Search results for: Iranian performance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13244

Search results for: Iranian performance

764 Investigation of the Function of Chemotaxonomy of White Tea on the Regulatory Function of Genes in Pathway of Colon Cancer

Authors: Fereydoon Bondarian, Samira Shaygan

Abstract:

Today, many nutritionists recommend the consumption of plants, fruits, and vegetables to provide the antioxidants needed by the body because the use of plant antioxidants usually causes fewer side effects and better treatment. Natural antioxidants increase the power of plasma antioxidants and reduce the incidence of some diseases, such as cancer. Bad lifestyles and environmental factors play an important role in increasing the incidence of cancer. In this study, different extracts of white teas taken from two types of tea available in Iran (clone 100 and Chinese hybrid) due to the presence of a hydroxyl functional group in their structure to inhibit free radicals and anticancer properties, using 3 aqueous, methanolic and aqueous-methanolic methods were used. The total polyphenolic content was calculated using the Folin-Ciocalcu method, and the percentage of inhibition and trapping of free radicals in each of the extracts was calculated using the DPPH method. With the help of high-performance liquid chromatography, a small amount of each catechin in the tea samples was obtained. Clone 100 white tea was found to be the best sample of tea in terms of all the examined attributes (total polyphenol content, antioxidant properties, and individual amount of each catechin). The results showed that aqueous and aqueous-methanolic extracts of Clone 100 white tea have the highest total polyphenol content with 27.59±0.08 and 36.67±0.54 (equivalent gallic acid per gram dry weight of leaves), respectively. Due to having the highest level of different groups of catechin compounds, these extracts have the highest property of inhibiting and trapping free radicals with 66.61±0.27 and 71.74±0.27% (mg/l) of the extracted sample against ascorbic acid). Using the MTT test, the inhibitory effect of clone 100 white tea extract in inhibiting the growth of HCT-116 colon cancer cells was investigated and the best time and concentration treatments were 500, 150 and 1000 micrograms in 8, 16 and 24 hours, respectively. To investigate gene expression changes, selected genes, including tumorigenic genes, proto-oncogenes, tumor suppressors, and genes involved in apoptosis, were selected and analyzed using the real-time PCR method and in the presence of concentrations obtained for white tea. White tea extract at a concentration of 1000 μg/ml 3 times 16, 8, and 24 hours showed the highest growth inhibition in cancer cells with 53.27, 55.8, and 86.06%. The concentration of 1000 μg/ml aqueous extract of white tea under 24-hour treatment increased the expression of tumor suppressor genes compared to the normal sample.

Keywords: catechin, gene expression, suppressor genes, colon cell line

Procedia PDF Downloads 58
763 Analyzing Bridge Response to Wind Loads and Optimizing Design for Wind Resistance and Stability

Authors: Abdul Haq

Abstract:

The goal of this research is to better understand how wind loads affect bridges and develop strategies for designing bridges that are more stable and resistant to wind. The effect of wind on bridges is essential to their safety and functionality, especially in areas that are prone to high wind speeds or violent wind conditions. The study looks at the aerodynamic forces and vibrations caused by wind and how they affect bridge construction. Part of the research method involves first understanding the underlying ideas influencing wind flow near bridges. Computational fluid dynamics (CFD) simulations are used to model and forecast the aerodynamic behaviour of bridges under different wind conditions. These models incorporate several factors, such as wind directionality, wind speed, turbulence intensity, and the influence of nearby structures or topography. The results provide significant new insights into the loads and pressures that wind places on different bridge elements, such as decks, pylons, and connections. Following the determination of the wind loads, the structural response of bridges is assessed. By simulating their dynamic behavior under wind-induced forces, Finite Element Analysis (FEA) is used to model the bridge's component parts. This work contributes to the understanding of which areas are at risk of experiencing excessive stresses, vibrations, or oscillations due to wind excitations. Because the bridge has inherent modes and frequencies, the study considers both static and dynamic responses. Various strategies are examined to maximize the design of bridges to withstand wind. It is possible to alter the bridge's geometry, add aerodynamic components, add dampers or tuned mass dampers to lessen vibrations, and boost structural rigidity. Through an analysis of several design modifications and their effectiveness, the study aims to offer guidelines and recommendations for wind-resistant bridge design. In addition to the numerical simulations and analyses, there are experimental studies. In order to assess the computational models and validate the practicality of proposed design strategies, scaled bridge models are tested in a wind tunnel. These investigations help to improve numerical models and prediction precision by providing valuable information on wind-induced forces, pressures, and flow patterns. Using a combination of numerical models, actual testing, and long-term performance evaluation, the project aims to offer practical insights and recommendations for building wind-resistant bridges that are secure, long-lasting, and comfortable for users.

Keywords: wind effects, aerodynamic forces, computational fluid dynamics, finite element analysis

Procedia PDF Downloads 66
762 An Analysis of the Oral Communication Strategies Used by Omani Senior American Literature Students at the Tertiary Level: A Case Study at a Public University in Muscat, Oman

Authors: Susanne Shunnaq

Abstract:

During the past decade, an increasing number of higher education institutions in Oman have sought accreditation in an attempt to assure the quality of their programs. Sultan Qaboos University (SQU), the only public university in the country, has also been seeking accreditation. Hence, the university administration has been encouraging departments to evaluate their programs for development purposes. The Department of English, where 100% of the students are learners of English as a foreign language, already produced a self-study report that outlined the strength and weaknesses of the current program. The department came to the realization that due to a changing local and regional job market, transferrable communication skills are high in demand among stakeholders in the public and private sectors. Failure to equip English literature students, for example, with excellent verbal communicative skills in English may have detrimental effects for undergraduate job-seekers who have to compete for jobs in employment sectors with a predominantly English-speaking workforce. Ongoing extensive discussions about restructuring the current literature program by means of partially replacing literature courses with skills courses, hoping to produce higher quality graduates who are equipped with effective communication skills for local and regional markets, have sparked the idea for this research. The researcher, who is an American Literature specialist at SQU, has set out to investigate to what extent senior American literature students have been able to apply transferable communication skills in an advanced literature course. The study also attempts to unearth performance inhibitors and causes for communication breakdown. The primary data source for the study were audio-recordings of 6 in-class peer-group discussions in an advanced contemporary American literature course during the academic year 2016/2017. The significance of this research lies in the rarity of studies focusing on verbal communication skills in Omani higher education literature classrooms at a time when English programs are in the process of being re-visited and revamped both for accreditation purposes and for meeting job-market demands. The results showed a considerable variation in Omani students' verbal communicative abilities and English proficiency levels. The study also raises crucial questions and provides important recommendations for administrators and teachers alike who are in the process of restructuring English programs in the region and in non-English speaking countries worldwide.

