Search results for: common platform for automated programming
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8980

Search results for: common platform for automated programming

7750 Food Bolus Obstruction: A Rural Hospital’s Experience

Authors: Davina Von Hagt, Genevieve Gibbons, Matt Henderson, Tom Bowles

Abstract:

Purpose: Food bolus obstructions are common emergency surgical presentations, but there is no established management guideline in a rural setting. Intervention usually involves endoscopic removal after initial medical management has failed. Within a rural setting, this falls upon the general surgeon. There are varied endoscopic techniques that may be used. Methodology: A review of the past fifty cases of food bolus obstruction managed at Albany Health Campus was retrospectively reviewed to assess endoscopic findings and techniques. Operation notes, histopathology, imaging, and patient notes were reviewed. Results: 50 patients underwent gastroscopy for food bolus obstruction from August 2017 to March 2021. Ages ranged from 11 months to 95 years, with the majority of patients aged between 30-70 years. 88% of patients were male. Meat was the most common bolus (20% unspecified, 20% steak, 10% chicken, 6% lamb, 4% sausage, 2% pork). At endoscopy, 12% were found not to have a food bolus obstruction. Two patients were found to have oesophageal cancer, and four patients had a stricture and required dilatation. A variety of methods were used to relieve oesophageal obstruction ranging from pushing through to stomach (24 patients), using an overtube (10 patients), raptor (13 patients), and less common instruments such as Roth net, basket, guidewire, and pronged grasper. One patient had an unsuccessful endoscopic retrieval and required theatre for laparoscopic assisted removal with rendezvous endoscopic piecemeal removal via oesophagus and gastrostomy. Conclusion: Food bolus obstruction is a common emergency presentation. Within the rural setting, management requires innovation and teamwork within the safety of the local experience.

Keywords: food bolus obstruction, regional hospital, surgical management, innovative surgical treatment

Procedia PDF Downloads 267
7749 AI-Based Techniques for Online Social Media Network Sentiment Analysis: A Methodical Review

Authors: A. M. John-Otumu, M. M. Rahman, O. C. Nwokonkwo, M. C. Onuoha

Abstract:

Online social media networks have long served as a primary arena for group conversations, gossip, text-based information sharing and distribution. The use of natural language processing techniques for text classification and unbiased decision-making has not been far-fetched. Proper classification of this textual information in a given context has also been very difficult. As a result, we decided to conduct a systematic review of previous literature on sentiment classification and AI-based techniques that have been used in order to gain a better understanding of the process of designing and developing a robust and more accurate sentiment classifier that can correctly classify social media textual information of a given context between hate speech and inverted compliments with a high level of accuracy by assessing different artificial intelligence techniques. We evaluated over 250 articles from digital sources like ScienceDirect, ACM, Google Scholar, and IEEE Xplore and whittled down the number of research to 31. Findings revealed that Deep learning approaches such as CNN, RNN, BERT, and LSTM outperformed various machine learning techniques in terms of performance accuracy. A large dataset is also necessary for developing a robust sentiment classifier and can be obtained from places like Twitter, movie reviews, Kaggle, SST, and SemEval Task4. Hybrid Deep Learning techniques like CNN+LSTM, CNN+GRU, CNN+BERT outperformed single Deep Learning techniques and machine learning techniques. Python programming language outperformed Java programming language in terms of sentiment analyzer development due to its simplicity and AI-based library functionalities. Based on some of the important findings from this study, we made a recommendation for future research.

Keywords: artificial intelligence, natural language processing, sentiment analysis, social network, text

Procedia PDF Downloads 115
7748 Evaluating Urban City Indices: A Study for Investigating Functional Domains, Indicators and Integration Methods

Authors: Fatih Gundogan, Fatih Kafali, Abdullah Karadag, Alper Baloglu, Ersoy Pehlivan, Mustafa Eruyar, Osman Bayram, Orhan Karademiroglu, Wasim Shoman

Abstract:

Nowadays many cities around the world are investing their efforts and resources for the purpose of facilitating their citizen’s life and making cities more livable and sustainable by implementing newly emerged phenomena of smart city. For this purpose, related research institutions prepare and publish smart city indices or benchmarking reports aiming to measure the city’s current ‘smartness’ status. Several functional domains, various indicators along different selection and calculation methods are found within such indices and reports. The selection criteria varied for each institution resulting in inconsistency in the ranking and evaluating. This research aims to evaluate the impact of selecting such functional domains, indicators and calculation methods which may cause change in the rank. For that, six functional domains, i.e. Environment, Mobility, Economy, People, Living and governance, were selected covering 19 focus areas and 41 sub-focus (variable) areas. 60 out of 191 indicators were also selected according to several criteria. These were identified as a result of extensive literature review for 13 well known global indices and research and the ISO 37120 standards of sustainable development of communities. The values of the identified indicators were obtained from reliable sources for ten cities. The values of each indicator for the selected cities were normalized and standardized to objectively investigate the impact of the chosen indicators. Moreover, the effect of choosing an integration method to represent the values of indicators for each city is investigated by comparing the results of two of the most used methods i.e. geometric aggregation and fuzzy logic. The essence of these methods is assigning a weight to each indicator its relative significance. However, both methods resulted in different weights for the same indicator. As a result of this study, the alternation in city ranking resulting from each method was investigated and discussed separately. Generally, each method illustrated different ranking for the selected cities. However, it was observed that within certain functional areas the rank remained unchanged in both integration method. Based on the results of the study, it is recommended utilizing a common platform and method to objectively evaluate cities around the world. The common method should provide policymakers proper tools to evaluate their decisions and investments relative to other cities. Moreover, for smart cities indices, at least 481 different indicators were found, which is an immense number of indicators to be considered, especially for a smart city index. Further works should be devoted to finding mutual indicators representing the index purpose globally and objectively.

