Search results for: climate network
6103 Deep Reinforcement Learning-Based Computation Offloading for 5G Vehicle-Aware Multi-Access Edge Computing Network
Authors: Ziying Wu, Danfeng Yan
Abstract:
Multi-Access Edge Computing (MEC) is one of the key technologies of the future 5G network. By deploying edge computing centers at the edge of wireless access network, the computation tasks can be offloaded to edge servers rather than the remote cloud server to meet the requirements of 5G low-latency and high-reliability application scenarios. Meanwhile, with the development of IOV (Internet of Vehicles) technology, various delay-sensitive and compute-intensive in-vehicle applications continue to appear. Compared with traditional internet business, these computation tasks have higher processing priority and lower delay requirements. In this paper, we design a 5G-based Vehicle-Aware Multi-Access Edge Computing Network (VAMECN) and propose a joint optimization problem of minimizing total system cost. In view of the problem, a deep reinforcement learning-based joint computation offloading and task migration optimization (JCOTM) algorithm is proposed, considering the influences of multiple factors such as concurrent multiple computation tasks, system computing resources distribution, and network communication bandwidth. And, the mixed integer nonlinear programming problem is described as a Markov Decision Process. Experiments show that our proposed algorithm can effectively reduce task processing delay and equipment energy consumption, optimize computing offloading and resource allocation schemes, and improve system resource utilization, compared with other computing offloading policies.Keywords: multi-access edge computing, computation offloading, 5th generation, vehicle-aware, deep reinforcement learning, deep q-network
Procedia PDF Downloads 1186102 The Use of Correlation Difference for the Prediction of Leakage in Pipeline Networks
Authors: Mabel Usunobun Olanipekun, Henry Ogbemudia Omoregbee
Abstract:
Anomalies such as water pipeline and hydraulic or petrochemical pipeline network leakages and bursts have significant implications for economic conditions and the environment. In order to ensure pipeline systems are reliable, they must be efficiently controlled. Wireless Sensor Networks (WSNs) have become a powerful network with critical infrastructure monitoring systems for water, oil and gas pipelines. The loss of water, oil and gas is inevitable and is strongly linked to financial costs and environmental problems, and its avoidance often leads to saving of economic resources. Substantial repair costs and the loss of precious natural resources are part of the financial impact of leaking pipes. Pipeline systems experts have implemented various methodologies in recent decades to identify and locate leakages in water, oil and gas supply networks. These methodologies include, among others, the use of acoustic sensors, measurements, abrupt statistical analysis etc. The issue of leak quantification is to estimate, given some observations about that network, the size and location of one or more leaks in a water pipeline network. In detecting background leakage, however, there is a greater uncertainty in using these methodologies since their output is not so reliable. In this work, we are presenting a scalable concept and simulation where a pressure-driven model (PDM) was used to determine water pipeline leakage in a system network. These pressure data were collected with the use of acoustic sensors located at various node points after a predetermined distance apart. We were able to determine with the use of correlation difference to determine the leakage point locally introduced at a predetermined point between two consecutive nodes, causing a substantial pressure difference between in a pipeline network. After de-noising the signal from the sensors at the nodes, we successfully obtained the exact point where we introduced the local leakage using the correlation difference model we developed.Keywords: leakage detection, acoustic signals, pipeline network, correlation, wireless sensor networks (WSNs)
Procedia PDF Downloads 1096101 IoT Based Agriculture Monitoring Framework for Sustainable Rice Production
Authors: Armanul Hoque Shaon, Md Baizid Mahmud, Askander Nobi, Md. Raju Ahmed, Md. Jiabul Hoque
Abstract:
In the Internet of Things (IoT), devices are linked to the internet through a wireless network, allowing them to collect and transmit data without the need for a human operator. Agriculture relies heavily on wireless sensors, which are a vital component of the Internet of Things (IoT). This kind of wireless sensor network monitors physical or environmental variables like temperatures, sound, vibration, pressure, or motion without relying on a central location or sink and collaboratively passes its data across the network to be analyzed. As the primary source of plant nutrients, the soil is critical to the agricultural industry's continued growth. We're excited about the prospect of developing an Internet of Things (IoT) solution. To arrange the network, the sink node collects groundwater levels and sends them to the Gateway, which centralizes the data and forwards it to the sensor nodes. The sink node gathers soil moisture data, transmits the mean to the Gateways, and then forwards it to the website for dissemination. The web server is in charge of storing and presenting the moisture in the soil data to the web application's users. Soil characteristics may be collected using a networked method that we developed to improve rice production. Paddy land is running out as the population of our nation grows. The success of this project will be dependent on the appropriate use of the existing land base.Keywords: IoT based agriculture monitoring, intelligent irrigation, communicating network, rice production
Procedia PDF Downloads 1546100 Investigating Educator Perceptions of Body-Rich Language on Student Self-Image, Body-Consciousness and School Climate
Authors: Evelyn Bilias-Lolis, Emily Louise Winter
Abstract:
Schools have a responsibility to implement school-wide frameworks that actively prevent, detect, and support all aspects of child development and learning. Such efforts can range from individual or classroom-level supports to school-wide primary prevention practices for the school’s infrastructure or climate. This study assessed the perceptions of educators across a variety of disciplines in Connecticut (i.e., elementary and secondary education, special education, school psychology, and school social work) on the perceived impact of their beliefs, language, and behavior about food and body consciousness on student self-image and school climate. Participants (N=50) completed a short electronic questionnaire measuring perceptions of how their behavior can influence their students’ opinions about themselves, their emerging self-image, and the overall climate of the school community. Secondly, the beliefs that were directly assessed in the first portion of the survey were further measured through the use of applied social vignettes involving students directly or as bystanders. Preliminary findings are intriguing. When asked directly, 100% of the respondents reported that what they say to students directly could influence student opinions about themselves and 98% of participants further agreed that their behavior both to and in front of students could impact a student’s developing self-image. Likewise, 82% of the sample agreed that their personal language and behavior affect the overall climate of a school building. However, when the above beliefs were assessed via applied social vignettes depicting routine social exchanges, results were significantly more widespread (i.e., results were evenly dispersed among levels of agreement and disagreement across participants in all areas). These preliminary findings offer humble but critical implications for informing integrated school wellness frameworks that aim to create body-sensitive school communities. Research indicates that perceptions about body image, attitudes about eating, and the onset of disordered eating practices surface in school-aged years. Schools provide a natural setting for instilling foundations for child wellness as a natural extension of existing school climate reform efforts. These measures do not always need to be expansive or extreme. Rather, educators have a ripe opportunity to become champions for health and wellness through increased self-awareness and subtle shifts in language and behavior. Future psychological research needs to continue to explore this line of inquiry using larger and more varied samples of educators in order to identify needs in teacher training and development that can yield positive and preventative health outcomes for children.Keywords: body-sensitive schools, integrated school health, school climate reform, teacher awareness
Procedia PDF Downloads 1586099 Impact of PV Distributed Generation on Loop Distribution Network at Saudi Electricity Company Substation in Riyadh City
Authors: Mohammed Alruwaili
Abstract:
Nowadays, renewable energy resources are playing an important role in replacing traditional energy resources such as fossil fuels by integrating solar energy with conventional energy. Concerns about the environment led to an intensive search for a renewable energy source. The Rapid growth of distributed energy resources will have prompted increasing interest in the integrated distributing network in the Kingdom of Saudi Arabia next few years, especially after the adoption of new laws and regulations in this regard. Photovoltaic energy is one of the promising renewable energy sources that has grown rapidly worldwide in the past few years and can be used to produce electrical energy through the photovoltaic process. The main objective of the research is to study the impact of PV in distribution networks based on real data and details. In this research, site survey and computer simulation will be dealt with using the well-known computer program software ETAB to simulate the input of electrical distribution lines with other variable inputs such as the levels of solar radiation and the field study that represent the prevailing conditions and conditions in Diriah, Riyadh region, Saudi Arabia. In addition, the impact of adding distributed generation units (DGs) to the distribution network, including solar photovoltaic (PV), will be studied and assessed for the impact of adding different power capacities. The result has been achieved with less power loss in the loop distribution network from the current condition by more than 69% increase in network power loss. However, the studied network contains 78 buses. It is hoped from this research that the efficiency, performance, quality and reliability by having an enhancement in power loss and voltage profile of the distribution networks in Riyadh City. Simulation results prove that the applied method can illustrate the positive impact of PV in loop distribution generation.Keywords: renewable energy, smart grid, efficiency, distribution network
Procedia PDF Downloads 1406098 Middle School as a Developmental Context for Emergent Citizenship
Authors: Casta Guillaume, Robert Jagers, Deborah Rivas-Drake
Abstract:
Civically engaged youth are critical to maintaining and/or improving the functioning of local, national and global communities and their institutions. The present study investigated how school climate and academic beliefs (academic self-efficacy and school belonging) may inform emergent civic behaviors (emergent citizenship) among self-identified middle school youth of color (African American, Multiracial or Mixed, Latino, Asian American or Pacific Islander, Native American, and other). Study aims: 1) Understand whether and how school climate is associated with civic engagement behaviors, directly and indirectly, by fostering a positive sense of connection to the school and/or engendering feelings of self-efficacy in the academic domain. Accordingly, we examined 2) The association of youths’ sense of school connection and academic self-efficacy with their personally responsible and participatory civic behaviors in school and community contexts—both concurrently and longitudinally. Data from two subsamples of a larger study of social/emotional development among middle school students were used for longitudinal and cross sectional analysis. The cross-sectional sample included 324 6th-8th grade students, of which 43% identified as African American, 20% identified as Multiracial or Mixed, 18% identified as Latino, 12% identified as Asian American or Pacific Islander, 6% identified as Other, and 1% identified as Native American. The age of the sample ranged from 11 – 15 (M = 12.33, SD = .97). For the longitudinal test of our mediation model, we drew on data from the 6th and 7th grade cohorts only (n =232); the ethnic and racial diversity of this longitudinal subsample was virtually identical to that of the cross-sectional sample. For both the cross-sectional and longitudinal analyses, full information maximum likelihood was used to deal with missing data. Fit indices were inspected to determine if they met the recommended thresholds of RMSEA below .05 and CFI and TLI values of at least .90. To determine if particular mediation pathways were significant, the bias-corrected bootstrap confidence intervals for each indirect pathway were inspected. Fit indices for the latent variable mediation model using the cross-sectional data suggest that the hypothesized model fit the observed data well (CFI = .93; TLI =. 