Keywords: job-market, literature, Oman, tertiary education, oral communication skills

Procedia PDF Downloads 146
761 Exploring Faculty Attitudes about Grades and Alternative Approaches to Grading: Pilot Study

Authors: Scott Snyder

Abstract:

Grading approaches in higher education have not changed meaningfully in over 100 years. While there is variation in the types of grades assigned across countries, most use approaches based on simple ordinal scales (e.g, letter grades). While grades are generally viewed as an indication of a student's performance, challenges arise regarding the clarity, validity, and reliability of letter grades. Research about grading in higher education has primarily focused on grade inflation, student attitudes toward grading, impacts of grades, and benefits of plus-minus letter grade systems. Little research is available about alternative approaches to grading, varying approaches used by faculty within and across colleges, and faculty attitudes toward grades and alternative approaches to grading. To begin to address these gaps, a survey was conducted of faculty in a sample of departments at three diverse colleges in a southeastern state in the US. The survey focused on faculty experiences with and attitudes toward grading, the degree to which faculty innovate in teaching and grading practices, and faculty interest in alternatives to the point system approach to grading. Responses were received from 104 instructors (21% response rate). The majority reported that teaching accounted for 50% or more of their academic duties. Almost all (92%) of respondents reported using point and percentage systems for their grading. While all respondents agreed that grades should reflect the degree to which objectives were mastered, half indicated that grades should also reflect effort or improvement. Over 60% felt that grades should be predictive of success in subsequent courses or real life applications. Most respondents disagreed that grades should compare students to other students. About 42% worried about their own grade inflation and grade inflation in their college. Only 17% disagreed that grades mean different things based on the instructor while 75% thought it would be good if there was agreement. Less than 50% of respondents felt that grades were directly useful for identifying students who should/should not continue, identify strengths/weaknesses, predict which students will be most successful, or contribute to program monitoring of student progress. Instructors were less willing to modify assessment than they were to modify instruction and curriculum. Most respondents (76%) were interested in learning about alternative approaches to grading (e.g., specifications grading). The factors that were most associated with willingness to adopt a new grading approach were clarity to students and simplicity of adoption of the approach. Follow-up studies are underway to investigate implementations of alternative grading approaches, expand the study to universities and departments not involved in the initial study, examine student attitudes about alternative approaches, and refine the measure of attitude toward adoption of alternative grading practices within the survey. Workshops about challenges of using percentage and point systems for determining grades and workshops regarding alternative approaches to grading are being offered.

Keywords: alternative approaches to grading, grades, higher education, letter grades

Procedia PDF Downloads 96
760 Ethicality of Algorithmic Pricing and Consumers’ Resistance

Authors: Zainab Atia, Hongwei He, Panagiotis Sarantopoulos

Abstract:

Over the past few years, firms have witnessed a massive increase in sophisticated algorithmic deployment, which has become quite pervasive in today’s modern society. With the wide availability of data for retailers, the ability to track consumers using algorithmic pricing has become an integral option in online platforms. As more companies are transforming their businesses and relying more on massive technological advancement, pricing algorithmic systems have brought attention and given rise to its wide adoption, with many accompanying benefits and challenges to be found within its usage. With the overall aim of increasing profits by organizations, algorithmic pricing is becoming a sound option by enabling suppliers to cut costs, allowing better services, improving efficiency and product availability, and enhancing overall consumer experiences. The adoption of algorithms in retail has been pioneered and widely used in literature across varied fields, including marketing, computer science, engineering, economics, and public policy. However, what is more, alarming today is the comprehensive understanding and focus of this technology and its associated ethical influence on consumers’ perceptions and behaviours. Indeed, due to algorithmic ethical concerns, consumers are found to be reluctant in some instances to share their personal data with retailers, which reduces their retention and leads to negative consumer outcomes in some instances. This, in its turn, raises the question of whether firms can still manifest the acceptance of such technologies by consumers while minimizing the ethical transgressions accompanied by their deployment. As recent modest research within the area of marketing and consumer behavior, the current research advances the literature on algorithmic pricing, pricing ethics, consumers’ perceptions, and price fairness literature. With its empirical focus, this paper aims to contribute to the literature by applying the distinction of the two common types of algorithmic pricing, dynamic and personalized, while measuring their relative effect on consumers’ behavioural outcomes. From a managerial perspective, this research offers significant implications that pertain to providing a better human-machine interactive environment (whether online or offline) to improve both businesses’ overall performance and consumers’ wellbeing. Therefore, by allowing more transparent pricing systems, businesses can harness their generated ethical strategies, which fosters consumers’ loyalty and extend their post-purchase behaviour. Thus, by defining the correct balance of pricing and right measures, whether using dynamic or personalized (or both), managers can hence approach consumers more ethically while taking their expectations and responses at a critical stance.