Keywords: functional domain, urban city index, indicator, smart city

Procedia PDF Downloads 147
7747 Research the Counseling of Taichung Taiwan's 10 Creative Zones

Authors: Feng Shih-Jen, Chiang Yi-Hua, Yang Min-Chih

Abstract:

After going through mass production and contract manufacturing phases, under the global consumption trend, Taiwan’s traditional industry has turned to creative design, research and development to gain recognition in the consumer market, build competitiveness in the global market and further promote the products from Taiwan’s traditional industry. Taichung City is rich in cultural creative resources, outperforming other counties/cities in originality, creative talents, cultural taste, art/culture participation and global marketing. As the result this has created a diversified and vibrant cultural market in Taichung, giving Taichung the highest potential as a cultural creative city. This research, through the project by Taichung Cultural Creative Industry Promotion Office, has built an exchange platform for the cultural creative industry in central Taiwan. The platform will promote exchanges of creative ideas in the cultural creative industry in Taiwan as well as industrial transformation and brings more value for the industry. This study also proposes the idea of “Taichung Cultural Creative Exhibition” Therefore, this study was conducted in Taiwan, Taichung 10 Creative Zone Exhibition, which is divided into four stages counseling. Respectively, of the first order: the cultural creative Zone specialty shops offer; The second stage is the industrial settlement discussions and counseling workshops in the ground; The third stage of consultation for the recruitment of the cultural creative businesses separate estate; The fourth stage is the story of the build cultural and creative industry. Hope through periodic counseling, handling Taichung 10 Creative Zone Exhibition.

Keywords: cultural creative industry, counseling, Taichung, Taiwan's creative zones

Procedia PDF Downloads 499
7746 Hematologic Inflammatory Markers and Inflammation-Related Hepatokines in Pediatric Obesity

Authors: Mustafa Metin Donma, Orkide Donma

Abstract:

Obesity in children particularly draws attention because it may threaten the individual’s future life due to many chronic diseases it may lead to. Most of these diseases, including obesity itself altogether are related to inflammation. For this reason, inflammation-related parameters gain importance. Within this context, complete blood cell counts, ratios or indices derived from these counts have recently found some platform to be used as inflammatory markers. So far, mostly adipokines were investigated within the field of obesity. The liver is at the center of the metabolic pathways network. Metabolic inflammation is closely associated with cellular dysfunction. In this study, hematologic inflammatory markers and two major hepatokines, cytokines produced predominantly by the liver, fibroblast growth factor-21 (FGF-21) and fetuin A were investigated in pediatric obesity. Two groups were constituted from seventy-six obese children based on World Health Organization criteria. Group 1 was composed of children whose age- and sex-adjusted body mass index (BMI) percentiles were between 95 and 99. Group 2 consists of children who are above the 99ᵗʰ percentile. The first and the latter groups were defined as obese (OB) and morbid obese (MO). Anthropometric measurements of the children were performed. Informed consent forms and the approval of the institutional ethics committee were obtained. Blood cell counts and ratios were determined by an automated hematology analyzer. The related ratios and indexes were calculated. Statistical evaluation of the data was performed by the SPSS program. There was no statistically significant difference in terms of neutrophil-to lymphocyte ratio, monocyte-to-high density lipoprotein cholesterol ratio and the platelet-to-lymphocyte ratio between the groups. Mean platelet volume and platelet distribution width values were decreased (p<0.05), total platelet count, red cell distribution width (RDW) and systemic immune inflammation index values were increased (p<0.01) in MO group. Both hepatokines were increased in the same group; however, increases were not statistically significant. In this group, also a strong correlation was calculated between FGF-21 and RDW when controlled by age, hematocrit, iron and ferritin (r=0.425; p<0.01). In conclusion, the association between RDW, a hematologic inflammatory marker, and FGF-21, an inflammation-related hepatokine, found in MO group is an important finding discriminating between OB and MO children. This association is even more powerful when controlled by age and iron-related parameters.

Keywords: childhood obesity, fetuin A , fibroblast growth factor-21, hematologic markers, red cell distribution width

Procedia PDF Downloads 198
7745 The Impact of Artificial Intelligence on Agricultural Machines and Plant Nutrition

Authors: Kirolos Gerges Yakoub Gerges

Abstract:

Self-sustaining agricultural machines act in stochastic surroundings and therefore, should be capable of perceive the surroundings in real time. This notion can be done using image sensors blended with superior device learning, mainly Deep mastering. Deep convolutional neural networks excel in labeling and perceiving colour pix and since the fee of RGB-cameras is low, the hardware cost of accurate notion relies upon heavily on memory and computation power. This paper investigates the opportunity of designing lightweight convolutional neural networks for semantic segmentation (pixel clever class) with reduced hardware requirements, to allow for embedded usage in self-reliant agricultural machines. The usage of compression techniques, a lightweight convolutional neural community is designed to carry out actual-time semantic segmentation on an embedded platform. The community is skilled on two big datasets, ImageNet and Pascal Context, to apprehend as much as four hundred man or woman instructions. The 400 training are remapped into agricultural superclasses (e.g. human, animal, sky, road, area, shelterbelt and impediment) and the capacity to provide correct actual-time perception of agricultural environment is studied. The network is carried out to the case of self-sufficient grass mowing the usage of the NVIDIA Tegra X1 embedded platform. Feeding case-unique pics to the community consequences in a fully segmented map of the superclasses within the picture. As the network remains being designed and optimized, handiest a qualitative analysis of the technique is entire on the abstract submission deadline. intending this cut-off date, the finalized layout is quantitatively evaluated on 20 annotated grass mowing pictures. Light-weight convolutional neural networks for semantic segmentation can be implemented on an embedded platform and show aggressive performance on the subject of accuracy and speed. It’s miles viable to offer value-efficient perceptive capabilities related to semantic segmentation for autonomous agricultural machines.

Keywords: centrifuge pump, hydraulic energy, agricultural applications, irrigationaxial flux machines, axial flux applications, coreless machines, PM machinesautonomous agricultural machines, deep learning, safety, visual perception

Procedia PDF Downloads 26
7744 Adopting Data Science and Citizen Science to Explore the Development of African Indigenous Agricultural Knowledge Platform

Authors: Steven Sam, Ximena Schmidt, Hugh Dickinson, Jens Jensen

Abstract:

The goal of this study is to explore the potential of data science and citizen science approaches to develop an interactive, digital, open infrastructure that pulls together African indigenous agriculture and food systems data from multiple sources, making it accessible and reusable for policy, research and practice in modern food production efforts. The World Bank has recognised that African Indigenous Knowledge (AIK) is innovative and unique among local and subsistent smallholder farmers, and it is central to sustainable food production and enhancing biodiversity and natural resources in many poor, rural societies. AIK refers to tacit knowledge held in different languages, cultures and skills passed down from generation to generation by word of mouth. AIK is a key driver of food production, preservation, and consumption for more than 80% of citizens in Africa, and can therefore assist modern efforts of reducing food insecurity and hunger. However, the documentation and dissemination of AIK remain a big challenge confronting librarians and other information professionals in Africa, and there is a risk of losing AIK owing to urban migration, modernisation, land grabbing, and the emergence of relatively small-scale commercial farming businesses. There is also a clear disconnect between the AIK and scientific knowledge and modern efforts for sustainable food production. The study combines data science and citizen science approaches through active community participation to generate and share AIK for facilitating learning and promoting knowledge that is relevant for policy intervention and sustainable food production through a curated digital platform based on FAIR principles. The study adopts key informant interviews along with participatory photo and video elicitation approach, where farmers are given digital devices (mobile phones) to record and document their every practice involving agriculture, food production, processing, and consumption by traditional means. Data collected are analysed using the UK Science and Technology Facilities Council’s proven methodology of citizen science (Zooniverse) and data science. Outcomes are presented in participatory stakeholder workshops, where the researchers outline plans for creating the platform and developing the knowledge sharing standard framework and copyrights agreement. Overall, the study shows that learning from AIK, by investigating what local communities know and have, can improve understanding of food production and consumption, in particular in times of stress or shocks affecting the food systems and communities. Thus, the platform can be useful for local populations, research, and policy-makers, and it could lead to transformative innovation in the food system, creating a fundamental shift in the way the North supports sustainable, modern food production efforts in Africa.

Keywords: Africa indigenous agriculture knowledge, citizen science, data science, sustainable food production, traditional food system

Procedia PDF Downloads 82
7743 Improved Thermal Comfort in Cabin Aircraft with in-Seat Microclimate Conditioning Module

Authors: Mathieu Le Cam, Tejaswinee Darure, Mateusz Pawlucki

Abstract:

Climate control of cabin aircraft is traditionally conditioned as a single unit by the environmental control system. Cabin temperature is controlled by the crew while passengers of the aircraft have control on the gaspers providing fresh air from the above head area. The small nozzles are difficult to reach and adjust to meet the passenger’s needs in terms of flow and direction. More dedicated control over the near environment of each passenger can be beneficial in many situations. The European project COCOON, funded under Clean Sky 2, aims at developing and demonstrating a microclimate conditioning module (MCM) integrated into a standard economy 3-seat row. The system developed will lead to improved passenger comfort with more control on their personal thermal area. This study focuses on the assessment of thermal comfort of passengers in the cabin aircraft through simulation on the TAITherm modelling platform. A first analysis investigates thermal comfort and sensation of passengers in varying cabin environmental conditions: from cold to very hot scenarios, with and without MCM installed in the seats. The modelling platform is also used to evaluate the impact of different physiologies of passengers on their thermal comfort as well as different seat locations. Under the current cabin conditions, a passenger of a 50th percentile body size is feeling uncomfortably cool due to the high velocity cabin air ventilation. The simulation shows that the in-seat MCM developed in COCOON project improves the thermal comfort of the passenger.

Keywords: cabin aircraft, in-seat HVAC, microclimate conditioning module, thermal comfort

Procedia PDF Downloads 200
7742 The Whole Is Greater than ‘Them’ and ‘Us’: The Effect of a Shared Workplace of Israeli-Jews and Non-Israeli Palestinians Physicians on Mutual Attitudes

Authors: Idit Miller

Abstract:

This paper examines the effect of a common organizational identity on intergroup relations of Israeli-Jews and non-Israeli Palestinians medical interns who are employed together within the Israeli hospitals, while asymmetrical relationships and ongoing conflict between the two groups still exist. Using mixed theory, which included the Intergroup contact, Othering, and the Common social identity theories, the study examines the intra-organizational identities dynamic involved within the hospital department and its effects on intergroup relations. In-depth, semi-structured interviews with the Palestinian and Jews physicians were conducted. Findings show three social identity responses are being constructed during the shared employment: Them vs. Us construction, Them vs. Us deconstruction, and an 'Organizational Us' reconstruction. Despite the inequality inherent within the intergroup relations, by holding a universal identity and using a deconstruction pattern, positive emotions are demonstrated by both sides. The adoption of a shared professional super-identity is found as an essential component for fostering and maintaining positive attitudes between the parties. This finding strengthens the significance of a long-term continuous intergroup contact inside the organization and especially between two polarized groups.

Keywords: common social identity theory, intergroup contact theory, inequality, intergroup conflict, othering theory

Procedia PDF Downloads 151
7741 The Evaluation of Children Who Had Chest Pain on Pediatric Emergency Department

Authors: Sabiha Sahin

Abstract:

Background: Chest pain is a common complaint in children visiting the emergency department (ED). True organic problems like cardiac disease are rare. We assess the etiology of chest pain among children visiting a Pediatric ED in Eskisehir Osmangazi University. Method: We prospectively evaluated of children with chest pain who visited our Pediatric ED between 1 January 2013 and 31 December 2014. Any case of trauma-associated chest pain was excluded from this study. Results: A total of 100 patients (54 boys, 46 girls), mean age: 11,86±3,51 (age range, 6–17 years) were enrolled into this study; 100 patients had chest radiograms (100 %). Pneumonia was identified in 15 patients. All patients had electrocardiogram study (100 %) and 16 of them showed abnormalities. Additional diagnostic tests were performed on all patients including complete blood count analysis, cardiac markers (CK-MB, Troponin I) and lactate (blood gas analysis). Echocardiograms were performed on all patients and 16 of them showed abnormality (five of majör abnormality). Panendoscopy was done in 20 patients, and gastroesophageal reflux was found in 12 (%12). Overall, idiopathic chest pain and myalgia was the most common diagnosis (32 %). Other associated disorders were asthma (12 %), panic attack (13 %). Conclusion: The most common cause of chest pain prompting a child to visit the ED is idiopathic chest pain. Careful physical examination can reveal important clues and save many unnecessary examinations.

Keywords: child, chest pain, pediatric emergency department, evaluation

Procedia PDF Downloads 253
7740 Species Distribution and Incidence of Inducible Clindamycin Resistance in Coagulase-Negative Staphylococci Isolated from Blood Cultures of Patients with True Bacteremia in Turkey

Authors: Fatma Koksal Cakirlar, Murat Gunaydin, Nevri̇ye Gonullu, Nuri Kiraz

Abstract:

During the last few decades, the increasing prevalence of methicillin resistant-CoNS isolates has become a common problem worldwide. Macrolide-lincosamide-streptogramin B (MLSB) antibiotics are effectively used for the treatment of CoNS infections. However, resistance to MLSB antibiotics is prevalent among staphylococci. The aim of this study is to determine species distribution and the incidence of inducible clindamycin resistance in CoNS isolates caused nosocomial bacteremia in our hospital. Between January 2014 and October 2015, a total of 484 coagulase-negative CoNS isolates were isolated from blood samples of patients with true bacteremia who were hospitalized in intensive care units and in other departments of Istanbul University Cerrahpasa Medical Hospital. Blood cultures were analyzed with the BACTEC 9120 system (Becton Dickinson, USA). The identification and antimicrobial resistance of isolates were determined by Phoenix automated system (BD Diagnostic Systems, Sparks, MD). Inducible clindamycin resistance was detected using D-test. The species distribution was as follows: Staphylococcus epidermidis 211 (43%), S. hominis 154 (32%), S. haemolyticus 69 (14%), S. capitis 28 (6%), S. saprophyticus 11 (2%), S. warnerii 7 (1%), S. schleiferi 5 (1%) and S. lugdunensis 1 (0.2%). Resistance to methicillin was detected in 74.6% of CoNS isolates. Methicillin resistance was highest in S.hemoliticus isolates (89%). Resistance rates of CoNS strains to the antibacterial agents, respectively, were as follows: ampicillin 77%, gentamicin 20%, erythromycin 71%, clindamycin 22%, trimethoprim-sulfamethoxazole 45%, ciprofloxacin 52%, tetracycline 34%, rifampicin 20%, daptomycin 0.2% and linezolid 0.2%. None of the strains were resistant to vancomycin and teicoplanin. Fifteen (3%) CoNS isolates were D-test positive, inducible MLSB resistance type (iMLSB-phenotype), 94 (19%) were constitutively resistant (cMLSB -phenotype), and 237 (46,76%) isolates were found D-test negative, indicating truly clindamycin-susceptible MS phenotype (M-phenotype resistance). The incidence of iMLSB-phenotypes was higher in S. epidermidis isolates (4,7%) compared to other CoNS isolates.

Keywords: bacteremia, inducible MLSB resistance phenotype, methicillin-resistant, staphylococci

Procedia PDF Downloads 239
7739 Increasing Adherence to Preventative Care Bundles for Healthcare-Associated Infections: The Impact of Nurse Education

Authors: Lauren G. Coggins

Abstract:

Catheter-associated urinary tract infections (CAUTI) and central line-associated bloodstream infections (CLABSI) are among the most common healthcare-associated infections (HAI), contributing to prolonged lengths of stay, greater costs of patient care, and increased patient mortality. Evidence-based preventative care bundles exist to establish consistent, safe patient-care practices throughout an entire organization, helping to ensure the collective application of care strategies that aim to improve patient outcomes and minimize complications. The cardiac intensive care unit at a nationally ranked teaching and research hospital in the United States exceeded its annual CAUTI and CLABSI targets in the fiscal year 2019, prompting examination into the unit’s infection prevention efforts that included preventative care bundles for both HAIs. Adherence to the CAUTI and CLABSI preventative care bundles was evaluated through frequent audits conducted over three months, using standards and resources from The Joint Commission, a globally recognized leader in quality improvement in healthcare and patient care safety. The bundle elements with the lowest scores were identified as the most commonly missed elements. Three elements from both bundles, six elements in total, served as key content areas for the educational interventions targeted to bedside nurses. The CAUTI elements included appropriate urinary catheter order, appropriate continuation criteria, and urinary catheter care. The CLABSI elements included primary tubing compliance, needleless connector compliance, and dressing change compliance. An integrated, multi-platform education campaign featured content on each CAUTI and CLABSI preventative care bundle in its entirety, with additional reinforcement focused on the lowest scoring elements. One-on-one educational materials included an informational pamphlet, badge buddy, a presentation to reinforce nursing care standards, and real-time application through case studies and electronic health record demonstrations. A digital hub was developed on the hospital’s Intranet for quick access to unit resources, and a bulletin board helped track the number of days since the last CAUTI and CLABSI incident. Audits continued to be conducted throughout the education campaign, and staff were given real-time feedback to address any gaps in adherence. Nearly every nurse in the cardiac intensive care unit received all educational materials, and adherence to all six key bundle elements increased after the implementation of educational interventions. Recommendations from this implementation include providing consistent, comprehensive education across multiple teaching tools and regular audits to track adherence. The multi-platform education campaign brought focus to the evidence-based CAUTI and CLABSI bundles, which in turn will help to reduce CAUTI and CLABSI rates in clinical practice.

Keywords: education, healthcare-associated infections, infection, nursing, prevention

Procedia PDF Downloads 116
7738 Analyses of the Constitutional Identity in Hungary: A Case Study on the Concept of Constitutionalism and Legal Continuity in New Fundamental Law of Hungary

Authors: Zsuzsanna Fejes

Abstract:

The aim of this paper is to provide an overview of the legal history of constitutionalism in Hungary, in focus of the democratic transitions in 1989-1990, describing the historical and political background of the changes and presenting the main and most important features of the new democracy, and institutional and legal orders. In Hungary the evolved political, economic and moral crisis prior to the constitutional years 2010-11 had been such a constitutional moment, which led to an opportune and unavoidable change at the same time. The Hungarian constitutional power intended to adopt a new constitution, which was competent to create a common constitutional identity and to express a national unity. The Hungarian Parliament on 18th April 2011 passed the New Fundamental Law. The new Fundamental Law rich in national values meant a new challenge for the academics, lawyers, and political scientists. Not only the classical political science, but also the constitutional law and theory have to struggle with the interpretation of the new declarations about national constitutional values in the Fundamental Law. The main features and structure of the new Fundamental Law will be analysed, and given a detailed interpretation of the Preamble as a declaration of constitutional values. During the examination of the Preamble shall be cleared up the components of Hungarian statehood and national unity, individual and common human rights, the practical and theoretical demand on national sovereignty, and the content and possibilities for the interpretation of the achievements of the historical Constitution. These scopes of problems will be presented during the examination of the text of National Avowal, as a preamble of the Fundamental Law. It is examined whether the Fundamental Law itself could be suitable and sufficient means to citizens of Hungary to express the ideas therein as their own, it will be analysed how could the national and European common traditions, values and principles stated in the Fundamental Law mean maintenance in Hungary’s participation in the European integration.