92; RMSEA = .05, 90% CI = [.04, .06]). In the model, students’ perceptions of school climate were significantly and positively associated with greater feelings of school connectedness, which were in turn significantly and positively associated with civic engagement. In addition, school climate was significantly and positively associated with greater academic self-efficacy, but academic self-efficacy was not significantly associated with civic engagement. Tests of mediation indicated there was one significant indirect pathway between school climate and civic engagement behavior. There was an indirect association between school climate and civic engagement via its association with sense of school connectedness, indirect association estimate = .17 [95% CI: .08, .32]. The aforementioned indirect association via school connectedness accounted for 50% (.17/.34) of the total effect. Partial support was found for the prediction that students’ perceptions of a positive school climate are linked to civic engagement in part through their role in students’ sense of connection to school.Keywords: civic engagement, early adolescence, school climate, school belonging, developmental niche
Procedia PDF Downloads 3706097 Carbon Capture and Storage by Continuous Production of CO₂ Hydrates Using a Network Mixing Technology
Authors: João Costa, Francisco Albuquerque, Ricardo J. Santos, Madalena M. Dias, José Carlos B. Lopes, Marcelo Costa
Abstract:
Nowadays, it is well recognized that carbon dioxide emissions, together with other greenhouse gases, are responsible for the dramatic climate changes that have been occurring over the past decades. Gas hydrates are currently seen as a promising and disruptive set of materials that can be used as a basis for developing new technologies for CO₂ capture and storage. Its potential as a clean and safe pathway for CCS is tremendous since it requires only water and gas to be mixed under favorable temperatures and mild high pressures. However, the hydrates formation process is highly exothermic; it releases about 2 MJ per kilogram of CO₂, and it only occurs in a narrow window of operational temperatures (0 - 10 °C) and pressures (15 to 40 bar). Efficient continuous hydrate production at a specific temperature range necessitates high heat transfer rates in mixing processes. Past technologies often struggled to meet this requirement, resulting in low productivity or extended mixing/contact times due to inadequate heat transfer rates, which consistently posed a limitation. Consequently, there is a need for more effective continuous hydrate production technologies in industrial applications. In this work, a network mixing continuous production technology has been shown to be viable for producing CO₂ hydrates. The structured mixer used throughout this work consists of a network of unit cells comprising mixing chambers interconnected by transport channels. These mixing features result in enhanced heat and mass transfer rates and high interfacial surface area. The mixer capacity emerges from the fact that, under proper hydrodynamic conditions, the flow inside the mixing chambers becomes fully chaotic and self-sustained oscillatory flow, inducing intense local laminar mixing. The device presents specific heat transfer rates ranging from 107 to 108 W⋅m⁻³⋅K⁻¹. A laboratory scale pilot installation was built using a device capable of continuously capturing 1 kg⋅h⁻¹ of CO₂, in an aqueous slurry of up to 20% in mass. The strong mixing intensity has proven to be sufficient to enhance dissolution and initiate hydrate crystallization without the need for external seeding mechanisms and to achieve, at the device outlet, conversions of 99% in CO₂. CO₂ dissolution experiments revealed that the overall liquid mass transfer coefficient is orders of magnitude larger than in similar devices with the same purpose, ranging from 1 000 to 12 000 h⁻¹. The present technology has shown itself to be capable of continuously producing CO₂ hydrates. Furthermore, the modular characteristics of the technology, where scalability is straightforward, underline the potential development of a modular hydrate-based CO₂ capture process for large-scale applications.Keywords: network, mixing, hydrates, continuous process, carbon dioxide
Procedia PDF Downloads 526096 Taxonomy of Threats and Vulnerabilities in Smart Grid Networks
Authors: Faisal Al Yahmadi, Muhammad R. Ahmed
Abstract:
Electric power is a fundamental necessity in the 21st century. Consequently, any break in electric power is probably going to affect the general activity. To make the power supply smooth and efficient, a smart grid network is introduced which uses communication technology. In any communication network, security is essential. It has been observed from several recent incidents that adversary causes an interruption to the operation of networks. In order to resolve the issues, it is vital to understand the threats and vulnerabilities associated with the smart grid networks. In this paper, we have investigated the threats and vulnerabilities in Smart Grid Networks (SGN) and the few solutions in the literature. Proposed solutions showed developments in electricity theft countermeasures, Denial of services attacks (DoS) and malicious injection attacks detection model, as well as malicious nodes detection using watchdog like techniques and other solutions.Keywords: smart grid network, security, threats, vulnerabilities
Procedia PDF Downloads 1396095 Performance Analysis of Artificial Neural Network Based Land Cover Classification
Authors: Najam Aziz, Nasru Minallah, Ahmad Junaid, Kashaf Gul
Abstract:
Landcover classification using automated classification techniques, while employing remotely sensed multi-spectral imagery, is one of the promising areas of research. Different land conditions at different time are captured through satellite and monitored by applying different classification algorithms in specific environment. In this paper, a SPOT-5 image provided by SUPARCO has been studied and classified in Environment for Visual Interpretation (ENVI), a tool widely used in remote sensing. Then, Artificial Neural Network (ANN) classification technique is used to detect the land cover changes in Abbottabad district. Obtained results are compared with a pixel based Distance classifier. The results show that ANN gives the better overall accuracy of 99.20% and Kappa coefficient value of 0.98 over the Mahalanobis Distance Classifier.Keywords: landcover classification, artificial neural network, remote sensing, SPOT 5
Procedia PDF Downloads 5466094 Simulation and Study of the Effect of Paint Mineral Coating on Energy Saving
Authors: A. A. Azemati, H. Hosseini
Abstract:
By using an adequate paint in buildings, energy consumption can be decreased. In this research, a range of wall paints in different climatic conditions has been investigated to observe its effect on energy consumption. In the current study, the researchers have investigated the effect of different parameters including climatic condition, absorption coefficient, and thermal loads on paint coating. In order to study these effects, heating and cooling loads of a typical building with different color paints have been calculated. The effect of building paint in different climatic condition was studied and a comparison was drawn between paints and painting coats with inorganic micro particles in temperate climate to obtain optimized energy consumption.Keywords: climate, energy consumption, inorganic, painting coats
Procedia PDF Downloads 2906093 Design and Implementation of 2D Mesh Network on Chip Using VHDL
Authors: Boudjedra Abderrahim, Toumi Salah, Boutalbi Mostefa, Frihi Mohammed
Abstract:
Nowadays, using the advancement of technology in semiconductor device fabrication, many transistors can be integrated to a single chip (VLSI). Although the growth chip density potentially eases systems-on-chip (SoCs) integrating thousands of processing element (PE) such as memory, processor, interfaces cores, system complexity, high-performance interconnect and scalable on-chip communication architecture become most challenges for many digital and embedded system designers. Networks-on-chip (NoCs) becomes a new paradigm that makes possible integrating heterogeneous devices and allows many communication constraints and performances. In this paper, we are interested for good performance and low area for implementation and a behavioral modeling of network on chip mesh topology design using VHDL hardware description language with performance evaluation and FPGA implementation results.Keywords: design, implementation, communication system, network on chip, VHDL
Procedia PDF Downloads 3786092 Inspection of Railway Track Fastening Elements Using Artificial Vision
Authors: Abdelkrim Belhaoua, Jean-Pierre Radoux
Abstract:
In France, the railway network is one of the main transport infrastructures and is the second largest European network. Therefore, railway inspection is an important task in railway maintenance to ensure safety for passengers using significant means in personal and technical facilities. Artificial vision has recently been applied to several railway applications due to its potential to improve the efficiency and accuracy when analyzing large databases of acquired images. In this paper, we present a vision system able to detect fastening elements based on artificial vision approach. This system acquires railway images using a CCD camera installed under a control carriage. These images are stitched together before having processed. Experimental results are presented to show that the proposed method is robust for detection fasteners in a complex environment.Keywords: computer vision, image processing, railway inspection, image stitching, fastener recognition, neural network
Procedia PDF Downloads 4546091 Presenting Internals of Networks Using Bare Machine Technology
Authors: Joel Weymouth, Ramesh K. Karne, Alexander L. Wijesinha
Abstract:
Bare Machine Internet is part of the Bare Machine Computing (BMC) paradigm. It is used in programming application ns to run directly on a device. It is software that runs directly against the hardware using CPU, Memory, and I/O. The software application runs without an Operating System and resident mass storage. An important part of the BMC paradigm is the Bare Machine Internet. It utilizes an Application Development model software that interfaces directly with the hardware on a network server and file server. Because it is “bare,” it is a powerful teaching and research tool that can readily display the internals of the network protocols, software, and hardware of the applications running on the Bare Server. It was also demonstrated that the bare server was accessible by laptop and by smartphone/android. The purpose was to show the further practicality of Bare Internet in Computer Engineering and Computer Science Education and Research. It was also to show that an undergraduate student could take advantage of a bare server with any device and any browser at any release version connected to the internet. This paper presents the Bare Web Server as an educational tool. We will discuss possible applications of this paradigm.Keywords: bare machine computing, online research, network technology, visualizing network internals
Procedia PDF Downloads 1726090 Evaluation of the Impact of Pavement Roughness on Vehicle Emissions by HDM-4
Authors: Muhammad Azhar, Arshad Hussain
Abstract:
Vehicular emissions have increased in recent years due to rapid growth in world traffic resulting in an increase in associated problems such as air pollution and climate change, therefore it’s necessary to control vehicle emissions. This study looks at the effect of road maintenance on vehicle emissions. The Highway Development and Management Tool (HDM-4) was used to find the effect of road maintenance on vehicle emissions. Key data collected were traffic volume and composition, vehicle characteristics, pavement characteristics and climate data of the study area. Two options were analysed using the HDM-4 software; the base case or do nothing while the second is overlay maintenance. The study also showed a strong correlation between average roughness and yearly emission levels in both the alternatives. Finally, the study showed that proper maintenance reduces the roughness and emissions.Keywords: vehicle emissions, road roughness, IRI, maintenance, HDM-4, CO2