Keywords: algorithmic pricing, dynamic pricing, personalized pricing, price ethicality

Procedia PDF Downloads 91
759 Miniaturization of Germanium Photo-Detectors by Using Micro-Disk Resonator

Authors: Haifeng Zhou, Tsungyang Liow, Xiaoguang Tu, Eujin Lim, Chao Li, Junfeng Song, Xianshu Luo, Ying Huang, Lianxi Jia, Lianwee Luo, Kim Dowon, Qing Fang, Mingbin Yu, Guoqiang Lo

Abstract:

Several Germanium photodetectors (PD) built on silicon micro-disks are fabricated on the standard Si photonics multiple project wafers (MPW) and demonstrated to exhibit very low dark current, satisfactory operation bandwidth and moderate responsivity. Among them, a vertical p-i-n Ge PD based on a 2.0 µm-radius micro-disk has a dark current of as low as 35 nA, compared to a conventional PD current of 1 µA with an area of 100 µm2. The operation bandwidth is around 15 GHz at a reverse bias of 1V. The responsivity is about 0.6 A/W. Microdisk is a striking planar structure in integrated optics to enhance light-matter interaction and construct various photonics devices. The disk geometries feature in strongly and circularly confining light into an ultra-small volume in the form of whispering gallery modes. A laser may benefit from a microdisk in which a single mode overlaps the gain materials both spatially and spectrally. Compared to microrings, micro-disk removes the inner boundaries to enable even better compactness, which also makes it very suitable for some scenarios that electrical connections are needed. For example, an ultra-low power (≈ fJ) athermal Si modulator has been demonstrated with a bit rate of 25Gbit/s by confining both photons and electrically-driven carriers into a microscale volume.In this work, we study Si-based PDs with Ge selectively grown on a microdisk with the radius of a few microns. The unique feature of using microdisk for Ge photodetector is that mode selection is not important. In the applications of laser or other passive optical components, microdisk must be designed very carefully to excite the fundamental mode in a microdisk in that essentially the microdisk usually supports many higher order modes in the radial directions. However, for detector applications, this is not an issue because the local light absorption is mode insensitive. Light power carried by all modes are expected to be converted into photo-current. Another benefit of using microdisk is that the power circulation inside avoids any introduction of the reflector. A complete simulation model with all involved materials taken into account is established to study the promise of microdisk structures for photodetector by using finite difference time domain (FDTD) method. By viewing from the current preliminary data, the directions to further improve the device performance are also discussed.

Keywords: integrated optical devices, silicon photonics, micro-resonator, photodetectors

Procedia PDF Downloads 407
758 Electromagnetic-Mechanical Stimulation on PC12 for Enhancement of Nerve Axonal Extension

Authors: E. Nakamachi, K. Matsumoto, K. Yamamoto, Y. Morita, H. Sakamoto

Abstract:

In recently, electromagnetic and mechanical stimulations have been recognized as the effective extracellular environment stimulation technique to enhance the defected peripheral nerve tissue regeneration. In this study, we developed a new hybrid bioreactor by adopting 50 Hz uniform alternative current (AC) magnetic stimulation and 4% strain mechanical stimulation. The guide tube for nerve regeneration is mesh structured tube made of biodegradable polymer, such as polylatic acid (PLA). However, when neural damage is large, there is a possibility that peripheral nerve undergoes necrosis. So it is quite important to accelerate the nerve tissue regeneration by achieving enhancement of nerve axonal extension rate. Therefore, we try to design and fabricate the system that can simultaneously load the uniform AC magnetic field stimulation and the stretch stimulation to cells for enhancement of nerve axonal extension. Next, we evaluated systems performance and the effectiveness of each stimulation for rat adrenal pheochromocytoma cells (PC12). First, we designed and fabricated the uniform AC magnetic field system and the stretch stimulation system. For the AC magnetic stimulation system, we focused on the use of pole piece structure to carry out in-situ microscopic observation. We designed an optimum pole piece structure using the magnetic field finite element analyses and the response surface methodology. We fabricated the uniform AC magnetic field stimulation system as a bio-reactor by adopting analytically determined design specifications. We measured magnetic flux density that is generated by the uniform AC magnetic field stimulation system. We confirmed that measurement values show good agreement with analytical results, where the uniform magnetic field was observed. Second, we fabricated the cyclic stretch stimulation device under the conditions of particular strains, where the chamber was made of polyoxymethylene (POM). We measured strains in the PC12 cell culture region to confirm the uniform strain. We found slightly different values from the target strain. Finally, we concluded that these differences were allowable in this mechanical stimulation system. We evaluated the effectiveness of each stimulation to enhance the nerve axonal extension using PC12. We confirmed that the average axonal extension length of PC12 under the uniform AC magnetic stimulation was increased by 16 % at 96 h in our bio-reactor. We could not confirm that the axonal extension enhancement under the stretch stimulation condition, where we found the exfoliating of cells. Further, the hybrid stimulation enhanced the axonal extension. Because the magnetic stimulation inhibits the exfoliating of cells. Finally, we concluded that the enhancement of PC12 axonal extension is due to the magnetic stimulation rather than the mechanical stimulation. Finally, we confirmed that the effectiveness of the uniform AC magnetic field stimulation for the nerve axonal extension using PC12 cells.

Keywords: nerve cell PC12, axonal extension, nerve regeneration, electromagnetic-mechanical stimulation, bioreactor

Procedia PDF Downloads 264
757 An Experimental Study on Greywater Reuse for Irrigating a Green Wall System

Authors: Mishadi Herath, Amin Talei, Andreas Hermawan, Clarina Chua

Abstract:

Green walls are vegetated structures on building’s wall that are considered as part of sustainable urban design. They are proved to have many micro-climate benefits such as reduction in indoor temperature, noise attenuation, and improvement in air quality. On the other hand, several studies have also been conducted on potential reuse of greywater in urban water management. Greywater is relatively clean when compared to blackwater; therefore, this study was aimed to assess the potential reuse of it for irrigating a green wall system. In this study, the campus of Monash University Malaysia located in Selangor state was considered as the study site where total 48 samples of greywater were collected from 7 toilets hand-wash and 5 pantries during 3 months period. The samples were tested to characterize the quality of greywater in the study site and compare it with local standard for irrigation water. PH and concentration of heavy metals, nutrients, Total Suspended Solids (TSS), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), total Coliform and E.coli were measured. Results showed that greywater could be directly used for irrigation with minimal treatment. Since the effluent of the system was supposed to be drained to stormwater drainage system, the effluent needed to meet certain quality requirement. Therefore, a biofiltration system was proposed to host the green wall plants and also treat the greywater (which is used as irrigation water) to the required level. To assess the performance of the proposed system, an experimental setup consisting of Polyvinyl Chloride (PVC) soil columns with sand-based filter media were prepared. Two different local creeper plants were chosen considering several factors including fast growth, low maintenance requirement, and aesthetic aspects. Three replicates of each plants were used to ensure the validity of the findings. The growth of creeping plants and their survivability was monitored for 6 months while monthly sampling and testing of effluent was conducted to evaluate effluent quality. An analysis was also conducted to estimate the potential cost and benefit of such system considering water and energy saving in the system. Results showed that the proposed system can work efficiently throughout a long period of time with minimal maintenance requirement. Moreover, the biofiltration-green wall system was found to be successful in reusing greywater as irrigating water while the effluent was meeting all the requirements for being drained to stormwater drainage system.