Keywords: common constitutional values, constitutionalism, national identity, national sovereignty, national unity, statehood

Procedia PDF Downloads 294
7737 Method for Improving ICESAT-2 ATL13 Altimetry Data Utility on Rivers

Authors: Yun Chen, Qihang Liu, Catherine Ticehurst, Chandrama Sarker, Fazlul Karim, Dave Penton, Ashmita Sengupta

Abstract:

The application of ICESAT-2 altimetry data in river hydrology critically depends on the accuracy of the mean water surface elevation (WSE) at a virtual station (VS) where satellite observations intersect with water. The ICESAT-2 track generates multiple VSs as it crosses the different water bodies. The difficulties are particularly pronounced in large river basins where there are many tributaries and meanders often adjacent to each other. One challenge is to split photon segments along a beam to accurately partition them to extract only the true representative water height for individual elements. As far as we can establish, there is no automated procedure to make this distinction. Earlier studies have relied on human intervention or river masks. Both approaches are unsatisfactory solutions where the number of intersections is large, and river width/extent changes over time. We describe here an automated approach called “auto-segmentation”. The accuracy of our method was assessed by comparison with river water level observations at 10 different stations on 37 different dates along the Lower Murray River, Australia. The congruence is very high and without detectable bias. In addition, we compared different outlier removal methods on the mean WSE calculation at VSs post the auto-segmentation process. All four outlier removal methods perform almost equally well with the same R2 value (0.998) and only subtle variations in RMSE (0.181–0.189m) and MAE (0.130–0.142m). Overall, the auto-segmentation method developed here is an effective and efficient approach to deriving accurate mean WSE at river VSs. It provides a much better way of facilitating the application of ICESAT-2 ATL13 altimetry to rivers compared to previously reported studies. Therefore, the findings of our study will make a significant contribution towards the retrieval of hydraulic parameters, such as water surface slope along the river, water depth at cross sections, and river channel bathymetry for calculating flow velocity and discharge from remotely sensed imagery at large spatial scales.

Keywords: lidar sensor, virtual station, cross section, mean water surface elevation, beam/track segmentation

Procedia PDF Downloads 62
7736 Analysis of the Cutting Force with Ultrasonic Assisted Manufacturing of Steel (S235JR)

Authors: Philipp Zopf, Franz Haas

Abstract:

Manufacturing of very hard and refractory materials like ceramics, glass or carbide poses particular challenges on tools and machines. The company Sauer GmbH developed especially for this application area ultrasonic tool holders working in a frequency range from 15 to 60 kHz and superimpose the common tool movement in the vertical axis. This technique causes a structural weakening in the contact area and facilitates the machining. The possibility of the force reduction for these special materials especially in drilling of carbide with diamond tools up to 30 percent made the authors try to expand the application range of this method. To make the results evaluable, the authors decide to start with existing processes in which the positive influence of the ultrasonic assistance is proven to understand the mechanism. The comparison of a grinding process the Institute use to machine materials mentioned in the beginning and steel could not be more different. In the first case, the authors use tools with geometrically undefined edges. In the second case, the edges are geometrically defined. To get valid results of the tests, the authors decide to investigate two manufacturing methods, drilling and milling. The main target of the investigation is to reduce the cutting force measured with a force measurement platform underneath the workpiece. Concerning to the direction of the ultrasonic assistance, the authors expect lower cutting forces and longer endurance of the tool in the drilling process. To verify the frequencies and the amplitudes an FFT-analysis is performed. It shows the increasing damping depending on the infeed rate of the tool. The reducing of amplitude of the cutting force comes along.

Keywords: drilling, machining, milling, ultrasonic

Procedia PDF Downloads 274
7735 Assessment of Different Industrial Wastewater Quality in the Most Common Industries in Kuwait

Authors: Mariam Aljumaa

Abstract:

Industrial wastewater has been increased rapidly in the last decades, however, the generated wastewater is not treated properly on site before transfer it to the treatment plant. In this study, the most common industries (dairy, soft drinks, detergent, and petrochemical) has been studied in term of wastewater quality. The main aim of this study is to characterize and evaluate the quality of the most common industrial wastewater in Kuwait. Industrial wastewater samples were collected from detergents, dairy, beverage, and petrochemical factories. The collected wastewater samples were analyzed for temperature, EC, pH, DO, BOD, COD, TOC, TS, TSS, volatile suspended solids (VSS), total volatile solids (TVS), NO2, NO3, NH3, N, P, K, CaCO3, heavy metals, Total coliform, Fecal coliform, and E.coli bacteria. The results showed that petrochemical industry has the highest concentration of organic and nutrients, followed by detergents wastewater, then dairy, and finally, soft drink wastewater. Regarding the heavy metals, the results showed that dairy wastewater had the highest concentration, specifically in Zinc, Arsenic, and Cadmium. In term of biological analysis, the dairy industry had the highest concentration of total coliform, followed by soft drinks industry, then shampoo industry, and finally petrochemical industry.

Keywords: industrial wastewater, characterization, heavy metals, wastewater quality

Procedia PDF Downloads 91
7734 Professional Competences of E-Learning Lecturers: Case of Russian National Platforms of Open Education

Authors: Polina Pekker

Abstract:

This work analyzes the role of lecturers in e-learning in Russia. It is based on qualitative research of lecturers who conduct courses on Russian national platforms of open education. The platform is based on edx software (provider of massive open online courses). The interviews with e-learning lecturers were conducted: from December 2015 till January 2016 and from April 2016 till May 2016. The results of interviews (face-to-face, telephone, skype) show, firstly, the difference between the role of lecturers in e-learning and in traditional education and, secondly, that the competition between lecturers is high in Russia. The results of interviews in Russia show that e-learning lecturer should have several special professional competences: the ability to keep attention of audiences without real contact, the ability to work on camera and competences related with e-learning course support (test, forum, communication on forum and etc.) It is concluded that lecturers need special course on acting and speech skills and on conducting and organizing of e-learning course in Russia. It is planned to conduct French study. When results from French research will be totally ready, they will be compared to Russian. As well French platform, France Universite Numerique, was launched earlier, in January 2014, so Russian lecturers should get best practice from the French colleagues.

Keywords: e-courses lecturer, e-learning, professional competences of lecturers, national Russian and French platforms of open education

Procedia PDF Downloads 192
7733 Numerical Simulation of Lifeboat Launching Using Overset Meshing

Authors: Alok Khaware, Vinay Kumar Gupta, Jean Noel Pederzani

Abstract:

Lifeboat launching from marine vessel or offshore platform is one of the important areas of research in offshore applications. With the advancement of computational fluid dynamic simulation (CFD) technology to solve fluid induced motions coupled with Six Degree of Freedom (6DOF), rigid body dynamics solver, it is now possible to predict the motion of the lifeboat precisely in different challenging conditions. Traditionally dynamic remeshing approach is used to solve this kind of problems, but remeshing approach has some bottlenecks to control good quality mesh in transient moving mesh cases. In the present study, an overset method with higher-order interpolation is used to simulate a lifeboat launched from an offshore platform into calm water, and volume of fluid (VOF) method is used to track free surface. Overset mesh consists of a set of overlapping component meshes, which allows complex geometries to be meshed with lesser effort. Good quality mesh with local refinement is generated at the beginning of the simulation and stay unchanged throughout the simulation. Overset mesh accuracy depends on the precise interpolation technique; the present study includes a robust and accurate least square interpolation method and results obtained with overset mesh shows good agreement with experiment.