Procedia PDF Downloads 2646089 Active Control Improvement of Smart Cantilever Beam by Piezoelectric Materials and On-Line Differential Artificial Neural Networks
Authors: P. Karimi, A. H. Khedmati Bazkiaei
Abstract:
The main goal of this study is to test differential neural network as a controller of smart structure and is to enumerate its advantages and disadvantages in comparison with other controllers. In this study, the smart structure has been considered as a Euler Bernoulli cantilever beam and it has been tried that it be under control with the use of vibration neural network resulting from movement. Also, a linear observer has been considered as a reference controller and has been compared its results. The considered vibration charts and the controlled state have been recounted in the final part of this text. The obtained result show that neural observer has better performance in comparison to the implemented linear observer.Keywords: smart material, on-line differential artificial neural network, active control, finite element method
Procedia PDF Downloads 2106088 Features of Testing of the Neuronetwork Converter Biometrics-Code with Correlation Communications between Bits of the Output Code
Authors: B. S. Akhmetov, A. I. Ivanov, T. S. Kartbayev, A. Y. Malygin, K. Mukapil, S. D. Tolybayev
Abstract:
The article examines the testing of the neural network converter of biometrics code. Determined the main reasons that prevented the use adopted in the works of foreign researchers classical a Binomial Law when describing distribution of measures of Hamming "Alien" codes-responses.Keywords: biometrics, testing, neural network, converter of biometrics-code, Hamming's measure
Procedia PDF Downloads 11386087 Neural Network Models for Actual Cost and Actual Duration Estimation in Construction Projects: Findings from Greece
Authors: Panagiotis Karadimos, Leonidas Anthopoulos
Abstract:
Predicting the actual cost and duration in construction projects concern a continuous and existing problem for the construction sector. This paper addresses this problem with modern methods and data available from past public construction projects. 39 bridge projects, constructed in Greece, with a similar type of available data were examined. Considering each project’s attributes with the actual cost and the actual duration, correlation analysis is performed and the most appropriate predictive project variables are defined. Additionally, the most efficient subgroup of variables is selected with the use of the WEKA application, through its attribute selection function. The selected variables are used as input neurons for neural network models through correlation analysis. For constructing neural network models, the application FANN Tool is used. The optimum neural network model, for predicting the actual cost, produced a mean squared error with a value of 3.84886e-05 and it was based on the budgeted cost and the quantity of deck concrete. The optimum neural network model, for predicting the actual duration, produced a mean squared error with a value of 5.89463e-05 and it also was based on the budgeted cost and the amount of deck concrete.Keywords: actual cost and duration, attribute selection, bridge construction, neural networks, predicting models, FANN TOOL, WEKA
Procedia PDF Downloads 1346086 Taguchi Method for Analyzing a Flexible Integrated Logistics Network
Authors: E. Behmanesh, J. Pannek
Abstract:
Logistics network design is known as one of the strategic decision problems. As these kinds of problems belong to the category of NP-hard problems, traditional ways are failed to find an optimal solution in short time. In this study, we attempt to involve reverse flow through an integrated design of forward/reverse supply chain network that formulated into a mixed integer linear programming. This Integrated, multi-stages model is enriched by three different delivery path which makes the problem more complex. To tackle with such an NP-hard problem a revised random path direct encoding method based memetic algorithm is considered as the solution methodology. Each algorithm has some parameters that need to be investigate to reveal the best performance. In this regard, Taguchi method is adapted to identify the optimum operating condition of the proposed memetic algorithm to improve the results. In this study, four factors namely, population size, crossover rate, local search iteration and a number of iteration are considered. Analyzing the parameters and improvement in results are the outlook of this research.Keywords: integrated logistics network, flexible path, memetic algorithm, Taguchi method
Procedia PDF Downloads 1876085 Agent Based Location Management Protocol for Mobile Adhoc Networks
Authors: Mallikarjun B. Channappagoudar, Pallapa Venkataram
Abstract:
The dynamic nature of Mobile adhoc network (MANET) due to mobility and disconnection of mobile nodes, leads to various problems in predicting the movement of nodes and their location information updation, for efficient interaction among the application specific nodes. Location management is one of the main challenges to be considered for an efficient service provision to the applications of a MANET. In this paper, we propose a location management protocol, for locating the nodes of a MANET and to maintain uninterrupted high-quality service for distributed applications by intelligently anticipating the change of location of its nodes. The protocol predicts the node movement and application resource scarcity, does the replacement with the chosen nodes nearby which have less mobility and rich in resources, with the help of both static and mobile agents, and maintains the application continuity by providing required network resources. The protocol has been simulated using Java Agent Development Environment (JADE) Framework for agent generation, migration and communication. It consumes much less time (response time), gives better location accuracy, utilize less network resources, and reduce location management overhead.Keywords: mobile agent, location management, distributed applications, mobile adhoc network
Procedia PDF Downloads 3946084 Nafion Nanofiber Composite Membrane Fabrication for Fuel Cell Applications
Authors: C. N. Okafor, M. Maaza, T. A. E. Mokrani
Abstract:
A proton exchange membrane has been developed for Direct Methanol Fuel Cell (DMFC). The nanofiber network composite membranes were prepared by interconnected network of Nafion (perfuorosulfonic acid) nanofibers that have been embedded in an uncharged and inert polymer matrix, by electro-spinning. The spinning solution of Nafion with a low concentration (1 wt. % compared to Nafion) of high molecular weight poly(ethylene oxide), as a carrier polymer. The interconnected network of Nafion nanofibers with average fiber diameter in the range of 160-700nm, were used to make the membranes, with the nanofiber occupying up to 85% of the membrane volume. The matrix polymer was cross-linked with Norland Optical Adhesive 63 under UV. The resulting membranes showed proton conductivity of 0.10 S/cm at 25°C and 80% RH; and methanol permeability of 3.6 x 10-6 cm2/s.Keywords: composite membrane, electrospinning, fuel cell, nanofibers
Procedia PDF Downloads 2666083 Technological Challenges for First Responders in Civil Protection; the RESPOND-A Solution
Authors: Georgios Boustras, Cleo Varianou Mikellidou, Christos Argyropoulos
Abstract:
Summer 2021 was marked by a number of prolific fires in the EU (Greece, Cyprus, France) as well as outside the EU (USA, Turkey, Israel). This series of dramatic events have stretched national civil protection systems and first responders in particular. Despite the introduction of National, Regional and International frameworks (e.g. rescEU), a number of challenges have arisen, not only related to climate change. RESPOND-A (funded by the European Commission by Horizon 2020, Contract Number 883371) introduces a unique five-tier project architectural structure for best associating modern telecommunications technology with novel practices for First Responders of saving lives, while safeguarding themselves, more effectively and efficiently. The introduced architecture includes Perception, Network, Processing, Comprehension, and User Interface layers, which can be flexibly elaborated to support multiple levels and types of customization, so, the intended technologies and practices can adapt to any European Environment Agency (EEA)-type disaster scenario. During the preparation of the RESPOND-A proposal, some of our First Responder Partners expressed the need for an information management system that could boost existing emergency response tools, while some others envisioned a complete end-to-end network management system that would offer high Situational Awareness, Early Warning and Risk Mitigation capabilities. The intuition behind these needs and visions sits on the long-term experience of these Responders, as well, their smoldering worry that the evolving threat of climate change and the consequences of industrial accidents will become more frequent and severe. Three large-scale pilot studies are planned in order to illustrate the capabilities of the RESPOND-A system. The first pilot study will focus on the deployment and operation of all available technologies for continuous communications, enhanced Situational Awareness and improved health and safety conditions for First Responders, according to a big fire scenario in a Wildland Urban Interface zone (WUI). An important issue will be examined during the second pilot study. Unobstructed communication in the form of the flow of information is severely affected during a crisis; the flow of information between the wider public, from the first responders to the public and vice versa. Call centers are flooded with requests and communication is compromised or it breaks down on many occasions, which affects in turn – the effort to build a common operations picture for all firstr esponders. At the same time the information that reaches from the public to the operational centers is scarce, especially in the aftermath of an incident. Understandably traffic if disrupted leaves no other way to observe but only via aerial means, in order to perform rapid area surveys. Results and work in progress will be presented in detail and challenges in relation to civil protection will be discussed.Keywords: first responders, safety, civil protection, new technologies
Procedia PDF Downloads 1426082 Importance of Remote Sensing and Information Communication Technology to Improve Climate Resilience in Low Land of Ethiopia
Authors: Hasen Keder Edris, Ryuji Matsunaga, Toshi Yamanaka
Abstract:
The issue of climate change and its impact is a major contemporary global concern. Ethiopia is one of the countries experiencing adverse climate change impact including frequent extreme weather events that are exacerbating drought and water scarcity. Due to this reason, the government of Ethiopia develops a strategic document which focuses on the climate resilience green economy. One of the major components of the strategic framework is designed to improve community adaptation capacity and mitigation of drought. For effective implementation of the strategy, identification of regions relative vulnerability to drought is vital. There is a growing tendency of applying Geographic Information System (GIS) and Remote Sensing technologies for collecting information on duration and severity of drought by direct measure of the topography as well as an indirect measure of land cover. This study aims to show an application of remote sensing technology and GIS for developing drought vulnerability index by taking lowland of Ethiopia as a case study. In addition, it assesses integrated Information Communication Technology (ICT) potential of Ethiopia lowland and proposes integrated solution. Satellite data is used to detect the beginning of the drought. The severity of drought risk prone areas of livestock keeping pastoral is analyzed through normalized difference vegetation index (NDVI) and ten years rainfall data. The change from the existing and average SPOT NDVI and vegetation condition index is used to identify the onset of drought and potential risks. Secondary data is used to analyze geographical coverage of mobile and internet usage in the region. For decades, the government of Ethiopia introduced some technologies and approach to overcoming climate change related problems. However, lack of access to information and inadequate technical support for the pastoral area remains a major challenge. In conventional business as usual approach, the lowland pastorals continue facing a number of challenges. The result indicated that 80% of the region face frequent drought occurrence and out of this 60% of pastoral area faces high drought risk. On the other hand, the target area mobile phone and internet coverage is rapidly growing. One of identified ICT solution enabler technology is telecom center which covers 98% of the region. It was possible to identify the frequently affected area and potential drought risk using the NDVI remote-sensing data analyses. We also found that ICT can play an important role in mitigating climate change challenge. Hence, there is a need to strengthen implementation efforts of climate change adaptation through integrated Remote Sensing and web based information dissemination and mobile alert of extreme events.Keywords: climate changes, ICT, pastoral, remote sensing