Keywords: biofiltration, green wall, greywater, sustainability

Procedia PDF Downloads 214
756 Evaluating Daylight Performance in an Office Environment in Malaysia, Using Venetian Blind System: Case Study

Authors: Fatemeh Deldarabdolmaleki, Mohamad Fakri Zaky Bin Ja'afar

Abstract:

Having a daylit space together with view results in a pleasant and productive environment for office employees. A daylit space is a space which utilizes daylight as a basic source of illumination to fulfill user’s visual demands and minimizes the electric energy consumption. Malaysian weather is hot and humid all over the year because of its location in the equatorial belt. however, because most of the commercial buildings in Malaysia are air-conditioned, huge glass windows are normally installed in order to keep the physical and visual relation between inside and outside. As a result of climatic situation and mentioned new trend, an ordinary office has huge heat gain, glare, and discomfort for occupants. Balancing occupant’s comfort and energy conservation in a tropical climate is a real challenge. This study concentrates on evaluating a venetian blind system using per pixel analyzing tools based on the suggested cut-out metrics by the literature. Workplace area in a private office room has been selected as a case study. Eight-day measurement experiment was conducted to investigate the effect of different venetian blind angles in an office area under daylight conditions in Serdang, Malaysia. The study goal was to explore daylight comfort of a commercially available venetian blind system, its’ daylight sufficiency and excess (8:00 AM to 5 PM) as well as Glare examination. Recently developed software, analyzing High Dynamic Range Images (HDRI captured by CCD camera), such as radiance based Evalglare and hdrscope help to investigate luminance-based metrics. The main key factors are illuminance and luminance levels, mean and maximum luminance, daylight glare probability (DGP) and luminance ratio of the selected mask regions. The findings show that in most cases, morning session needs artificial lighting in order to achieve daylight comfort. However, in some conditions (e.g. 10° and 40° slat angles) in the second half of day the workplane illuminance level exceeds the maximum of 2000 lx. Generally, a rising trend is discovered toward mean window luminance and the most unpleasant cases occur after 2 P.M. Considering the luminance criteria rating, the uncomfortable conditions occur in the afternoon session. Surprisingly in no blind condition, extreme case of window/task ratio is not common. Studying the daylight glare probability, there is not any DGP value higher than 0.35 in this experiment.

Keywords: daylighting, energy simulation, office environment, Venetian blind

Procedia PDF Downloads 256
755 Studies on Optimizing the Level of Liquid Biofertilizers in Peanut and Maize and Their Economic Analysis

Authors: Chandragouda R. Patil, K. S. Jagadeesh, S. D. Kalolgi

Abstract:

Biofertilizers containing live microbial cells can mobilize one or more nutrients to plants when applied to either seed or rhizosphere. They form an integral part of nutrient management strategies for sustainable production of agricultural crops. Annually, about 22 tons of lignite-based biofertilizers are being produced and supplied to farmers at the Institute of Organic Farming, University of Agricultural Sciences, Dharwad, Karnataka state India. Although carrier based biofertilizers are common, they have shorter shelf life, poor quality, high contamination, unpredictable field performance and high cost of solid carriers. Hence, liquid formulations are being developed to increase their efficacy and broaden field applicability. An attempt was made to develop liquid formulation of strains of Rhizobium NC-92 (Groundnut), Azospirillum ACD15 both nitrogen-fixing biofertilizers and Pseudomonas striata an efficient P-solubilizing bacteria (PSB). Different concentration of amendments such as additives (glycerol and polyethylene glycol), adjuvants (carboxyl methyl cellulose), gum arabica (GA), surfactant (polysorbate) and trehalose specifically for Azospirillum were found essential. Combinations of formulations of Rhizobium and PSB for groundnut and Azospirillum and PSB for maize were evaluated under field conditions to determine the optimum level of inoculum required. Each biofertilizer strain was inoculated at the rate of 2, 4, 8 ml per kg of seeds and the efficacy of each formulation both individually and in combinations was evaluated against the lignite-based formulation at the rate of 20 g each per kg seeds and a un-inoculated set was included to compare the inoculation effect. The field experiment had 17 treatments in three replicates and the best level of inoculum was decided based on net returns and cost: benefit ratio. In peanut, the combination of 4 ml of Rhizobium and 2 ml of PSB resulted in the highest net returns and higher cost to benefit ratio of 1:2.98 followed by treatment with a combination of 2 ml per kg each of Rhizobium and PSB with a B;C ratio of 1:2.84. The benefits in terms of net returns were to the extent of 16 percent due to inoculation with lignite based formulations while it was up to 48 percent due to the best combination of liquid biofertilizers. In maize combination of liquid formulations consisting of 4 ml of Azospirillum and 2 ml of PSB resulted in the highest net returns; about 53 percent higher than the un-inoculated control and 20 percent higher than the treatment with lignite based formulation. In both the crops inoculation with lignite based formulations significantly increased the net returns over un-inoculated control while levels higher or lesser than 4 ml of Rhizobium and Azospirillum and higher or lesser than 2 ml of PSB were not economical and hence not optimal for these two crops.

