System

Authors: Ali Reza Ghanbarnezhad Ghazvini, Seyyed Hamid Reza Mosayyebi

Abstract:

In recent years, an earthquake has occurred approximately every five years in certain regions of Iran. To mitigate the impact of these seismic events, it is crucial to identify and thoroughly assess the vulnerability of buildings and infrastructure, ensuring their safety through principled reinforcement. By adopting new methods of risk assessment, we can effectively reduce the potential risks associated with future earthquakes. In our research, we have observed that the coefficient of behavior in the fourth chapter is 1.65 for the initial structure and 1.72 for the Superframe structure. This indicates that the Superframe structure can enhance the strength of the main structural members by approximately 10% through the utilization of super beams. Furthermore, based on the comparative analysis between the two structures conducted in this study, we have successfully designed a stronger structure with minimal changes in the coefficient of behavior. Additionally, this design has allowed for greater energy dissipation during seismic events, further enhancing the structure's resilience to earthquakes. By comprehensively examining and reinforcing the vulnerability of buildings and infrastructure, along with implementing advanced risk assessment techniques, we can significantly reduce casualties and damages caused by earthquakes in Iran. The findings of this study offer valuable insights for civil engineering professionals in the field of structural engineering, aiding them in designing safer and more resilient structures.

Keywords: modal pushover analysis, response modification factor, high-strength concrete, concrete shear walls, high-rise building

Procedia PDF Downloads 142
7914 The Formulation of Inference Fuzzy System as a Valuation Subsidiary Based Particle Swarm Optimization for Solves the Issue of Decision Making in Middle Size Soccer Robot League

Authors: Zahra Abdolkarimi, Naser Zouri

Abstract:

The actual purpose of RoboCup is creating independent team of robots in 2050 based of FiFa roles to bring the victory in compare of world star team. There is unbelievable growing of Robots created a collection of complex and motivate subject in robotic and intellectual ornate, also it made a mechatronics style base of theoretical and technical way in Robocop. Decision making of robots depends to environment reaction, self-player and rival player with using inductive Fuzzy system valuation subsidiary to solve issue of robots in land game. The measure of selection in compare with other methods depends to amount of victories percentage in the same team that plays accidentally.

Keywords: particle swarm optimization, chaos theory, inference fuzzy system, simulation environment rational fuzzy system, mamdani and assilian, deffuzify

Procedia PDF Downloads 387
7913 Urban Networks as Model of Sustainable Design

Authors: Agryzkov Taras, Oliver Jose L., Tortosa Leandro, Vicent Jose

Abstract:

This paper aims to demonstrate how the consideration of cities as a special kind of complex network, called urban network, may lead to the use of design tools coming from network theories which, in fact, results in a quite sustainable approach. There is no doubt that the irruption in contemporary thought of Gaia as an essential political agent proposes a narrative that has been extended to the field of creative processes in which, of course, the activity of Urban Design is found. The rationalist paradigm is put in crisis, and from the so-called sciences of complexity, its way of describing reality and of intervening in it is questioned. Thus, a new way of understanding reality surges, which has to do with a redefinition of the human being's own place in what is now understood as a delicate and complex network. In this sense, we know that in these systems of connected and interdependent elements, the influences generated by them originate emergent properties and behaviors for the whole that, individually studied, would not make sense. We believe that the design of cities cannot remain oblivious to these principles, and therefore this research aims to demonstrate the potential that they have for decision-making in the urban environment. Thus, we will see an example of action in the field of public mobility, another example in the design of commercial areas, and a third example in the field of redensification of sprawl areas, in which different aspects of network theory have been applied to change the urban design. We think that even though these actions have been developed in European cities, and more specifically in the Mediterranean area in Spain, the reflections and tools could have a broader scope of action.

