Search results for: dynamic capability approach
5317 Effect of Improved Potato Varieties Adoption on Farmers' Income in Ethiopia: An Endogenous Switching Approach
Authors: Tsion Tekalegn
Abstract:
In Ethiopia, improved potato varieties are essential for food security, but smallholders' adoption of improved technologies limits their productivity. For this study, data was collected based on a structured questionnaire randomly collected from the 329 sample farmers (158 adopters and 171 non-adopters). We estimate the adoption of improved variety and causal impact using Endogenous Switching Regression (ESR), and a propensity Score Matching (PSM) was used to test the treatment effect. This helps us estimate the effect of improved potato variety on smallholder farmer income by controlling for the role of the selection bias problem stemming from both observed and unobserved heterogeneity. According to the result, key determinants influencing adoption include livestock ownership, access to extension services, and farming experience, which positively affect the likelihood of adopting improved varieties. In contrast, access to irrigation negatively correlates with adoption, suggesting that farmers with reliable water sources perceive less need for improved varieties. The ESR model result confirmed that improved potato variety adoption increases the smallholder farmer income with an estimated gain of 8.77%. Thus, to improve the potato variety of the farming households, the government should give due emphasis to potato production, and the extension services need to be strengthened.Keywords: adoption, improved potato varieties, endogenous switching regression, Ethiopia
Procedia PDF Downloads 325316 Developing Leadership and Teamwork Skills of Pre-Service Teachers through Learning Camp
Authors: Sirimanee Banjong
Abstract:
This study aimed to 1) develop pre-service teachers’ leadership skills through camp-based learning, and 2) develop pre-service teachers’ teamwork skills through camp-based learning. An applied research methodology was used. The target group was derived from a purposive selection. It involved 32 fourth-year students in Early Childhood Education Program enrolling in a course entitled Seminar in Early Childhood Education provided during the second semester of the academic year 2013. The treatment was camp-based learning activities which applied a PDCA process including four stages: 1) plan, 2) do, 3) check, and 4) act. Research instruments were a learning camp program, a camp-based learning management plan, a 5-level assessment form for leadership skills and a 5-level assessment form for assessing teamwork skills. Data were analyzed using descriptive statistics. Results were: 1) pre-service teachers’ leadership skills yielded the before treatment average score at ¯("x" )=3.4, S.D.= 0.62 and the after-treatment average score at ¯("x" ) 4.29, S.D.=0.66 pre-service teachers’ teamwork skills yielded the before-treatment average score at ¯("x" )=3.31, S.D.= 0.60 and the after-treatment average score at ¯("x" )=4.42, S.D.= 0.66. Both differences were statistically significant at the .05 level. Thus, the pre-service teachers’ leadership and teamwork skills were significantly improved through the camp-based learning approach.Keywords: learning camp, leadership skills, teamwork skills, pre-service teachers
Procedia PDF Downloads 3615315 Beyond the Dust: Workers' Perspectives on Enhancing Silica Exposure Control in Tunnel Construction
Authors: Frederick Anlimah, Vinod Gopaldasani, Catherine MacPhail, Brian Davies
Abstract:
The construction industry, particularly tunnel construction, exposes workers to respirable crystalline silica (RCS), which can cause incurable illnesses such as silicosis and lung cancer. Despite various control measures, exposures remain inadequately controlled. This research aimed to examine what workers on a tunnelling project in Australia think should be done to reduce exposure to dust to protect them from RCS exposure. A qualitative research approach consisting of interviews and focus group discussions was employed for this research. The preliminary analysis of the data reveals a diverse array of solutions proposed to address the different sociotechnical factors that present challenges for effectively reducing dust exposure. Solutions are proposed to address challenges such as cost, time pressure, low-risk perception, inadequate awareness, inadequate enforcement and compliance with personal protective equipment. The findings highlight the need to make dust control a level playing field for all contractors during the bidding process, with more collaboration and enforcement after the signing of contracts. The research highlights that although improvements have been made in the past years regarding dust controls, many opportunities exist to reduce worker exposure to RCS.Keywords: tunnel, respirable crystalline silica, RCS, dust exposure, personal protective equipment, worker perspectives
Procedia PDF Downloads 805314 Simultaneous Targeting of MYD88 and Nur77 as an Effective Approach for the Treatment of Inflammatory Diseases
Authors: Uzma Saqib, Mirza S. Baig
Abstract:
Myeloid differentiation primary response protein 88 (MYD88) has long been considered a central player in the inflammatory pathway. Recent studies clearly suggest that it is an important therapeutic target in inflammation. On the other hand, a recent study on the interaction between the orphan nuclear receptor (Nur77) and p38α, leading to increased lipopolysaccharide-induced hyperinflammatory response, suggests this binary complex as a therapeutic target. In this study, we have designed inhibitors that can inhibit both MYD88 and Nur77 at the same time. Since both MYD88 and Nur77 are an integral part of the pathways involving lipopolysaccharide-induced activation of NF-κB-mediated inflammation, we tried to target both proteins with the same library in order to retrieve compounds having dual inhibitory properties. To perform this, we developed a homodimeric model of MYD88 and, along with the crystal structure of Nur77, screened a virtual library of compounds from the traditional Chinese medicine database containing ~61,000 compounds. We analyzed the resulting hits for their efficacy for dual binding and probed them for developing a common pharmacophore model that could be used as a prototype to screen compound libraries as well as to guide combinatorial library design to search for ideal dual-target inhibitors. Thus, our study explores the identification of novel leads having dual inhibiting effects due to binding to both MYD88 and Nur77 targets.Keywords: drug design, Nur77, MYD88, inflammation
Procedia PDF Downloads 3055313 Unveiling Coaching Style of PE Teachers: A Convergent Parallel Approach
Authors: Arazan Jane V., Badiang, Ronesito Jr. R., Clavesillas Cristine Joy H., Belleza Saramie S.