Keywords: Rhizobium, Azospirillum, phosphate solubilizing bacteria, liquid formulation, benefit-cost ratio

Procedia PDF Downloads 493
754 Communicative Competence Is About Speaking a Lot: Teacher’s Voice on the Art of Developing Communicative Competence

Authors: Bernice Badal

Abstract:

The South African English curriculum emphasizes the adoption of the Communicative Approach (CA) using Communicative Language Teaching (CLT) methodologies to develop English as a second language (ESL) learners’ communicative competence in contexts such as township schools in South Africa. However, studies indicate that the adoption of the approach largely remains a rhetoric. Poor English language proficiency among learners and poor student performance, which continues from the secondary to the tertiary phase, is widely attributed to a lack of English language proficiency in South Africa. Consequently, this qualitative study, using a mix of classroom observations and interviews, sought to investigate teacher knowledge of Communicative Competence and the methods and strategies ESL teachers used to develop their learners’ communicative competence. The success of learners’ ability to develop communicative competence in contexts such as township schools in South Africa is inseparable from materials, tasks, teacher knowledge and how they implement the approach in the classrooms. Accordingly, teacher knowledge of the theory and practical implications of the CLT approach is imperative for the negotiation of meaning and appropriate use of language in context in resource-impoverished areas like the township. Using a mix of interviews and observations as data sources, this qualitative study examined teachers’ definitions and knowledge of Communicative competence with a focus on how it influenced their classroom practices. The findings revealed that teachers were not familiar with the notion of communicative competence, the communication process, and the underpinnings of CLT. Teachers’ narratives indicated an awareness that there should be interactions and communication in the classroom, but a lack of theoretical understanding of the types of communication necessary scuttled their initiatives. Thus, conceptual deficiency influences teachers’ practices as they engage in classroom activities in a superficial manner or focus on stipulated learner activities prescribed by the CAPS document. This study, therefore, concluded that partial or limited conceptual and coherent understandings with ‘teacher-proof’ stipulations for classroom practice do not inspire teacher efficacy and mastery of prescribed approaches; thus, more efforts should be made by the Department of Basic Education to strengthen the existing Professional Development workshops to support teachers in improving their understandings and application of CLT for the development of Communicative competence in their learners. The findings of the study contribute to the field of teacher knowledge acquisition, teacher beliefs and practices and professional development in the context of second language teaching and learning with a recommendation that frameworks for the development of communicative competence with wider applicability in resource-poor environments be developed to support teacher understanding and application in classrooms.

Keywords: communicative competence, CLT, conceptual understanding of reforms, professional development

Procedia PDF Downloads 58
753 Factors Affecting Profitability of Pharmaceutical Company During the COVID-19 Pandemic: An Indonesian Evidence

Authors: Septiany Trisnaningtyas

Abstract:

Purpose: This research aims to examine the factors affecting the profitability of pharmaceutical company during the Covid-19 Pandemic in Indonesia. A sharp decline in the number of patients coming to the hospital for treatment during the pandemic has an impact on the growth of the pharmaceutical sector and brought major changes in financial position and business performance. Pharmaceutical companies that provide products related to the Covid-19 pandemic can survive and continue to grow. This study investigates the factors affecting the profitability of pharmaceutical company during the Covid-19 Pandemic in Indonesia associated with the number of Covid-19 cases. Design/methodology/approach: This study uses panel-data regression models to evaluate the influence of the number of Covid-19 confirmed cases on profitability of ninelisted pharmaceuticalcompanies in Indonesia. This research is based on four independent variables that were empirically examined for their relationship with profitability. These variables are liquidity (current ratio), growth rate (sales growth), firm size (total sales), and market power (the Lerner index). Covid-19 case is used as moderating variable. Data of nine pharmaceutical companies listed on the Indonesia Stock Exchange covering the period of 2018–2021 were extracted from companies’ quarterly annual reports. Findings: In the period during Covid-19, company growth (sales growth) and market power (lerner index) have a positive and significant relationship to ROA and ROE. Total of confirmed Covid-19 cases has a positive and significant relationship to ROA and is proven to have a moderating effect between company’s growth (sales growth) to ROA and ROE and market power (Lerner index) to ROA. Research limitations/implications: Due to data availability, this study only includes data from nine listed pharmaceutical companies in Indonesian Stock exchange and quarterly annual reportscovering the period of 2018-2021. Originality/value: This study focuses onpharmaceutical companies in Indonesia during Covid-19 pandemic. Previous study analyzes the data from pharmaceutical companies’ annual reports since 2014 and focus on universal health coverage (national health insurance) implementation from the Indonesian government. This study analyzes the data using fixed effect panel-data regression models to evaluate the influence of Covid-19 confirmed cases on profitability. Pooled ordinary least squares regression and fixed effects were used to analyze the data in previous study. This study also investigate the moderating effect of Covid-19 confirmed cases to profitability in relevant with the pandemic situation.

Keywords: profitability, indonesia, pharmaceutical, Covid-19

Procedia PDF Downloads 123
752 Labor Welfare and Social Security

Authors: Shoaib Alvi

Abstract:

Mahatma Gandhi was said “Man becomes great exactly in the degree in which he works for the welfare of his fellow-men”. Labor welfare is an important fact of Industrial relations. With the growth of industrialization, mechanization and computerization, labor welfare measures have got the fillip. The author believes that Labor welfare includes provisions of various facilities and amenities in and around the work place for the better life of the workers. Labor welfare is, thus, one of the major determinants of industrial relations. It comprises all human efforts the work place for the better life of the worker. The social and economic aspects of the life of the workers have the direct influence on the social and economic development of the nation. Author thinks that there could be multiple objectives in having, labor welfare programme the concern for improving the lot of the workers, a philosophy of humanitarianism or internal social responsibility, a feeling of concern, and caring by providing some of life's basic amenities, besides the basic pay packet. Such caring is supposed to build a sense of loyalty on the part of the employee towards the organization. The author thinks that Social security is the security that the State furnishes against the risks which an individual of small means cannot today, stand up to by himself even in private combination with his fellows. Social security is one of the pillars on which the structure of a welfare state rests, and it constitutes the hardcore of social policy in most countries. It is through social security measures that the state attempts to maintain every citizen at a certain prescribed level below which no one is allowed to fall. According to author, social assistance is a method according to which benefits are given to the needy persons, fulfilling the prescribed conditions, by the government out of its own resources. Author has analyzed and studied the relationship between the labor welfare social security and also studied various international conventions on provisions of social security by International Authorities like United Nations, International Labor Organization, and European Union etc. Author has also studied and analyzed concept of labor welfare and social security schemes of many countries around the globe ex:- Social security in Australia, Social security in Switzerland, Social Security (United States), Mexican Social Security Institute, Welfare in Germany, Social security schemes of India for labor welfare in both organized sector and unorganized sector. In this Research paper, Author has done the study on the Conceptual framework of the Labour Welfare. According to author, labors are highly perishable, which need constant welfare measures for their upgradation and performance in this field. At last author has studied role of trade unions and labor welfare unions and other institutions working for labor welfare, in this research paper author has also identified problems these Unions and labor welfare bodies’ face and tried to find out solutions for the problems and also analyzed various steps taken by the government of various countries around the globe.