Keywords: graphs, complexity sciences, urban networks, urban design

Procedia PDF Downloads 154
7912 Deep Reinforcement Learning for Optimal Decision-Making in Supply Chains

Authors: Nitin Singh, Meng Ling, Talha Ahmed, Tianxia Zhao, Reinier van de Pol

Abstract:

We propose the use of reinforcement learning (RL) as a viable alternative for optimizing supply chain management, particularly in scenarios with stochasticity in product demands. RL’s adaptability to changing conditions and its demonstrated success in diverse fields of sequential decision-making makes it a promising candidate for addressing supply chain problems. We investigate the impact of demand fluctuations in a multi-product supply chain system and develop RL agents with learned generalizable policies. We provide experimentation details for training RL agents and statistical analysis of the results. We study the generalization ability of RL agents for different demand uncertainty scenarios and observe superior performance compared to the agents trained with fixed demand curves. The proposed methodology has the potential to lead to cost reduction and increased profit for companies dealing with frequent inventory movement between supply and demand nodes.

Keywords: inventory management, reinforcement learning, supply chain optimization, uncertainty

Procedia PDF Downloads 107
7911 Application of the Material Point Method as a New Fast Simulation Technique for Textile Composites Forming and Material Handling

Authors: Amir Nazemi, Milad Ramezankhani, Marian Kӧrber, Abbas S. Milani

Abstract:

The excellent strength to weight ratio of woven fabric composites, along with their high formability, is one of the primary design parameters defining their increased use in modern manufacturing processes, including those in aerospace and automotive. However, for emerging automated preform processes under the smart manufacturing paradigm, complex geometries of finished components continue to bring several challenges to the designers to cope with manufacturing defects on site. Wrinklinge. g. is a common defectoccurring during the forming process and handling of semi-finished textile composites. One of the main reasons for this defect is the weak bending stiffness of fibers in unconsolidated state, causing excessive relative motion between them. Further challenges are represented by the automated handling of large-area fiber blanks with specialized gripper systems. For fabric composites forming simulations, the finite element (FE)method is a longstanding tool usedfor prediction and mitigation of manufacturing defects. Such simulations are predominately meant, not only to predict the onset, growth, and shape of wrinkles but also to determine the best processing condition that can yield optimized positioning of the fibers upon forming (or robot handling in the automated processes case). However, the need for use of small-time steps via explicit FE codes, facing numerical instabilities, as well as large computational time, are among notable drawbacks of the current FEtools, hindering their extensive use as fast and yet efficient digital twins in industry. This paper presents a novel woven fabric simulation technique through the application of the material point method (MPM), which enables the use of much larger time steps, facing less numerical instabilities, hence the ability to run significantly faster and efficient simulationsfor fabric materials handling and forming processes. Therefore, this method has the ability to enhance the development of automated fiber handling and preform processes by calculating the physical interactions with the MPM fiber models and rigid tool components. This enables the designers to virtually develop, test, and optimize their processes based on either algorithmicor Machine Learning applications. As a preliminary case study, forming of a hemispherical plain weave is shown, and the results are compared to theFE simulations, as well as experiments.

Keywords: material point method, woven fabric composites, forming, material handling

Procedia PDF Downloads 181
7910 Modelling and Simulation of the Freezing Systems and Heat Pumps Using Unisim® Design

Authors: C. Patrascioiu

Abstract:

The paper describes the modeling and simulation of the heat pumps domain processes. The main objective of the study is the use of the heat pump in propene–propane distillation processes. The modeling and simulation instrument is the Unisim® Design simulator. The paper is structured in three parts: An overview of the compressing gases, the modeling and simulation of the freezing systems, and the modeling and simulation of the heat pumps. For each of these systems, there are presented the Unisim® Design simulation diagrams, the input–output system structure and the numerical results. Future studies will consider modeling and simulation of the propene–propane distillation process with heat pump.