Abstract:
This study examined the coaching style among the PE Teachers in terms of Autonomy, Supportive style, and Controlling Style. On the other hand, gives opportunities to an athlete to be independent, task-oriented, and acknowledge their feelings and perspective of each individual. A controlling coaching style is also portrayed by the rises and falls over an athlete's training development; when this variance is identified, it might harm training. The selection of the respondents of the study will use a random sample of High School PE teachers of the Division of Davao del Norte with a total of 78 High School PE teachers, which can be broken down into 70 High School PE Teachers for Quantitative data for the survey questionnaire and 8 PE Teachers for Qualitative data (IDI). In the quantitative phase, a set of survey questionnaires will be used to gather data from the participants—the extent of the Implementation Questionnaire. The tool will be a researcher-made questionnaire based on the Coaching Styles of selected High School PE teachers of Davao Del Norte. In the qualitative phase, an interview guide questionnaire will be used. Focus group discussions will be conducted to determine themes and patterns or participants' experiences and insights. The researchers conclude that the degree of coaching style among PE Teachers from the Division of Davao del Norte is high, as seen by the findings of this study, and that coaching style among these teachers is highly noticeable.Keywords: supportive autonomy style, controlling style, live experiences, exemplified
Procedia PDF Downloads 965312 Scalable CI/CD and Scalable Automation: Assisting in Optimizing Productivity and Fostering Delivery Expansion
Authors: Solanki Ravirajsinh, Kudo Kuniaki, Sharma Ankit, Devi Sherine, Kuboshima Misaki, Tachi Shuntaro
Abstract:
In software development life cycles, the absence of scalable CI/CD significantly impacts organizations, leading to increased overall maintenance costs, prolonged release delivery times, heightened manual efforts, and difficulties in meeting tight deadlines. Implementing CI/CD with standard serverless technologies using cloud services overcomes all the above-mentioned issues and helps organizations improve efficiency and faster delivery without the need to manage server maintenance and capacity. By integrating scalable CI/CD with scalable automation testing, productivity, quality, and agility are enhanced while reducing the need for repetitive work and manual efforts. Implementing scalable CI/CD for development using cloud services like ECS (Container Management Service), AWS Fargate, ECR (to store Docker images with all dependencies), Serverless Computing (serverless virtual machines), Cloud Log (for monitoring errors and logs), Security Groups (for inside/outside access to the application), Docker Containerization (Docker-based images and container techniques), Jenkins (CI/CD build management tool), and code management tools (GitHub, Bitbucket, AWS CodeCommit) can efficiently handle the demands of diverse development environments and are capable of accommodating dynamic workloads, increasing efficiency for faster delivery with good quality. CI/CD pipelines encourage collaboration among development, operations, and quality assurance teams by providing a centralized platform for automated testing, deployment, and monitoring. Scalable CI/CD streamlines the development process by automatically fetching the latest code from the repository every time the process starts, building the application based on the branches, testing the application using a scalable automation testing framework, and deploying the builds. Developers can focus more on writing code and less on managing infrastructure as it scales based on the need. Serverless CI/CD eliminates the need to manage and maintain traditional CI/CD infrastructure, such as servers and build agents, reducing operational overhead and allowing teams to allocate resources more efficiently. Scalable CI/CD adjusts the application's scale according to usage, thereby alleviating concerns about scalability, maintenance costs, and resource needs. Creating scalable automation testing using cloud services (ECR, ECS Fargate, Docker, EFS, Serverless Computing) helps organizations run more than 500 test cases in parallel, aiding in the detection of race conditions, performance issues, and reducing execution time. Scalable CI/CD offers flexibility, dynamically adjusting to varying workloads and demands, allowing teams to scale resources up or down as needed. It optimizes costs by only paying for the resources as they are used and increases reliability. Scalable CI/CD pipelines employ automated testing and validation processes to detect and prevent errors early in the development cycle.Keywords: achieve parallel execution, cloud services, scalable automation testing, scalable continuous integration and deployment
Procedia PDF Downloads 435311 Use of Carica papaya as a Bio-Sorbent for Removal of Heavy Metals in Wastewater
Authors: W. E. Igwegbe, B. C. Okoro, J. C. Osuagwu
Abstract:
The study was aimed at assessing the effectiveness of reducing the concentrations of heavy metals in waste water using Pawpaw (Carica papaya) wood as a bio-sorbent. The heavy metals considered include; zinc, cadmium, lead, copper, iron, selenium, nickel, and manganese. The physiochemical properties of carica papaya stem were studied. The experimental sample was obtained from a felled trunk of matured pawpaw tree. Waste water for experimental use was prepared by dissolving soil samples collected from a dump site at Owerri, Imo state in water. The concentration of each metal remaining in solution as residual metal after bio-sorption was determined using Atomic absorption Spectrometer. The effects of ph, contact time and initial heavy metal concentration were studied in a batch reactor. The results of Spectrometer test showed that there were different functional groups detected in the carica papaya stem biomass. Optimum bio-sorption occurred at pH 5.9 with 5g/100ml solution of bio-sorbent. The results of the study showed that the treated wastewater is fit for irrigation purpose based on Canada wastewater quality guideline for the protection of Agricultural standard. This approach thus provides a cost effective and environmentally friendly option for treating waste water.Keywords: biomass, bio-sorption, Carica papaya, heavy metal, wastewater
Procedia PDF Downloads 3715310 Detecting Music Enjoyment Level Using Electroencephalogram Signals and Machine Learning Techniques
Authors: Raymond Feng, Shadi Ghiasi
Abstract:
An electroencephalogram (EEG) is a non-invasive technique that records electrical activity in the brain using scalp electrodes. Researchers have studied the use of EEG to detect emotions and moods by collecting signals from participants and analyzing how those signals correlate with their activities. In this study, researchers investigated the relationship between EEG signals and music enjoyment. Participants listened to music while data was collected. During the signal-processing phase, power spectral densities (PSDs) were computed from the signals, and dominant brainwave frequencies were extracted from the PSDs to form a comprehensive feature matrix. A machine learning approach was then taken to find correlations between the processed data and the music enjoyment level indicated by the participants. To improve on previous research, multiple machine learning models were employed, including K-Nearest Neighbors Classifier, Support Vector Classifier, and Decision Tree Classifier. Hyperparameters were used to fine-tune each model to further increase its performance. The experiments showed that a strong correlation exists, with the Decision Tree Classifier with hyperparameters yielding 85% accuracy. This study proves that EEG is a reliable means to detect music enjoyment and has future applications, including personalized music recommendation, mood adjustment, and mental health therapy.Keywords: EEG, electroencephalogram, machine learning, mood, music enjoyment, physiological signals
Procedia PDF Downloads 615309 Finite Element Modelling and Optimization of Post-Machining Distortion for Large Aerospace Monolithic Components
Authors: Bin Shi, Mouhab Meshreki, Grégoire Bazin, Helmi Attia
Abstract:
Large monolithic components are widely used in the aerospace industry in order to reduce airplane weight. Milling is an important operation in manufacturing of the monolithic parts. More than 90% of the material could be removed in the milling operation to obtain the final shape. This results in low rigidity and post-machining distortion. The post-machining distortion is the deviation of the final shape from the original design after releasing the clamps. It is a major challenge in machining of the monolithic parts, which costs billions of economic losses every year. Three sources are directly related to the part distortion, including initial residual stresses (RS) generated from previous manufacturing processes, machining-induced RS and thermal load generated during machining. A finite element model was developed to simulate a milling process and predicate the post-machining distortion. In this study, a rolled-aluminum plate AA7175 with a thickness of 60 mm was used for the raw block. The initial residual stress distribution in the block was measured using a layer-removal method. A stress-mapping technique was developed to implement the initial stress distribution into the part. It is demonstrated that this technique significantly accelerates the simulation time. Machining-induced residual stresses on the machined surface were measured using MTS3000 hole-drilling strain-gauge system. The measured RS was applied on the machined surface of a plate to predict the distortion. The predicted distortion was compared with experimental results. It is found that the effect of the machining-induced residual stress on the distortion of a thick plate is very limited. The distortion can be ignored if the wall thickness is larger than a certain value. The RS generated from the thermal load during machining is another important factor causing part distortion. Very limited number of research on this topic was reported in literature. A coupled thermo-mechanical FE model was developed to evaluate the thermal effect on the plastic deformation of a plate. A moving heat source with a feed rate was used to simulate the dynamic cutting heat in a milling process. When the heat source passed the part surface, a small layer was removed to simulate the cutting operation. The results show that for different feed rates and plate thicknesses, the plastic deformation/distortion occurs only if the temperature exceeds a critical level. It was found that the initial residual stress has a major contribution to the part distortion. The machining-induced stress has limited influence on the distortion for thin-wall structure when the wall thickness is larger than a certain value. The thermal load can also generate part distortion when the cutting temperature is above a critical level. The developed numerical model was employed to predict the distortion of a frame part with complex structures. The predictions were compared with the experimental measurements, showing both are in good agreement. Through optimization of the position of the part inside the raw plate using the developed numerical models, the part distortion can be significantly reduced by 50%.Keywords: modelling, monolithic parts, optimization, post-machining distortion, residual stresses
Procedia PDF Downloads 545308 An Approach to Integrated Water Resources Management, a Plan for Action to Climate Change in India
Authors: H. K. Ramaraju
Abstract:
World is in deep trouble and deeper denial. Worse, the denial is now entirely on the side of action. It is well accepted that climate change is a reality. Scientists say we need to cap temperature increases at 2°C to avoid catastrophe, which means capping emissions at 450 ppm .We know global average temperatures have already increased by 0.8°C and there is enough green house gas in the atmosphere to lead to another 0.8°C increase. There is still a window of opportunity, a tiny one, to tackle the crisis. But where is the action? In the 1990’s, when the world did even not understand, let alone accept, the crises, it was more willing to move to tackle climate change. Today we are in reverse in gear. The rich world has realized it is easy to talk big, but tough to take steps to actually reduce emissions. The agreement was that these countries would reduce so that the developing World could increase. Instead, between 1990 and 2006, their carbon dioxide emissions increased by a whopping 14.5 percent, even green countries of Europe are unable to match words with action. Stop deforestation and take a 20 percent advantage in our carbon balance sheet, with out doing anything at home called REDD (reducing emissions from deforestation and forest degradation) and push for carbon capture and storage (CCS) technologies. There are warning signs elsewhere and they need to be read correctly and acted up on , if not the cases like flood –act of nature or manmade disaster. The full length paper orient in proper understanding of the issues and identifying the most appropriate course of action.Keywords: catastrophe, deforestation, emissions, waste water