Keywords: computational fluid dynamics, free surface flow, lifeboat launching, overset mesh, volume of fluid

Procedia PDF Downloads 277
7732 A Single-Use Endoscopy System for Identification of Abnormalities in the Distal Oesophagus of Individuals with Chronic Reflux

Authors: Nafiseh Mirabdolhosseini, Jerry Zhou, Vincent Ho

Abstract:

The dramatic global rise in acid reflux has also led to oesophageal adenocarcinoma (OAC) becoming the fastest-growing cancer in developed countries. While gastroscopy with biopsy is used to diagnose OAC patients, this labour-intensive and expensive process is not suitable for population screening. This study aims to design, develop, and implement a minimally invasive system to capture optical data of the distal oesophagus for rapid screening of potential abnormalities. To develop the system and understand user requirements, a user-centric approach was employed by utilising co-design strategies. Target users’ segments were identified, and 38 patients and 14 health providers were interviewed. Next, the technical requirements were developed based on consultations with the industry. A minimally invasive optical system was designed and developed considering patient comfort. This system consists of the sensing catheter, controller unit, and analysis program. Its procedure only takes 10 minutes to perform and does not require cleaning afterward since it has a single-use catheter. A prototype system was evaluated for safety and efficacy for both laboratory and clinical performance. This prototype performed successfully when submerged in simulated gastric fluid without showing evidence of erosion after 24 hours. The system effectively recorded a video of the mid-distal oesophagus of a healthy volunteer (34-year-old male). The recorded images were used to develop an automated program to identify abnormalities in the distal oesophagus. Further data from a larger clinical study will be used to train the automated program. This system allows for quick visual assessment of the lower oesophagus in primary care settings and can serve as a screening tool for oesophageal adenocarcinoma. In addition, this system is able to be coupled with 24hr ambulatory pH monitoring to better correlate oesophageal physiological changes with reflux symptoms. It also can provide additional information on lower oesophageal sphincter functions such as opening times and bolus retention.

Keywords: endoscopy, MedTech, oesophageal adenocarcinoma, optical system, screening tool

Procedia PDF Downloads 88
7731 The KAPSARC Energy Policy Database: Introducing a Quantified Library of China's Energy Policies

Authors: Philipp Galkin

Abstract:

Government policy is a critical factor in the understanding of energy markets. Regardless, it is rarely approached systematically from a research perspective. Gaining a precise understanding of what policies exist, their intended outcomes, geographical extent, duration, evolution, etc. would enable the research community to answer a variety of questions that, for now, are either oversimplified or ignored. Policy, on its surface, also seems a rather unstructured and qualitative undertaking. There may be quantitative components, but incorporating the concept of policy analysis into quantitative analysis remains a challenge. The KAPSARC Energy Policy Database (KEPD) is intended to address these two energy policy research limitations. Our approach is to represent policies within a quantitative library of the specific policy measures contained within a set of legal documents. Each of these measures is recorded into the database as a single entry characterized by a set of qualitative and quantitative attributes. Initially, we have focused on the major laws at the national level that regulate coal in China. However, KAPSARC is engaged in various efforts to apply this methodology to other energy policy domains. To ensure scalability and sustainability of our project, we are exploring semantic processing using automated computer algorithms. Automated coding can provide a more convenient input data for human coders and serve as a quality control option. Our initial findings suggest that the methodology utilized in KEPD could be applied to any set of energy policies. It also provides a convenient tool to facilitate understanding in the energy policy realm enabling the researcher to quickly identify, summarize, and digest policy documents and specific policy measures. The KEPD captures a wide range of information about each individual policy contained within a single policy document. This enables a variety of analyses, such as structural comparison of policy documents, tracing policy evolution, stakeholder analysis, and exploring interdependencies of policies and their attributes with exogenous datasets using statistical tools. The usability and broad range of research implications suggest a need for the continued expansion of the KEPD to encompass a larger scope of policy documents across geographies and energy sectors.

Keywords: China, energy policy, policy analysis, policy database

Procedia PDF Downloads 323
7730 Towards a Common Architecture for Cloud Computing Interoperability

Authors: Sana Kouchi, Hassina Nacer, Kadda Beghdad-bey

Abstract:

Cloud computing is growing very fast in the market and has become one of the most controversial discussed developments in recent years. Cloud computing providers become very numerous in these areas and each of them prefers its own cloud computing infrastructure, due to the incompatibility of standards and cloud access formats, which prevents them from accepting to support cloud computing applications in a standardized manner, this heterogeneity creates the problem of interoperability between clouds, and considering that cloud customers are probably in search of an interoperable cloud computing, where they will have total control over their applications and simply migrate their services as needed, without additional development investment. A cloud federation strategy should be considered. In this article, we propose a common architecture for the cloud that is based on existing architectures and also the use of best practices from ICT frameworks, such as IBM, ITIL, NIST, etc., to address the interoperability of architectures issues in a multi-cloud system.

Keywords: cloud computing, reference architecture, interoperability, standard

Procedia PDF Downloads 172
7729 Hydrodeoxygenation of Furfural over RU Sub-Nano Particles Supported on Al₂O₃-SIO₂ Mixed Oxides

Authors: Chaima Zoulikha Tabet Zatla, Nihel Dib, Sumeya Bedrane, Juan Carlos Hernandez Garrido, Redouane Bachir, Miguel Angel Cauqui, Jose Juan Calvino Gamez

Abstract:

These last year's our planet has witnessed global warming, which is a serious threat to our lives; it has many causes, such as the CO₂ excess in the atmosphere that results from our activity, for the purpose of living in a neater and better environment, working and improving an eco-responsible energy system is a must. Valorization of biomass to produce biofuels is among the most compelling routes to decrease air pollution without considerable modification in current vehicle technology. Effective transformation of lignocellulosic biomass-derived compounds into liquid fuels and value-added chemicals is an economically viable solution. Presently, very competitive technics for the conversion of lignocellulosic biomass into platform chemicals, such as furfural and Hydroxymethylfurfural (HMF), are used. Furfural (C₅H₄O₂) is a major hemi cellulosic biomass-derived platform molecule. In our work, we focus on the valorization of lignocellulosic biomass derivative furfural that is transformed into biofuel through a hydrodeoxygenation reaction in general and involving a catalytic process. In order to get to this point, we are synthesizing and characterizing a series of catalysts with different amounts of Ru (0.5%, 1% and 2%) supported on alumina-silica mixed oxides with various molar ratios (Si/Al = 2.5; 5; 7; 10; 15). These catalysts will be characterized by numerous technics such as N₂ adsorption/desorption, Pyridine adsorption (acidity measure), FTIR, X-rays diffraction, AAS, TEM and SEM.