Keywords: distillation, heat pump, simulation, unisim design

Procedia PDF Downloads 363
7909 Adaptive Decision Feedback Equalizer Utilizing Fixed-Step Error Signal for Multi-Gbps Serial Links

Authors: Alaa Abdullah Altaee

Abstract:

This paper presents an adaptive decision feedback equalizer (ADFE) for multi-Gbps serial links utilizing a fix-step error signal extracted from cross-points of received data symbols. The extracted signal is generated based on violation of received data symbols with minimum detection requirements at the clock and data recovery (CDR) stage. The iterations of the adaptation process search for the optimum feedback tap coefficients to maximize the data eye-opening and minimize the adaptation convergence time. The effectiveness of the proposed architecture is validated using the simulation results of a serial link designed in an IBM 130 nm 1.2V CMOS technology. The data link with variable channel lengths is analyzed using Spectre from Cadence Design Systems with BSIM4 device models.

Keywords: adaptive DFE, CMOS equalizer, error detection, serial links, timing jitter, wire-line communication

Procedia PDF Downloads 120
7908 Experimental Parameters’ Effects on the Electrical Discharge Machining Performances

Authors: Asmae Tafraouti, Yasmina Layouni, Pascal Kleimann

Abstract:

The growing market for Microsystems (MST) and Micro-Electromechanical Systems (MEMS) is driving the research for alternative manufacturing techniques to microelectronics-based technologies, which are generally expensive and time-consuming. Hot-embossing and micro-injection modeling of thermoplastics appear to be industrially viable processes. However, both require the use of master models, usually made in hard materials such as steel. These master models cannot be fabricated using standard microelectronics processes. Thus, other micromachining processes are used, such as laser machining or micro-electrical discharge machining (µEDM). In this work, µEDM has been used. The principle of µEDM is based on the use of a thin cylindrical micro-tool that erodes the workpiece surface. The two electrodes are immersed in a dielectric with a distance of a few micrometers (gap). When an electrical voltage is applied between the two electrodes, electrical discharges are generated, which cause material machining. In order to produce master models with high resolution and smooth surfaces, it is necessary to well control the discharge mechanism. However, several problems are encountered, such as a random electrical discharge process, the fluctuation of the discharge energy, the electrodes' polarity inversion, and the wear of the micro-tool. The effect of different parameters, such as the applied voltage, the working capacitor, the micro-tool diameter, and the initial gap, has been studied. This analysis helps to improve the machining performances, such as the workpiece surface condition and the lateral crater's gap.

Keywords: craters, electrical discharges, micro-electrical discharge machining, microsystems

Procedia PDF Downloads 74
7907 Exploring Methods and Strategies for Sustainable Urban Development

Authors: Klio Monokrousou, Maria Giannopoulou

Abstract:

Urban areas, as they have been developed and operate today, are areas of accumulation of a significant amount of people and a large number of activities that generate desires and reasons for traveling. The territorial expansion of the cities as well as the need to preserve the importance of the central city areas lead to the continuous increase of transportation needs which in the limited urban space results in creating serious traffic and operational problems. The modern perception of urban planning is directed towards more holistic approaches and integrated policies that make it economically competitive, socially just and more environmentally friendly. Over the last 25 years, the goal of sustainable transport development has been central to the agenda of any plan or policy for the city. The modern planning of urban space takes into account the economic and social aspects of the city and the importance of the environment to sustainable urban development. In this context, the European Union promotes direct or indirect related interventions according to the cohesion and environmental policies; many countries even had the chance to actually test them. This paper is part of a wider research still in progress and it explores the methods and processes that have been developed towards this direction and presents a review and systematic presentation of this work. The ultimate purpose of this research is to effectively use this review to create a decision making methodological framework which can be the basis of a useful operational tool for sustainable urban planning.