Keywords: labor welfare, internal social responsibility, social security, international conventions

Procedia PDF Downloads 576
751 Evaluation of Low-Global Warming Potential Refrigerants in Vapor Compression Heat Pumps

Authors: Hamed Jafargholi

Abstract:

Global warming presents an immense environmental risk, causing detrimental impacts on ecological systems and putting coastal areas at risk. Implementing efficient measures to minimize greenhouse gas emissions and the use of fossil fuels is essential to reducing global warming. Vapor compression heat pumps provide a practical method for harnessing energy from waste heat sources and reducing energy consumption. However, traditional working fluids used in these heat pumps generally contain a significant global warming potential (GWP), which might cause severe greenhouse effects if they are released. The goal of the emphasis on low-GWP (below 150) refrigerants is to further the vapor compression heat pumps. A classification system for vapor compression heat pumps is offered, with different boundaries based on the needed heat temperature and advancements in heat pump technology. A heat pump could be classified as a low temperature heat pump (LTHP), medium temperature heat pump (MTHP), high temperature heat pump (HTHP), or ultra-high temperature heat pump (UHTHP). The HTHP/UHTHP border is 160 °C, the MTHP/HTHP and LTHP/MTHP limits are 100 and 60 °C, respectively. The refrigerant is one of the most important parts of a vapor compression heat pump system. Presently, the main ways to choose a refrigerant are based on ozone depletion potential (ODP) and GWP, with GWP being the lowest possible value and ODP being zero. Pure low-GWP refrigerants, such as natural refrigerants (R718 and R744), hydrocarbons (R290, R600), hydrofluorocarbons (R152a and R161), hydrofluoroolefins (R1234yf, R1234ze(E)), and hydrochlorofluoroolefin (R1233zd(E)), were selected as candidates for vapor compression heat pump systems based on these selection principles. The performance, characteristics, and potential uses of these low-GWP refrigerants in heat pump systems are investigated in this paper. As vapor compression heat pumps with pure low-GWP refrigerants become more common, more and more low-grade heat can be recovered. This means that energy consumption would decrease. The research outputs showed that the refrigerants R718 for UHTHP application, R1233zd(E) for HTHP application, R600, R152a, R161, R1234ze(E) for MTHP, and R744, R290, and R1234yf for LTHP application are appropriate. The selection of an appropriate refrigerant should, in fact, take into consideration two different environmental and thermodynamic points of view. It might be argued that, depending on the situation, a trade-off between these two groups should constantly be considered. The environmental approach is now far stronger than it was previously, according to the European Union regulations. This will promote sustainable energy consumption and social development in addition to assisting in the reduction of greenhouse gas emissions and the management of global warming.

Keywords: vapor compression, global warming potential, heat pumps, greenhouse

Procedia PDF Downloads 33
750 Rebuilding Health Post-Conflict: Case Studies from Afghanistan, Cambodia, and Mozambique

Authors: Spencer Rutherford, Shadi Saleh

Abstract:

War and conflict negatively impact all facets of a health system; services cease to function, resources become depleted, and any semblance of governance is lost. Following cessation of conflict, the rebuilding process includes a wide array of international and local actors. During this period, stakeholders must contend with various trade-offs, including balancing sustainable outcomes with immediate health needs, introducing health reform measures while also increasing local capacity, and reconciling external assistance with local legitimacy. Compounding these factors are additional challenges, including coordination amongst stakeholders, the re-occurrence of conflict, and ulterior motives from donors and governments, to name a few. Therefore, the present paper evaluated health system development in three post-conflict countries over a 12-year timeline. Specifically, health policies, health inputs (such infrastructure and human resources), and measures of governance, from the post-conflict periods of Afghanistan, Cambodia, and Mozambique, were assessed against health outputs and other measures. All post-conflict countries experienced similar challenges when rebuilding the health sector, including; division and competition between donors, NGOs, and local institutions; urban and rural health inequalities; and the re-occurrence of conflict. However, countries also employed unique and effective mechanisms for reconstructing their health systems, including; government engagement of the NGO and private sector; integration of competing factions into the same workforce; and collaborative planning for health policy. Based on these findings, best-practice development strategies were determined and compiled into a 12-year framework. Briefly, during the initial stage of the post-conflict period, primary stakeholders should work quickly to draft a national health strategy in collaboration with the government, and focus on managing and coordinating NGOs through performance-based partnership agreements. With this scaffolding in place, the development community can then prioritize the reconstruction of primary health care centers, increasing and retaining health workers, and horizontal integration of immunization services. The final stages should then concentrate on transferring ownership of the health system national institutions, implementing sustainable financing mechanisms, and phasing-out NGO services. Overall, these findings contribute post-conflict health system development by evaluating the process holistically and along a timeline and can be of further use by healthcare managers, policy-makers, and other health professionals.

Keywords: Afghanistan, Cambodia, health system development, health system reconstruction, Mozambique, post-conflict, state-building

Procedia PDF Downloads 159
749 Forecasting Residential Water Consumption in Hamilton, New Zealand

Authors: Farnaz Farhangi

Abstract:

Many people in New Zealand believe that the access to water is inexhaustible, and it comes from a history of virtually unrestricted access to it. For the region like Hamilton which is one of New Zealand’s fastest growing cities, it is crucial for policy makers to know about the future water consumption and implementation of rules and regulation such as universal water metering. Hamilton residents use water freely and they do not have any idea about how much water they use. Hence, one of proposed objectives of this research is focusing on forecasting water consumption using different methods. Residential water consumption time series exhibits seasonal and trend variations. Seasonality is the pattern caused by repeating events such as weather conditions in summer and winter, public holidays, etc. The problem with this seasonal fluctuation is that, it dominates other time series components and makes difficulties in determining other variations (such as educational campaign’s effect, regulation, etc.) in time series. Apart from seasonality, a stochastic trend is also combined with seasonality and makes different effects on results of forecasting. According to the forecasting literature, preprocessing (de-trending and de-seasonalization) is essential to have more performed forecasting results, while some other researchers mention that seasonally non-adjusted data should be used. Hence, I answer the question that is pre-processing essential? A wide range of forecasting methods exists with different pros and cons. In this research, I apply double seasonal ARIMA and Artificial Neural Network (ANN), considering diverse elements such as seasonality and calendar effects (public and school holidays) and combine their results to find the best predicted values. My hypothesis is the examination the results of combined method (hybrid model) and individual methods and comparing the accuracy and robustness. In order to use ARIMA, the data should be stationary. Also, ANN has successful forecasting applications in terms of forecasting seasonal and trend time series. Using a hybrid model is a way to improve the accuracy of the methods. Due to the fact that water demand is dominated by different seasonality, in order to find their sensitivity to weather conditions or calendar effects or other seasonal patterns, I combine different methods. The advantage of this combination is reduction of errors by averaging of each individual model. It is also useful when we are not sure about the accuracy of each forecasting model and it can ease the problem of model selection. Using daily residential water consumption data from January 2000 to July 2015 in Hamilton, I indicate how prediction by different methods varies. ANN has more accurate forecasting results than other method and preprocessing is essential when we use seasonal time series. Using hybrid model reduces forecasting average errors and increases the performance.

Keywords: artificial neural network (ANN), double seasonal ARIMA, forecasting, hybrid model

Procedia PDF Downloads 337
748 The Effects of Qigong Exercise Intervention on the Cognitive Function in Aging Adults

Authors: D. Y. Fong, C. Y. Kuo, Y. T. Chiang, W. C. Lin

Abstract:

Objectives: Qigong is an ancient Chinese practice in pursuit of a healthier body and a more peaceful mindset. It emphasizes on the restoration of vital energy (Qi) in body, mind, and spirit. The practice is the combination of gentle movements and mild breathing which help the doers reach the condition of tranquility. On account of the features of Qigong, first, we use cross-sectional methodology to compare the differences among the varied levels of Qigong practitioners on cognitive function with event-related potential (ERP) and electroencephalography (EEG). Second, we use the longitudinal methodology to explore the effects on the Qigong trainees for pretest and posttest on ERP and EEG. Current study adopts Attentional Network Test (ANT) task to examine the participants’ cognitive function, and aging-related researches demonstrated a declined tread on the cognition in older adults and exercise might ameliorate the deterioration. Qigong exercise integrates physical posture (muscle strength), breathing technique (aerobic ability) and focused intention (attention) that researchers hypothesize it might improve the cognitive function in aging adults. Method: Sixty participants were involved in this study, including 20 young adults (21.65±2.41 y) with normal physical activity (YA), 20 Qigong experts (60.69 ± 12.42 y) with over 7 years Qigong practice experience (QE), and 20 normal and healthy adults (52.90±12.37 y) with no Qigong practice experience as experimental group (EG). The EG participants took Qigong classes 2 times a week and 2 hours per time for 24 weeks with the purpose of examining the effect of Qigong intervention on cognitive function. ANT tasks (alert network, orient network, and executive control) were adopted to evaluate participants’ cognitive function via ERP’s P300 components and P300 amplitude topography. Results: Behavioral data: 1.The reaction time (RT) of YA is faster than the other two groups, and EG was faster than QE in the cue and flanker conditions of ANT task. 2. The RT of posttest was faster than pretest in EG in the cue and flanker conditions. 3. No difference among the three groups on orient, alert, and execute control networks. ERP data: 1. P300 amplitude detection in QE was larger than EG at Fz electrode in orient, alert, and execute control networks. 2. P300 amplitude in EG was larger at pretest than posttest on the orient network. 3. P300 Latency revealed no difference among the three groups in the three networks. Conclusion: Taken together these findings, they provide neuro-electrical evidence that older adults involved in Qigong practice may develop a more overall compensatory mechanism and also benefit the performance of behavior.

Keywords: Qigong, cognitive function, aging, event-related potential (ERP)

Procedia PDF Downloads 393
747 Design of Photonic Crystal with Defect Layer to Eliminate Interface Corrugations for Obtaining Unidirectional and Bidirectional Beam Splitting under Normal Incidence

Authors: Evrim Colak, Andriy E. Serebryannikov, Pavel V. Usik, Ekmel Ozbay

Abstract:

Working with a dielectric photonic crystal (PC) structure which does not include surface corrugations, unidirectional transmission and dual-beam splitting are observed under normal incidence as a result of the strong diffractions caused by the embedded defect layer. The defect layer has twice the period of the regular PC segments which sandwich the defect layer. Although the PC has even number of rows, the structural symmetry is broken due to the asymmetric placement of the defect layer with respect to the symmetry axis of the regular PC. The simulations verify that efficient splitting and occurrence of strong diffractions are related to the dispersion properties of the Floquet-Bloch modes of the photonic crystal. Unidirectional and bi-directional splitting, which are associated with asymmetric transmission, arise due to the dominant contribution of the first positive and first negative diffraction orders. The effect of the depth of the defect layer is examined by placing single defect layer in varying rows, preserving the asymmetry of PC. Even for deeply buried defect layer, asymmetric transmission is still valid even if the zeroth order is not coupled. This transmission is due to evanescent waves which reach to the deeply embedded defect layer and couple to higher order modes. In an additional selected performance, whichever surface is illuminated, i.e., in both upper and lower surface illumination cases, incident beam is split into two beams of equal intensity at the output surface where the intensity of the out-going beams are equal for both illumination cases. That is, although the structure is asymmetric, symmetric bidirectional transmission with equal transmission values is demonstrated and the structure mimics the behavior of symmetric structures. Finally, simulation studies including the examination of a coupled-cavity defect for two different permittivity values (close to the permittivity values of GaAs or Si and alumina) reveal unidirectional splitting for a wider band of operation in comparison to the bandwidth obtained in the case of a single embedded defect layer. Since the dielectric materials that are utilized are low-loss and weakly dispersive in a wide frequency range including microwave and optical frequencies, the studied structures should be scalable to the mentioned ranges.