Procedia PDF Downloads 2875307 Mining the Proteome of Fusobacterium nucleatum for Potential Therapeutics Discovery
Authors: Abdul Musaweer Habib, Habibul Hasan Mazumder, Saiful Islam, Sohel Sikder, Omar Faruk Sikder
Abstract:
The plethora of genome sequence information of bacteria in recent times has ushered in many novel strategies for antibacterial drug discovery and facilitated medical science to take up the challenge of the increasing resistance of pathogenic bacteria to current antibiotics. In this study, we adopted subtractive genomics approach to analyze the whole genome sequence of the Fusobacterium nucleatum, a human oral pathogen having association with colorectal cancer. Our study divulged 1499 proteins of Fusobacterium nucleatum, which has no homolog in human genome. These proteins were subjected to screening further by using the Database of Essential Genes (DEG) that resulted in the identification of 32 vitally important proteins for the bacterium. Subsequent analysis of the identified pivotal proteins, using the KEGG Automated Annotation Server (KAAS) resulted in sorting 3 key enzymes of F. nucleatum that may be good candidates as potential drug targets, since they are unique for the bacterium and absent in humans. In addition, we have demonstrated the 3-D structure of these three proteins. Finally, determination of ligand binding sites of the key proteins as well as screening for functional inhibitors that best fitted with the ligands sites were conducted to discover effective novel therapeutic compounds against Fusobacterium nucleatum.Keywords: colorectal cancer, drug target, Fusobacterium nucleatum, homology modeling, ligands
Procedia PDF Downloads 3885306 Assessment of Academic Knowledge Transfer Channels in Field of Environment
Authors: Jagul Huma Lashari, Arabella Bhutto
Abstract:
Last few years have shown increased an interest of researchers in knowledge and technology transfer. However, facts show fewer types of knowledge transfer practices in the developing countries. This article focuses on assessment transfer channels of academic research produced by highly qualified academicians working in universities in Sindh offering degrees in field of an Environment in Sindh Pakistan. The academic field has been chosen because in field of the environment there is alarming need of research into practice for sustainable development. Using case study approach; in this research qualitative interviews have been conducted from PhD faculty members working in the universities offering degrees in field of environment. Obtained data is analyzed using descriptive statistics and chi-square test with the help of statistical packages for social sciences (SPSS). Research explored 31 channels of academic knowledge transfer from detailed review of literature and exploratory interviews with participants. Identified knowledge transfer channels have been grouped together in 6 groups of knowledge transfer channels; As knowledge transfer through publications, networking, mobility of researchers, joint research, intellectual property and co-operations. Results revealed that academic knowledge have been transferred through publications, networking, and co-operation. However, less number of academic knowledge has been transferred through groups of knowledge transfer channels such as Intellectual Property and joint research.Keywords: environment, research knowledge, transfer channels, universities
Procedia PDF Downloads 3365305 Metropolis-Hastings Sampling Approach for High Dimensional Testing Methods of Autonomous Vehicles
Authors: Nacer Eddine Chelbi, Ayet Bagane, Annie Saleh, Claude Sauvageau, Denis Gingras
Abstract:
As recently stated by National Highway Traffic Safety Administration (NHTSA), to demonstrate the expected performance of a highly automated vehicles system, test approaches should include a combination of simulation, test track, and on-road testing. In this paper, we propose a new validation method for autonomous vehicles involving on-road tests (Field Operational Tests), test track (Test Matrix) and simulation (Worst Case Scenarios). We concentrate our discussion on the simulation aspects, in particular, we extend recent work based on Importance Sampling by using a Metropolis-Hasting algorithm (MHS) to sample collected data from the Safety Pilot Model Deployment (SPMD) in lane-change scenarios. Our proposed MH sampling method will be compared to the Importance Sampling method, which does not perform well in high-dimensional problems. The importance of this study is to obtain a sampler that could be applied to high dimensional simulation problems in order to reduce and optimize the number of test scenarios that are necessary for validation and certification of autonomous vehicles.Keywords: automated driving, autonomous emergency braking (AEB), autonomous vehicles, certification, evaluation, importance sampling, metropolis-hastings sampling, tests
Procedia PDF Downloads 2895304 Automated Testing to Detect Instance Data Loss in Android Applications
Authors: Anusha Konduru, Zhiyong Shan, Preethi Santhanam, Vinod Namboodiri, Rajiv Bagai
Abstract:
Mobile applications are increasing in a significant amount, each to address the requirements of many users. However, the quick developments and enhancements are resulting in many underlying defects. Android apps create and handle a large variety of 'instance' data that has to persist across runs, such as the current navigation route, workout results, antivirus settings, or game state. Due to the nature of Android, an app can be paused, sent into the background, or killed at any time. If the instance data is not saved and restored between runs, in addition to data loss, partially-saved or corrupted data can crash the app upon resume or restart. However, it is difficult for the programmer to manually test this issue for all the activities. This results in the issue of data loss that the data entered by the user are not saved when there is any interruption. This issue can degrade user experience because the user needs to reenter the information each time there is an interruption. Automated testing to detect such data loss is important to improve the user experience. This research proposes a tool, DroidDL, a data loss detector for Android, which detects the instance data loss from a given android application. We have tested 395 applications and found 12 applications with the issue of data loss. This approach is proved highly accurate and reliable to find the apps with this defect, which can be used by android developers to avoid such errors.Keywords: Android, automated testing, activity, data loss
Procedia PDF Downloads 2375303 A Systemic Maturity Model