Procedia PDF Downloads 3156081 Intelligent Fishers Harness Aquatic Organisms and Climate Change
Authors: Shih-Fang Lo, Tzu-Wei Guo, Chih-Hsuan Lee
Abstract:
Tropical fisheries are vulnerable to the physical and biogeochemical oceanic changes associated with climate change. Warmer temperatures and extreme weather have beendamaging the abundance and growth patterns of aquatic organisms. In recent year, the shrinking of fish stock and labor shortage have increased the threat to global aquacultural production. Thus, building a climate-resilient and sustainable mechanism becomes an urgent, important task for global citizens. To tackle the problem, Taiwanese fishermen applies the artificial intelligence (AI) technology. In brief, the AI system (1) measures real-time water quality and chemical parameters infish ponds; (2) monitors fish stock through segmentation, detection, and classification; and (3) implements fishermen’sprevious experiences, perceptions, and real-life practices. Applying this system can stabilize the aquacultural production and potentially increase the labor force. Furthermore, this AI technology can build up a more resilient and sustainable system for the fishermen so that they can mitigate the influence of extreme weather while maintaining or even increasing their aquacultural production. In the future, when the AI system collected and analyzed more and more data, it can be applied to different regions of the world or even adapt to the future technological or societal changes, continuously providing the most relevant and useful information for fishermen in the world.Keywords: aquaculture, artificial intelligence (AI), real-time system, sustainable fishery
Procedia PDF Downloads 1116080 Losing Benefits from Social Network Sites Usage: An Approach to Estimate the Relationship between Social Network Sites Usage and Social Capital
Authors: Maoxin Ye
Abstract:
This study examines the relationship between social network sites (SNS) usage and social capital. Because SNS usage can expand the users’ networks, and people who are connected in this networks may become resources to SNS users and lead them to advantage in some situation, it is important to estimate the relationship between SNS usage and ‘who’ is connected or what resources the SNS users can get. Additionally, ‘who’ can be divided in two aspects – people who possess high position and people who are different, hence, it is important to estimate the relationship between SNS usage and high position people and different people. This study adapts Lin’s definition of social capital and the measurement of position generator which tells us who was connected, and can be divided into the same two aspects as well. A national data of America (N = 2,255) collected by Pew Research Center is utilized to do a general regression analysis about SNS usage and social capital. The results indicate that SNS usage is negatively associated with each factor of social capital, and it suggests that, in fact, comparing with non-users, although SNS users can get more connections, the variety and resources of these connections are fewer. For this reason, we could lose benefits through SNS usage.Keywords: social network sites, social capital, position generator, general regression
Procedia PDF Downloads 2626079 Probabilistic Graphical Model for the Web
Authors: M. Nekri, A. Khelladi
Abstract:
The world wide web network is a network with a complex topology, the main properties of which are the distribution of degrees in power law, A low clustering coefficient and a weak average distance. Modeling the web as a graph allows locating the information in little time and consequently offering a help in the construction of the research engine. Here, we present a model based on the already existing probabilistic graphs with all the aforesaid characteristics. This work will consist in studying the web in order to know its structuring thus it will enable us to modelize it more easily and propose a possible algorithm for its exploration.Keywords: clustering coefficient, preferential attachment, small world, web community
Procedia PDF Downloads 2726078 Evidence-Based Approaches and Effective Practices for Preventing Bullying
Authors: Nato Asatiani
Abstract:
The research underscores the critical role of a positive school climate in combating bullying. The results can be generalized and assumed that bullying behavior occurs when there is a victim, and the environment allows the realization of aggression; school culture is a strong predictor of bullying behavior; the probability of becoming a victim (victimhood) is high among those teenagers who experience high levels of stress in the environment; when a teenager experiences a sense of threat, such physical, psychological, or social symptoms are developed that makes teenagers vulnerable to bullying; the school culture that is oriented to adherence to the rules of communication and mutual respect in the group reduces the likelihood of a teenager to become a victim; consequently, when a teenager has a sense of wellness even in combination with aggression, this sense reduces the likelihood of a teenager to become a victim.Keywords: bullying, adolescence, aggression, school climate
Procedia PDF Downloads 306077 Detection of Atrial Fibrillation Using Wearables via Attentional Two-Stream Heterogeneous Networks
Authors: Huawei Bai, Jianguo Yao, Fellow, IEEE
Abstract:
Atrial fibrillation (AF) is the most common form of heart arrhythmia and is closely associated with mortality and morbidity in heart failure, stroke, and coronary artery disease. The development of single spot optical sensors enables widespread photoplethysmography (PPG) screening, especially for AF, since it represents a more convenient and noninvasive approach. To our knowledge, most existing studies based on public and unbalanced datasets can barely handle the multiple noises sources in the real world and, also, lack interpretability. In this paper, we construct a large- scale PPG dataset using measurements collected from PPG wrist- watch devices worn by volunteers and propose an attention-based two-stream heterogeneous neural network (TSHNN). The first stream is a hybrid neural network consisting of a three-layer one-dimensional convolutional neural network (1D-CNN) and two-layer attention- based bidirectional long short-term memory (Bi-LSTM) network to learn representations from temporally sampled signals. The second stream extracts latent representations from the PPG time-frequency spectrogram using a five-layer CNN. The outputs from both streams are fed into a fusion layer for the outcome. Visualization of the attention weights learned demonstrates the effectiveness of the attention mechanism against noise. The experimental results show that the TSHNN outperforms all the competitive baseline approaches and with 98.09% accuracy, achieves state-of-the-art performance.Keywords: PPG wearables, atrial fibrillation, feature fusion, attention mechanism, hyber network
Procedia PDF Downloads 1216076 Optimization of Assay Parameters of L-Glutaminase from Bacillus cereus MTCC1305 Using Artificial Neural Network
Authors: P. Singh, R. M. Banik
Abstract:
Artificial neural network (ANN) was employed to optimize assay parameters viz., time, temperature, pH of reaction mixture, enzyme volume and substrate concentration of L-glutaminase from Bacillus cereus MTCC 1305. ANN model showed high value of coefficient of determination (0.9999), low value of root mean square error (0.6697) and low value of absolute average deviation. A multilayer perceptron neural network trained with an error back-propagation algorithm was incorporated for developing a predictive model and its topology was obtained as 5-3-1 after applying Levenberg Marquardt (LM) training algorithm. The predicted activity of L-glutaminase was obtained as 633.7349 U/l by considering optimum assay parameters, viz., pH of reaction mixture (7.5), reaction time (20 minutes), incubation temperature (35˚C), substrate concentration (40mM), and enzyme volume (0.5ml). The predicted data was verified by running experiment at simulated optimum assay condition and activity was obtained as 634.00 U/l. The application of ANN model for optimization of assay conditions improved the activity of L-glutaminase by 1.499 fold.Keywords: Bacillus cereus, L-glutaminase, assay parameters, artificial neural network
Procedia PDF Downloads 4296075 Exploration of Classic Models of Precipitation in Iran: A Case Study of Sistan and Baluchestan Province
Authors: Mohammad Borhani, Ahmad Jamshidzaei, Mehdi Koohsari
Abstract:
The study of climate has captivated human interest throughout history. In response to this fascination, individuals historically organized their daily activities in alignment with prevailing climatic conditions and seasonal variations. Understanding the elements and specific climatic parameters of each region, such as precipitation, which directly impacts human life, is essential because, in recent years, there has been a significant increase in heavy rainfall in various parts of the world attributed to the effects of climate change. Climate prediction models suggest a future scenario characterized by an increase in severe precipitation events and related floods on a global scale. This is a result of human-induced greenhouse gas emissions causing changes in the natural precipitation patterns. The Intergovernmental Panel on Climate Change reported global warming in 2001. The average global temperature has shown an increasing trend since 1861. In the 20th century, this increase has been between (0/2 ± 0/6) °C. The present study focused on examining the trend of monthly, seasonal, and annual precipitation in Sistan and Baluchestan provinces. The study employed data obtained from 13 precipitation measurement stations managed by the Iran Water Resources Management Company, encompassing daily precipitation records spanning the period from 1997 to 2016. The results indicated that the total monthly precipitation at the studied stations in Sistan and Baluchestan province follows a sinusoidal trend. The highest intense precipitation was observed in January, February, and March, while the lowest occurred in September, October, and then November. The investigation of the trend of seasonal precipitation in this province showed that precipitation follows an upward trend in the autumn season, reaching its peak in winter, and then shows a decreasing trend in spring and summer. Also, the examination of average precipitation indicated that the highest yearly precipitation occurred in 1997 and then in 2004, while the lowest annual precipitation took place between 1999 and 2001. The analysis of the annual precipitation trend demonstrates a decrease in precipitation from 1997 to 2016 in Sistan and Baluchestan province.Keywords: climate change, extreme precipitation, greenhouse gas, trend analysis
Procedia PDF Downloads 676074 Design and Optimization of Open Loop Supply Chain Distribution Network Using Hybrid K-Means Cluster Based Heuristic Algorithm
Authors: P. Suresh, K. Gunasekaran, R. Thanigaivelan
Abstract:
Radio frequency identification (RFID) technology has been attracting considerable attention with the expectation of improved supply chain visibility for consumer goods, apparel, and pharmaceutical manufacturers, as well as retailers and government procurement agencies. It is also expected to improve the consumer shopping experience by making it more likely that the products they want to purchase are available. Recent announcements from some key retailers have brought interest in RFID to the forefront. A modified K- Means Cluster based Heuristic approach, Hybrid Genetic Algorithm (GA) - Simulated Annealing (SA) approach, Hybrid K-Means Cluster based Heuristic-GA and Hybrid K-Means Cluster based Heuristic-GA-SA for Open Loop Supply Chain Network problem are proposed. The study incorporated uniform crossover operator and combined crossover operator in GAs for solving open loop supply chain distribution network problem. The algorithms are tested on 50 randomly generated data set and compared with each other. The results of the numerical experiments show that the Hybrid K-means cluster based heuristic-GA-SA, when tested on 50 randomly generated data set, shows superior performance to the other methods for solving the open loop supply chain distribution network problem.Keywords: RFID, supply chain distribution network, open loop supply chain, genetic algorithm, simulated annealing
Procedia PDF Downloads 165