Keywords: furfural, ruthenium, silica-alumina, biomass, biofuel

Procedia PDF Downloads 84
7728 Accelerating Personalization Using Digital Tools to Drive Circular Fashion

Authors: Shamini Dhana, G. Subrahmanya VRK Rao

Abstract:

The fashion industry is advancing towards a mindset of zero waste, personalization, creativity, and circularity. The trend of upcycling clothing and materials into personalized fashion is being demanded by the next generation. There is a need for a digital tool to accelerate the process towards mass customization. Dhana’s D/Sphere fashion technology platform uses digital tools to accelerate upcycling. In essence, advanced fashion garments can be designed and developed via reuse, repurposing, recreating activities, and using existing fabric and circulating materials. The D/Sphere platform has the following objectives: to provide (1) An opportunity to develop modern fashion using existing, finished materials and clothing without chemicals or water consumption; (2) The potential for an everyday customer and designer to use the medium of fashion for creative expression; (3) A solution to address the global textile waste generated by pre- and post-consumer fashion; (4) A solution to reduce carbon emissions, water, and energy consumption with the participation of all stakeholders; (5) An opportunity for brands, manufacturers, retailers to work towards zero-waste designs and as an alternative revenue stream. Other benefits of this alternative approach include sustainability metrics, trend prediction, facilitation of disassembly and remanufacture deep learning, and hyperheuristics for high accuracy. A design tool for mass personalization and customization utilizing existing circulating materials and deadstock, targeted to fashion stakeholders will lower environmental costs, increase revenues through up to date upcycled apparel, produce less textile waste during the cut-sew-stitch process, and provide a real design solution for the end customer to be part of circular fashion. The broader impact of this technology will result in a different mindset to circular fashion, increase the value of the product through multiple life cycles, find alternatives towards zero waste, and reduce the textile waste that ends up in landfills. This technology platform will be of interest to brands and companies that have the responsibility to reduce their environmental impact and contribution to climate change as it pertains to the fashion and apparel industry. Today, over 70% of the $3 trillion fashion and apparel industry ends up in landfills. To this extent, the industry needs such alternative techniques to both address global textile waste as well as provide an opportunity to include all stakeholders and drive circular fashion with new personalized products. This type of modern systems thinking is currently being explored around the world by the private sector, organizations, research institutions, and governments. This technological innovation using digital tools has the potential to revolutionize the way we look at communication, capabilities, and collaborative opportunities amongst stakeholders in the development of new personalized and customized products, as well as its positive impacts on society, our environment, and global climate change.

Keywords: circular fashion, deep learning, digital technology platform, personalization

Procedia PDF Downloads 66
7727 Tool for Determining the Similarity between Two Web Applications

Authors: Doru Anastasiu Popescu, Raducanu Dragos Ionut

Abstract:

In this paper the presentation of a tool which measures the similarity between two websites is made. The websites are compound only from webpages created with HTML. The tool uses three ways of calculating the similarity between two websites based on certain results already published. The first way compares all the webpages within a website, the second way compares a webpage with all the pages within the second website and the third way compares two webpages. Java programming language and technologies such as spring, Jsoup, log4j were used for the implementation of the tool.

Keywords: Java, Jsoup, HTM, spring

Procedia PDF Downloads 385
7726 The Use of Artificial Intelligence in Diagnosis of Mastitis in Cows

Authors: Djeddi Khaled, Houssou Hind, Miloudi Abdellatif, Rabah Siham

Abstract:

In the field of veterinary medicine, there is a growing application of artificial intelligence (AI) for diagnosing bovine mastitis, a prevalent inflammatory disease in dairy cattle. AI technologies, such as automated milking systems, have streamlined the assessment of key metrics crucial for managing cow health during milking and identifying prevalent diseases, including mastitis. These automated milking systems empower farmers to implement automatic mastitis detection by analyzing indicators like milk yield, electrical conductivity, fat, protein, lactose, blood content in the milk, and milk flow rate. Furthermore, reports highlight the integration of somatic cell count (SCC), thermal infrared thermography, and diverse systems utilizing statistical models and machine learning techniques, including artificial neural networks, to enhance the overall efficiency and accuracy of mastitis detection. According to a review of 15 publications, machine learning technology can predict the risk and detect mastitis in cattle with an accuracy ranging from 87.62% to 98.10% and sensitivity and specificity ranging from 84.62% to 99.4% and 81.25% to 98.8%, respectively. Additionally, machine learning algorithms and microarray meta-analysis are utilized to identify mastitis genes in dairy cattle, providing insights into the underlying functional modules of mastitis disease. Moreover, AI applications can assist in developing predictive models that anticipate the likelihood of mastitis outbreaks based on factors such as environmental conditions, herd management practices, and animal health history. This proactive approach supports farmers in implementing preventive measures and optimizing herd health. By harnessing the power of artificial intelligence, the diagnosis of bovine mastitis can be significantly improved, enabling more effective management strategies and ultimately enhancing the health and productivity of dairy cattle. The integration of artificial intelligence presents valuable opportunities for the precise and early detection of mastitis, providing substantial benefits to the dairy industry.

Keywords: artificial insemination, automatic milking system, cattle, machine learning, mastitis

Procedia PDF Downloads 65
7725 Detection of Intentional Attacks in Images Based on Watermarking

Authors: Hazem Munawer Al-Otum

Abstract:

In this work, an efficient watermarking technique is proposed and can be used for detecting intentional attacks in RGB color images. The proposed technique can be implemented for image authentication and exhibits high robustness against unintentional common image processing attacks. It deploys two measures to discern between intentional and unintentional attacks based on using a quantization-based technique in a modified 2D multi-pyramidal DWT transform. Simulations have shown high accuracy in detecting intentionally attacked regions while exhibiting high robustness under moderate to severe common image processing attacks.