Authors: Emir H. Pernet, Jeimy J. Cano
Abstract:
Maturity models, used descriptively to explain changes in reality or normatively to guide managers to make interventions to make organizations more effective and efficient, are based on the principles of statistical quality control promulgated by Shewhart in the years 30, and on the principles of PDCA continuous improvement (Plan, Do, Check, Act) developed by Deming and Juran. Some frameworks developed over the concept of maturity models includes COBIT, CMM, and ITIL. This paper presents some limitations of traditional maturity models, most of them based on points of reflection and analysis done by some authors. Almost all limitations are related to the mechanistic and reductionist approach of the principles over those models are built. As Systems Theory helps the understanding of the dynamics of organizations and organizational change, the development of a systemic maturity model can help to overcome some of those limitations. This document proposes a systemic maturity model, based on a systemic conceptualization of organizations, focused on the study of the functioning of the parties, the relationships among them, and their behavior as a whole. The concept of maturity from the system theory perspective is conceptually defined as an emergent property of the organization, which arises from as a result of the degree of alignment and integration of their processes. This concept is operationalized through a systemic function that measures the maturity of an organization, and finally validated by the measuring of maturity in organizations. For its operationalization and validation, the model was applied to measure the maturity of organizational Governance, Risk and Compliance (GRC) processes.Keywords: GRC, maturity model, systems theory, viable system model
Procedia PDF Downloads 3125302 English Pronunciation Materials on TikTok
Authors: Sebastian Leal-Arenas
Abstract:
TikTok’s influence on contemporary society is undeniable. The impact of the mobile app transcends entertainment, as shown by the growing presence of specialized accounts dedicated to providing educational content, particularly as it pertains to language learning. However, the prevailing trend on the platform is vocabulary and grammar acquisition, neglecting a critical component: pronunciation. This study examines English pronunciation materials available on TikTok by taking a comprehensive approach that incorporates established assessment tools, such as the Learning Object Review Instrument and the Framework for Language Learning App Evaluation. Furthermore, novel evaluation categories are introduced to provide a more holistic assessment of these educational resources. 60 English pronunciation videos were part of the analysis. The findings reveal that these audio-visual materials present clear audio bolstered by high-quality video content and automatically generated closed captions. These three components enhance the comprehensibility of the input, making these concise videos valuable assets for language learners. Nevertheless, certain deficiencies are observed, such as the lack of emphasis on specific segments and their relationship with articulators. Improvements and refinements are discussed, as well as their potential utility within the language classroom. This study contributes to the ongoing investigation of multimedia materials used for language teaching and emphasizes the need to adapt pronunciation instruction methods to today’s technology.Keywords: pronunciation, segments, teaching materials, technology
Procedia PDF Downloads 865301 Utilization of Online Risk Mapping Techniques versus Desktop Geospatial Tools in Making Multi-Hazard Risk Maps for Italy
Authors: Seyed Vahid Kamal Alavi
Abstract:
Italy has experienced a notable quantity and impact of disasters due to natural hazards and technological accidents caused by diverse risk sources on its physical, technological, and human/sociological infrastructures during past decade. This study discusses the frequency and impacts of the most three physical devastating natural hazards in Italy for the period 2000–2013. The approach examines the reliability of a range of open source WebGIS techniques versus a proposed multi-hazard risk management methodology. Spatial and attribute data which include USGS publically available hazard data and thirteen years Munich RE recorded data for Italy with different severities have been processed, visualized in a GIS (Geographic Information System) framework. Comparison of results from the study showed that the multi-hazard risk maps generated using open source techniques do not provide a reliable system to analyze the infrastructures losses in respect to national risk sources while they can be adopted for general international risk management purposes. Additionally, this study establishes the possibility to critically examine and calibrate different integrated techniques in evaluating what better protection measures can be taken in an area.Keywords: multi-hazard risk mapping, risk management, GIS, Italy
Procedia PDF Downloads 3715300 A Data-Mining Model for Protection of FACTS-Based Transmission Line
Authors: Ashok Kalagura
Abstract:
This paper presents a data-mining model for fault-zone identification of flexible AC transmission systems (FACTS)-based transmission line including a thyristor-controlled series compensator (TCSC) and unified power-flow controller (UPFC), using ensemble decision trees. Given the randomness in the ensemble of decision trees stacked inside the random forests model, it provides an effective decision on the fault-zone identification. Half-cycle post-fault current and voltage samples from the fault inception are used as an input vector against target output ‘1’ for the fault after TCSC/UPFC and ‘1’ for the fault before TCSC/UPFC for fault-zone identification. The algorithm is tested on simulated fault data with wide variations in operating parameters of the power system network, including noisy environment providing a reliability measure of 99% with faster response time (3/4th cycle from fault inception). The results of the presented approach using the RF model indicate the reliable identification of the fault zone in FACTS-based transmission lines.Keywords: distance relaying, fault-zone identification, random forests, RFs, support vector machine, SVM, thyristor-controlled series compensator, TCSC, unified power-flow controller, UPFC
Procedia PDF Downloads 4235299 Towards Developing Social Assessment Tool for Siwan Ecolodge Case Study: Babenshal Ecolodge
Authors: Amr Ali Bayoumi, Ola Ali Bayoumi
Abstract:
The aim of this research is enhancing one of the main aspects (Social Aspect) for developing an eco-lodge in Siwa oasis in Egyptian Western Desert. According to credible weightings built in this research through formal and informal questionnaires, the researcher detected one of the highest credible aspects, 'Social Aspect': through which it carries the maximum priorities among the total environmental and economic categories. From here, the researcher suggested the usage of ethnographic design approach and Space Syntax as observational and computational methods for developing future Eco-lodge in Siwa Oasis. These methods are used to study social spaces of Babenshal eco-lodge as a case study. This hybrid method is considered as a beginning of building Social Assessment Tool (SAT) for ecological tourism buildings located in Siwa as a case of Egyptian Western desert community. Towards livable social spaces, the proposed SAT was planned to be the optimum measurable weightings for social aspect's priorities of future Siwan eco-lodge(s). Finally, recommendations are proposed for enhancing SAT to be more correlated with sensitive desert biome (Siwa Oasis) to be adapted with the continuous social and environmental changes of the oasis.Keywords: ecolodge, social aspect, space syntax, Siwa Oasis
Procedia PDF Downloads 1285298 Economic Viability of Using Guar Gum as a Viscofier in Water Based Drilling Fluids
Authors: Devesh Motwani, Amey Kashyap
Abstract:
Interest in cost effective drilling has increased substantially in the past years. Economics associated with drilling fluids is needed to be considered seriously for lesser cost per foot in planning and drilling of a wellbore and the various environmental concerns imposed by international communities related with the constituents of the drilling fluid. Viscofier such as Guar Gum is a high molecular weight polysaccharide from Guar plants, is used to increase viscosity in water-based and brine-based drilling fluids thus enabling more efficient cleaning of the bore. Other applications of this Viscofier are to reduce fluid loss by giving a better colloidal solution, decrease fluid friction and so minimising power requirements and used in hydraulic fracturing to increase the recovery of oil and gas. Guar gum is also used as a surfactant, synthetic polymer and defoamer. This paper presents experimental results to verifying the properties of guar gum as a viscofier and filtrate retainer as well as observing the impact of different quantities of guar gum and Carboxymethyl cellulose (CMC) in a standard sample of water based bentonite mud solution. This is in attempt to make a drilling fluid which contains half of the quantity of drilling mud used and yet is equally viscous to the standardised mud sample. Thus we can see that mud economics will be greatly affected by this approach. However guar gum is thermally stable till 60-65°C thus limited to be used in drilling shallow wells and for a wider thermal range, suitable chrome free additives are required.Keywords: economics, guargum, viscofier, CMC, thermal stability
Procedia PDF Downloads 4695297 Quantitative Structure–Activity Relationship Analysis of Some Benzimidazole Derivatives by Linear Multivariate Method
Authors: Strahinja Z. Kovačević, Lidija R. Jevrić, Sanja O. Podunavac Kuzmanović
Abstract:
The relationship between antibacterial activity of eighteen different substituted benzimidazole derivatives and their molecular characteristics was studied using chemometric QSAR (Quantitative Structure–Activity Relationships) approach. QSAR analysis has been carried out on inhibitory activity towards Staphylococcus aureus, by using molecular descriptors, as well as minimal inhibitory activity (MIC). Molecular descriptors were calculated from the optimized structures. Principal component analysis (PCA) followed by hierarchical cluster analysis (HCA) and multiple linear regression (MLR) was performed in order to select molecular descriptors that best describe the antibacterial behavior of the compounds investigated, and to determine the similarities between molecules. The HCA grouped the molecules in separated clusters which have the similar inhibitory activity. PCA showed very similar classification of molecules as the HCA, and displayed which descriptors contribute to that classification. MLR equations, that represent MIC as a function of the in silico molecular descriptors were established. The statistical significance of the estimated models was confirmed by standard statistical measures and cross-validation parameters (SD = 0.0816, F = 46.27, R = 0.9791, R2CV = 0.8266, R2adj = 0.9379, PRESS = 0.1116). These parameters indicate the possibility of application of the established chemometric models in prediction of the antibacterial behaviour of studied derivatives and structurally very similar compounds.Keywords: antibacterial, benzimidazole, molecular descriptors, QSAR
Procedia PDF Downloads 3645296 Influence of Social Norms and Perceived Government Roles on Environmental Consciousness: A Multi-Socio-Economic Approach
Authors: Mona Francesca B. Dela Cruz, Katrina Marie R. Mamaril, Mariah Hannah Kassandra Salazar, Emerald Jay D. Ilac
Abstract:
One key factor that should be considered when determining sustainable solutions to various environmental problems is the potential impact of individual human beings. In order to understand an individual, there is a need to examine cognitive, emotional, dispositional, and behavioral factors which are all indicative of one’s environmental consciousness. This quantitative study explored the moderated mediation between environmental consciousness, socio-economic status, social norms as a mediator, and the perceived role of government as a moderator for 381 Filipinos, aged 25 to 65, in urban and suburban settings. Results showed social norms do not have a mediating effect between socio-economic status and environmental consciousness. This may be influenced by the collectivist culture of the Philippines and the tendency for people to copy behaviors according to the descriptive norm effect. Meanwhile, there exists a moderating effect of the perceived role of government between the relationship of social norms and environmental consciousness which can be explained by the government’s ability to impose social norms that can induce a person to think and act pro-environmentally. Practical applications of this study can be used to tap the ability of the government to strengthen their influence and control over environmental protection and to provide a basis for the development of class-specific environmental solutions that can be done by individuals depending on their socioeconomic status.Keywords: environmental consciousness, role of government, social norms, socio-economic status