Keywords: methods, sustainable urban development, urban mobility, methodological framework

Procedia PDF Downloads 442
7906 Scalable CI/CD and Scalable Automation: Assisting in Optimizing Productivity and Fostering Delivery Expansion

Authors: Solanki Ravirajsinh, Kudo Kuniaki, Sharma Ankit, Devi Sherine, Kuboshima Misaki, Tachi Shuntaro

Abstract:

In software development life cycles, the absence of scalable CI/CD significantly impacts organizations, leading to increased overall maintenance costs, prolonged release delivery times, heightened manual efforts, and difficulties in meeting tight deadlines. Implementing CI/CD with standard serverless technologies using cloud services overcomes all the above-mentioned issues and helps organizations improve efficiency and faster delivery without the need to manage server maintenance and capacity. By integrating scalable CI/CD with scalable automation testing, productivity, quality, and agility are enhanced while reducing the need for repetitive work and manual efforts. Implementing scalable CI/CD for development using cloud services like ECS (Container Management Service), AWS Fargate, ECR (to store Docker images with all dependencies), Serverless Computing (serverless virtual machines), Cloud Log (for monitoring errors and logs), Security Groups (for inside/outside access to the application), Docker Containerization (Docker-based images and container techniques), Jenkins (CI/CD build management tool), and code management tools (GitHub, Bitbucket, AWS CodeCommit) can efficiently handle the demands of diverse development environments and are capable of accommodating dynamic workloads, increasing efficiency for faster delivery with good quality. CI/CD pipelines encourage collaboration among development, operations, and quality assurance teams by providing a centralized platform for automated testing, deployment, and monitoring. Scalable CI/CD streamlines the development process by automatically fetching the latest code from the repository every time the process starts, building the application based on the branches, testing the application using a scalable automation testing framework, and deploying the builds. Developers can focus more on writing code and less on managing infrastructure as it scales based on the need. Serverless CI/CD eliminates the need to manage and maintain traditional CI/CD infrastructure, such as servers and build agents, reducing operational overhead and allowing teams to allocate resources more efficiently. Scalable CI/CD adjusts the application's scale according to usage, thereby alleviating concerns about scalability, maintenance costs, and resource needs. Creating scalable automation testing using cloud services (ECR, ECS Fargate, Docker, EFS, Serverless Computing) helps organizations run more than 500 test cases in parallel, aiding in the detection of race conditions, performance issues, and reducing execution time. Scalable CI/CD offers flexibility, dynamically adjusting to varying workloads and demands, allowing teams to scale resources up or down as needed. It optimizes costs by only paying for the resources as they are used and increases reliability. Scalable CI/CD pipelines employ automated testing and validation processes to detect and prevent errors early in the development cycle.

Keywords: achieve parallel execution, cloud services, scalable automation testing, scalable continuous integration and deployment

Procedia PDF Downloads 44
7905 Accumulation of Pollutants, Self-Purification and Impact on Peripheral Urban Areas: A Case Study in Shantytowns in Argentina

Authors: N. Porzionato, M. Mantiñan, E. Bussi, S. Grinberg, R. Gutierrez, G. Curutchet

Abstract:

This work sets out to debate the tensions involved in the processes of contamination and self-purification in the urban space, particularly in the streams that run through the Buenos Aires metropolitan area. For much of their course, those streams are piped; their waters do not come into contact with the outdoors until they have reached deeply impoverished urban areas with high levels of environmental contamination. These are peripheral zones that, until thirty years ago, were marshlands and fields. They are now densely populated areas largely lacking in urban infrastructure. The Cárcova neighborhood, where this project is underway, is in the José León Suárez section of General San Martín country, Buenos Aires province. A stretch of José León Suarez canal crosses the neighborhood. Starting upstream, this canal carries pollutants due to the sewage and industrial waste released into it. Further downstream, in the neighborhood, domestic drainage is poured into the stream. In this paper, we formulate a hypothesis diametrical to the one that holds that these neighborhoods are the primary source of contamination, suggesting instead that in the stretch of the canal that runs through the neighborhood the stream’s waters are actually cleaned and the sediments accumulate pollutants. Indeed, the stretches of water that runs through these neighborhoods act as water processing plants for the metropolis. This project has studied the different organic-load polluting contributions to the water in a certain stretch of the canal, the reduction of that load over the course of the canal, and the incorporation of pollutants into the sediments. We have found that the surface water has considerable ability to self-purify, mostly due to processes of sedimentation and adsorption. The polluting load is accumulated in the sediments where that load stabilizes slowly by means of anaerobic processes. In this study, we also investigated the risks of sediment management and the use of the processes studied here in controlled conditions as tools of environmental restoration.