Keywords: image authentication, copyright protection, semi-fragile watermarking, tamper detection

Procedia PDF Downloads 255
7724 Circular Economy in Social Practice in Response to Social Needs: Community Actions Versus Government Policy

Authors: Sai-Kit Choi

Abstract:

While traditional social services heavily depended on Government funding and support, there were always time lag, and resources mismatch with the fast growing and changing social needs. This study aims at investigating the effectiveness of implementing Circular Economy concept in a social service setting with comparison to Government Policy in response to social needs in 3 areas: response time, suitability, and community participation. To investigate the effectiveness of implementing Circular Economy concept in a social service setting, a real service model, a community resources sharing platform, was set up and statistics of the first 6 months’ operation data were used as comparison with traditional social services. Literature review was conducted as a reference basis of traditional social services under Government Policy. Case studies were conducted to provide the qualitative perspectives of the innovative approach. The results suggest that the Circular Economy model showed extraordinarily high level of community participation. In addition, it could utilize community resources in response precisely to the burning social needs. On the other hand, the available resources were unstable when comparing to those services supported by Government funding. The research team concluded that Circular Economy has high potential in applications in social service, especially in certain areas, such as resources sharing platform. Notwithstanding, it should be aware of the stability of resources when the services targeted to support some crucial needs.

Keywords: circular economy, social innovation, community participation, sharing economy, social response

Procedia PDF Downloads 113
7723 Analytical Study: An M-Learning App Reflecting the Factors Affecting Student’s Adoption of M-Learning

Authors: Ahmad Khachan, Ahmet Ozmen

Abstract:

This study aims to introduce a mobile bite-sized learning concept, a mobile application with social networks motivation factors that will encourage students to practice critical thinking, improve analytical skills and learn knowledge sharing. We do not aim to propose another e-learning or distance learning based tool like Moodle and Edmodo; instead, we introduce a mobile learning tool called Interactive M-learning Application. The tool reconstructs and strengthens the bonds between educators and learners and provides a foundation for integrating mobile devices in education. The application allows learners to stay connected all the time, share ideas, ask questions and learn from each other. It is built on Android since the Android has the largest platform share in the world and is dominating the market with 74.45% share in 2018. We have chosen Google-Firebase server for hosting because of flexibility, ease of hosting and real time update capabilities. The proposed m-learning tool was offered to four groups of university students in different majors. An improvement in the relation between the students, the teachers and the academic institution was obvious. Student’s performance got much better added to better analytical and critical skills advancement and moreover a willingness to adopt mobile learning in class. We have also compared our app with another tool in the same class for clarity and reliability of the results. The student’s mobile devices were used in this experimental study for diversity of devices and platform versions.

Keywords: education, engineering, interactive software, undergraduate education

Procedia PDF Downloads 155
7722 Synthetic Optimizing Control of Wind-Wave Hybrid Energy Conversion System

Authors: Lei Xue, Liye Zhao, Jundong Wang, Yu Xue

Abstract:

A hybrid energy conversion system composed of a floating offshore wind turbine (FOWT) and wave energy converters (WECs) may possibly reduce the levelized cost of energy, improving the platform dynamics and increasing the capacity to harvest energy. This paper investigates the aerodynamic performance and dynamic responses of the combined semi-submersible FOWT and point-absorber WECs in frequency and time domains using synthetic optimizing control under turbulent wind and irregular wave conditions. Individual pitch control is applied to the FOWT part, while spring–damping control is used on the WECs part, as well as the synergistic control effect of both are studied. The effect of the above control optimization is analyzed under several typical working conditions, such as below-rated wind speed, rated wind speed, and above-rated wind speed by OpenFAST and WEC-Sim software. Particularly, the wind-wave misalignment is also comparatively investigated, which has demonstrated the importance of applying proper integrated optimal control in this hybrid energy system. More specifically, the combination of individual pitch control and spring–damping control is able to mitigate the platform pitch motion and improve output power. However, the increase in blade root load needs to be considered which needs further investigations in the future.

Keywords: floating offshore wind turbine, wave energy converters, control optimization, individual pitch control, dynamic response

Procedia PDF Downloads 53
7721 Creation of a Trust-Wide, Cross-Speciality, Virtual Teaching Programme for Doctors, Nurses and Allied Healthcare Professionals

Authors: Nelomi Anandagoda, Leanne J. Eveson

Abstract:

During the COVID-19 pandemic, the surge in in-patient admissions across the medical directorate of a district general hospital necessitated the implementation of an incident rota. Conscious of the impact on training and professional development, the idea of developing a virtual teaching programme was conceived. The programme initially aimed to provide junior doctors, specialist nurses, pharmacists, and allied healthcare professionals from medical specialties and those re-deployed from other specialties (e.g., ophthalmology, GP, surgery, psychiatry) the knowledge and skills to manage the deteriorating patient with COVID-19. The programme was later developed to incorporate the general internal medicine curriculum. To facilitate continuing medical education whilst maintaining social distancing during this period, a virtual platform was used to deliver teaching to junior doctors across two large district general hospitals and two community hospitals. Teaching sessions were recorded and uploaded to a common platform, providing a resource for participants to catch up on and re-watch teaching sessions, making strides towards reducing discrimination against the professional development of less than full-time trainees. Thus, creating a learning environment, which is inclusive and accessible to adult learners in a self-directed manner. The negative impact of the pandemic on the well-being of healthcare professionals is well documented. To support the multi-disciplinary team, the virtual teaching programme evolved to included sessions on well-being, resilience, and work-life balance. Providing teaching for learners across the multi-disciplinary team (MDT) has been an eye-opening experience. By challenging the concept that learners should only be taught within their own peer groups, the authors have fostered a greater appreciation of the strengths of the MDT and showcased the immense wealth of expertise available within the trust. The inclusive nature of the teaching and the ease of joining a virtual teaching session has facilitated the dissemination of knowledge across the MDT, thus improving patient care on the frontline. The weekly teaching programme has been running for over eight months, with ongoing engagement, interest, and participation. As described above, the teaching programme has evolved to accommodate the needs of its learners. It has received excellent feedback with an appreciation of its inclusive, multi-disciplinary, and holistic nature. The COVID-19 pandemic provided a catalyst to rapidly develop novel methods of working and training and widened access/exposure to the virtual technologies available to large organisations. By merging pedagogical expertise and technology, the authors have created an effective online learning environment. Although the authors do not propose to replace face-to-face teaching altogether, this model of virtual multidisciplinary team, cross-site teaching has proven to be a great leveler. It has made high-quality teaching accessible to learners of different confidence levels, grades, specialties, and working patterns.

Keywords: cross-site, cross-speciality, inter-disciplinary, multidisciplinary, virtual teaching

Procedia PDF Downloads 170