Procedia PDF Downloads 1645295 Methodological Aspect of Emergy Accounting in Co-Production Branching Systems
Authors: Keshab Shrestha, Hung-Suck Park
Abstract:
Emergy accounting of the systems networks is guided by a definite rule called ‘emergy algebra’. The systems networks consist of two types of branching. These are the co-product branching and split branching. The emergy accounting procedure for both the branching types is different. According to the emergy algebra, each branch in the co-product branching has different transformity values whereas the split branching has the same transformity value. After the transformity value of each branch is determined, the emergy is calculated by multiplying this with the energy. The aim of this research is to solve the problems in determining the transformity values in the co-product branching through the introduction of a new methodology, the modified physical quantity method. Initially, the existing methodologies for emergy accounting in the co-product branching is discussed and later, the modified physical quantity method is introduced with a case study of the Eucalyptus pulp production. The existing emergy accounting methodologies in the co-product branching has wrong interpretations with incorrect emergy calculations. The modified physical quantity method solves those problems of emergy accounting in the co-product branching systems. The transformity value calculated for each branch is different and also applicable in the emergy calculations. The methodology also strictly follows the emergy algebra rules. This new modified physical quantity methodology is a valid approach in emergy accounting particularly in the multi-production systems networks.Keywords: co-product branching, emergy accounting, emergy algebra, modified physical quantity method, transformity value
Procedia PDF Downloads 2925294 Graph Neural Networks and Rotary Position Embedding for Voice Activity Detection
Authors: YingWei Tan, XueFeng Ding
Abstract:
Attention-based voice activity detection models have gained significant attention in recent years due to their fast training speed and ability to capture a wide contextual range. The inclusion of multi-head style and position embedding in the attention architecture are crucial. Having multiple attention heads allows for differential focus on different parts of the sequence, while position embedding provides guidance for modeling dependencies between elements at various positions in the input sequence. In this work, we propose an approach by considering each head as a node, enabling the application of graph neural networks (GNN) to identify correlations among the different nodes. In addition, we adopt an implementation named rotary position embedding (RoPE), which encodes absolute positional information into the input sequence by a rotation matrix, and naturally incorporates explicit relative position information into a self-attention module. We evaluate the effectiveness of our method on a synthetic dataset, and the results demonstrate its superiority over the baseline CRNN in scenarios with low signal-to-noise ratio and noise, while also exhibiting robustness across different noise types. In summary, our proposed framework effectively combines the strengths of CNN and RNN (LSTM), and further enhances detection performance through the integration of graph neural networks and rotary position embedding.Keywords: voice activity detection, CRNN, graph neural networks, rotary position embedding
Procedia PDF Downloads 715293 A Kernel-Based Method for MicroRNA Precursor Identification
Authors: Bin Liu
Abstract:
MicroRNAs (miRNAs) are small non-coding RNA molecules, functioning in transcriptional and post-transcriptional regulation of gene expression. The discrimination of the real pre-miRNAs from the false ones (such as hairpin sequences with similar stem-loops) is necessary for the understanding of miRNAs’ role in the control of cell life and death. Since both their small size and sequence specificity, it cannot be based on sequence information alone but requires structure information about the miRNA precursor to get satisfactory performance. Kmers are convenient and widely used features for modeling the properties of miRNAs and other biological sequences. However, Kmers suffer from the inherent limitation that if the parameter K is increased to incorporate long range effects, some certain Kmer will appear rarely or even not appear, as a consequence, most Kmers absent and a few present once. Thus, the statistical learning approaches using Kmers as features become susceptible to noisy data once K becomes large. In this study, we proposed a Gapped k-mer approach to overcome the disadvantages of Kmers, and applied this method to the field of miRNA prediction. Combined with the structure status composition, a classifier called imiRNA-GSSC was proposed. We show that compared to the original imiRNA-kmer and alternative approaches. Trained on human miRNA precursors, this predictor can achieve an accuracy of 82.34 for predicting 4022 pre-miRNA precursors from eleven species.Keywords: gapped k-mer, imiRNA-GSSC, microRNA precursor, support vector machine
Procedia PDF Downloads 1615292 A Framework for the Evaluation of Infrastructures’ Serviceability
Authors: Kyonghoon Kim, Wonyoung Park, Taeil Park
Abstract:
In 1994, Korea experienced a national tragedy of Seongsu Bridge collapse. The accident was severe enough to alert governmental officers to the problem of existing management policy for national infrastructures. As a result, government legislated the ‘Guidelines for the safety inspection and test of infrastructure’ which have been utilized as the primary tool to make decision for the maintenance and rehabilitation of infrastructure for last twenty years. Although it is clear that the guideline established a basics how to evaluate and manage the condition of infrastructures in systematic manner, it is equally clear that the guideline needs improvements in order to obtain reasonable investment decisions for budget allocation. Because its inspection and evaluation procedures mainly focused on the structural condition of infrastructures, it was hard to make decision when the infrastructures were in same level of structural condition. In addition, it did not properly reflect various aspects of infrastructures such as performance, public demand, capacity, etc., which were more valuable to public. Regardless of the importance, these factors were commonly neglected in governmental decision-making process, because there factors were somewhat subjective and difficult to quantify in rational manner. Thus, this study proposes a framework to properly evaluate the serviceability indicators using AHP and Fuzzy approach. The framework is expected to assist governmental agency in establishing effective investment strategies for budget planning.Keywords: infrastructure, evaluation, serviceability, fuzzy