Keywords: bioremediation, pollutants, sediments, urban streams

Procedia PDF Downloads 441
7904 Understanding the Mechanisms of Salmonella typhimurium Resistance to Cannabidiol

Authors: Iddrisu Ibrahim, Joseph Atia Ayariga, Junhuan Xu, Daniel Abugri, Boakai Robertson, Olufemi S. Ajayi

Abstract:

The emergence of multidrug resistance poses a huge risk to public health globally. Yet these recalcitrant pathogens continue to rise in incidence rate, with resistance rates significantly outpacing the speed of antibiotic development. This, therefore, presents an aura of related health issues such as untreatable nosocomial infections arising from organ transplants and surgeries, as well as community-acquired infections that are related to people with compromised immunity, e.g., diabetic and HIV patients, etc. There is a global effort to fight multidrug-resistant pathogens spearheaded by the World Health Organization, thus calling for research into novel antimicrobial agents to fight multiple drug resistance. Previously, our laboratory demonstrated that Cannabidiol (CBD) was an effective antimicrobial against Salmonella typhimurium (S. typhimurium). However, we observed resistance development over time. To understand the mechanisms S. typhimurium uses to develop resistance to Cannabidiol (CBD), we studied the abundance of bacteria lipopolysaccharide (LPS) and membrane sterols of both susceptible and resistant S. typhimurium. Using real-time quantitative polymerase chain reaction (RT-qPCR), we also analyzed the expression of selected genes known for aiding resistance development in S. typhimurium. We discovered that there was a significantly higher expression of blaTEM, fimA, fimZ, and integrons in the CBD-resistant bacteria, and these were also accompanied by a shift in abundance in cell surface molecules such as lipopolysaccharide (LPS) and sterols.

Keywords: antimicrobials, resistance, cannabidiol, gram-negative bacteria, integrons, blaTEM, Fim, LPS, ergosterols

Procedia PDF Downloads 101
7903 Image Ranking to Assist Object Labeling for Training Detection Models

Authors: Tonislav Ivanov, Oleksii Nedashkivskyi, Denis Babeshko, Vadim Pinskiy, Matthew Putman

Abstract:

Training a machine learning model for object detection that generalizes well is known to benefit from a training dataset with diverse examples. However, training datasets usually contain many repeats of common examples of a class and lack rarely seen examples. This is due to the process commonly used during human annotation where a person would proceed sequentially through a list of images labeling a sufficiently high total number of examples. Instead, the method presented involves an active process where, after the initial labeling of several images is completed, the next subset of images for labeling is selected by an algorithm. This process of algorithmic image selection and manual labeling continues in an iterative fashion. The algorithm used for the image selection is a deep learning algorithm, based on the U-shaped architecture, which quantifies the presence of unseen data in each image in order to find images that contain the most novel examples. Moreover, the location of the unseen data in each image is highlighted, aiding the labeler in spotting these examples. Experiments performed using semiconductor wafer data show that labeling a subset of the data, curated by this algorithm, resulted in a model with a better performance than a model produced from sequentially labeling the same amount of data. Also, similar performance is achieved compared to a model trained on exhaustive labeling of the whole dataset. Overall, the proposed approach results in a dataset that has a diverse set of examples per class as well as more balanced classes, which proves beneficial when training a deep learning model.

Keywords: computer vision, deep learning, object detection, semiconductor

Procedia PDF Downloads 136