Procedia PDF Downloads 2865291 A Tool to Measure Efficiency and Trust Towards eXplainable Artificial Intelligence in Conflict Detection Tasks
Authors: Raphael Tuor, Denis Lalanne
Abstract:
The ATM research community is missing suitable tools to design, test, and validate new UI prototypes. Important stakes underline the implementation of both DSS and XAI methods into current systems. ML-based DSS are gaining in relevance as ATFM becomes increasingly complex. However, these systems only prove useful if a human can understand them, and thus new XAI methods are needed. The human-machine dyad should work as a team and should understand each other. We present xSky, a configurable benchmark tool that allows us to compare different versions of an ATC interface in conflict detection tasks. Our main contributions to the ATC research community are (1) a conflict detection task simulator (xSky) that allows to test the applicability of visual prototypes on scenarios of varying difficulty and outputting relevant operational metrics (2) a theoretical approach to the explanations of AI-driven trajectory predictions. xSky addresses several issues that were identified within available research tools. Researchers can configure the dimensions affecting scenario difficulty with a simple CSV file. Both the content and appearance of the XAI elements can be customized in a few steps. As a proof-of-concept, we implemented an XAI prototype inspired by the maritime field.Keywords: air traffic control, air traffic simulation, conflict detection, explainable artificial intelligence, explainability, human-automation collaboration, human factors, information visualization, interpretability, trajectory prediction
Procedia PDF Downloads 1605290 Real-Time Finger Tracking: Evaluating YOLOv8 and MediaPipe for Enhanced HCI
Authors: Zahra Alipour, Amirreza Moheb Afzali
Abstract:
In the field of human-computer interaction (HCI), hand gestures play a crucial role in facilitating communication by expressing emotions and intentions. The precise tracking of the index finger and the estimation of joint positions are essential for developing effective gesture recognition systems. However, various challenges, such as anatomical variations, occlusions, and environmental influences, hinder optimal functionality. This study investigates the performance of the YOLOv8m model for hand detection using the EgoHands dataset, which comprises diverse hand gesture images captured in various environments. Over three training processes, the model demonstrated significant improvements in precision (from 88.8% to 96.1%) and recall (from 83.5% to 93.5%), achieving a mean average precision (mAP) of 97.3% at an IoU threshold of 0.7. We also compared YOLOv8m with MediaPipe and an integrated YOLOv8 + MediaPipe approach. The combined method outperformed the individual models, achieving an accuracy of 99% and a recall of 99%. These findings underscore the benefits of model integration in enhancing gesture recognition accuracy and localization for real-time applications. The results suggest promising avenues for future research in HCI, particularly in augmented reality and assistive technologies, where improved gesture recognition can significantly enhance user experience.Keywords: YOLOv8, mediapipe, finger tracking, joint estimation, human-computer interaction (HCI)
Procedia PDF Downloads 55289 Examining Ethiopian Banking Industry in Relation to Factors Affecting Profitability: From 2008 to 2012
Authors: Zelalem Zerihun
Abstract:
In this study, attempts were made to assess the bank-specific, industry-specific, and macro-economic factors affecting bank profitability. Data were collected from ten commercial banks in Ethiopia, covering the period of 2008-2012. A mixed method research approach was adopted for this research. Documentary analysis and in-depth interview were also used to substantiate the data. The study found out that capital strength, income diversification, bank size and gross domestic product are statistically significant and they have a positive relationship with banks’ profitability. However, operational efficiency and asset quality have a negative relationship with banks’ profitability. The relationship for liquidity risk, concentration and inflation were found to be statistically insignificant. The study revealed that focusing and reengineering the banks in light of the key internal drivers could enhance the profitability as well as the performance of the commercial banks in Ethiopia. In addition to this, the study suggests that banks in Ethiopia should not only be concerned about internal structures but also they must consider both the internal environment and the macro-economic environment in designing strategies to improve their profit or their performance.Keywords: Ethiopian banking industry, macro-economic factors, documentary analysis, capital strength, income diversification
Procedia PDF Downloads 3415288 Data-Driven Insights Into Juvenile Recidivism: Leveraging Machine Learning for Rehabilitation Strategies
Authors: Saiakhil Chilaka
Abstract:
Juvenile recidivism presents a significant challenge to the criminal justice system, impacting both the individuals involved and broader societal safety. This study aims to identify the key factors influencing recidivism and successful rehabilitation outcomes by utilizing a dataset of over 25,000 individuals from the NIJ Recidivism Challenge. We employed machine learning techniques, particularly Random Forest Classification, combined with SHAP (SHapley Additive exPlanations) for model interpretability. Our findings indicate that supervision risk score, percent days employed, and education level are critical factors affecting recidivism, with higher levels of supervision, successful employment, and education contributing to lower recidivism rates. Conversely, Gang Affiliation emerged as a significant risk factor for reoffending. The model achieved an accuracy of 68.8%, highlighting its utility in identifying high-risk individuals and informing targeted interventions. These results suggest that a comprehensive approach involving personalized supervision, vocational training, educational support, and anti-gang initiatives can significantly reduce recidivism and enhance rehabilitation outcomes for juveniles, providing critical insights for policymakers and juvenile justice practitioners.Keywords: juvenile, justice system, data analysis, SHAP
Procedia PDF Downloads 21