Keywords: asymmetric transmission, beam deflection, blazing, bi-directional splitting, defect layer, dual beam splitting, Floquet-Bloch modes, isofrequency contours, line defect, oblique incidence, photonic crystal, unidirectionality

Procedia PDF Downloads 184
746 Developing and Shake Table Testing of Semi-Active Hydraulic Damper as Active Interaction Control Device

Authors: Ming-Hsiang Shih, Wen-Pei Sung, Shih-Heng Tung

Abstract:

Semi-active control system for structure under excitation of earthquake provides with the characteristics of being adaptable and requiring low energy. DSHD (Displacement Semi-Active Hydraulic Damper) was developed by our research team. Shake table test results of this DSHD installed in full scale test structure demonstrated that this device brought its energy-dissipating performance into full play for test structure under excitation of earthquake. The objective of this research is to develop a new AIC (Active Interaction Control Device) and apply shake table test to perform its dissipation of energy capability. This new proposed AIC is converting an improved DSHD (Displacement Semi-Active Hydraulic Damper) to AIC with the addition of an accumulator. The main concept of this energy-dissipating AIC is to apply the interaction function of affiliated structure (sub-structure) and protected structure (main structure) to transfer the input seismic force into sub-structure to reduce the structural deformation of main structure. This concept is tested using full-scale multi-degree of freedoms test structure, installed with this proposed AIC subjected to external forces of various magnitudes, for examining the shock absorption influence of predictive control, stiffness of sub-structure, synchronous control, non-synchronous control and insufficient control position. The test results confirm: (1) this developed device is capable of diminishing the structural displacement and acceleration response effectively; (2) the shock absorption of low precision of semi-active control method did twice as much seismic proof efficacy as that of passive control method; (3) active control method may not exert a negative influence of amplifying acceleration response of structure; (4) this AIC comes into being time-delay problem. It is the same problem of ordinary active control method. The proposed predictive control method can overcome this defect; (5) condition switch is an important characteristics of control type. The test results show that synchronism control is very easy to control and avoid stirring high frequency response. This laboratory results confirm that the device developed in this research is capable of applying the mutual interaction between the subordinate structure and the main structure to be protected is capable of transforming the quake energy applied to the main structure to the subordinate structure so that the objective of minimizing the deformation of main structural can be achieved.

Keywords: DSHD (Displacement Semi-Active Hydraulic Damper), AIC (Active Interaction Control Device), shake table test, full scale structure test, sub-structure, main-structure

Procedia PDF Downloads 519
745 AAV-Mediated Human Α-Synuclein Expression in a Rat Model of Parkinson's Disease –Further Characterization of PD Phenotype, Fine Motor Functional Effects as Well as Neurochemical and Neuropathological Changes over Time

Authors: R. Pussinen, V. Jankovic, U. Herzberg, M. Cerrada-Gimenez, T. Huhtala, A. Nurmi, T. Ahtoniemi

Abstract:

Targeted over-expression of human α-synuclein using viral-vector mediated gene delivery into the substantia nigra of rats and non-human primates has been reported to lead to dopaminergic cell loss and the formation of α-synuclein aggregates reminiscent of Lewy bodies. We have previously shown how AAV-mediated expression of α-synuclein is seen in the chronic phenotype of the rats over 16 week follow-up period. In the context of these findings, we attempted to further characterize this long term PD related functional and motor deficits as well as neurochemical and neuropathological changes in AAV-mediated α-synuclein transfection model in rats during chronic follow-up period. Different titers of recombinant AAV expressing human α-synuclein (A53T) were stereotaxically injected unilaterally into substantia nigra of Wistar rats. Rats were allowed to recover for 3 weeks prior to initial baseline behavioral testing with rotational asymmetry test, stepping test and cylinder test. A similar behavioral test battery was applied again at weeks 5, 9,12 and 15. In addition to traditionally used rat PD model tests, MotoRater test system, a high speed kinematic gait performance monitoring was applied during the follow-up period. Evaluation focused on animal gait between groups. Tremor analysis was performed on weeks 9, 12 and 15. In addition to behavioral end-points, neurochemical evaluation of dopamine and its metabolites were evaluated in striatum. Furthermore, integrity of the dopamine active transport (DAT) system was evaluated by using 123I- β-CIT and SPECT/CT imaging on weeks 3, 8 and 12 after AAV- α-synuclein transfection. Histopathology was examined from end-point samples at 3 or 12 weeks after AAV- α-synuclein transfection to evaluate dopaminergic cell viability and microglial (Iba-1) activation status in substantia nigra by using stereological analysis techniques. This study focused on the characterization and validation of previously published AAV- α-synuclein transfection model in rats but with the addition of novel end-points. We present the long term phenotype of AAV- α-synuclein transfected rats with traditionally used behavioral tests but also by using novel fine motor analysis techniques and tremor analysis which provide new insight to unilateral effects of AAV α-synuclein transfection. We also present data about neurochemical and neuropathological end-points for the dopaminergic system in the model and how well they correlate with behavioral phenotype.

Keywords: adeno-associated virus, alphasynuclein, animal model, Parkinson’s disease

Procedia PDF Downloads 295
744 Applying Quadrant Analysis in Identifying Business-to-Business Customer-Driven Improvement Opportunities in Third Party Logistics Industry

Authors: Luay Jum'a

Abstract:

Many challenges are facing third-party logistics (3PL) providers in the domestic and global markets which create a volatile decision making environment. All these challenges such as managing changes in consumer behaviour, demanding expectations from customers and time compressions have turned into complex problems for 3PL providers. Since the movement towards increased outsourcing outpaces movement towards insourcing, the need to achieve a competitive advantage over competitors in 3PL market increases. This trend continues to grow over the years and as a result, areas of strengths and improvements are highlighted through the analysis of the LSQ factors that lead to B2B customers’ satisfaction which become a priority for 3PL companies. Consequently, 3PL companies are increasingly focusing on the most important issues from the perspective of their customers and relying more on this value of information in making their managerial decisions. Therefore, this study is concerned with providing guidance for improving logistics service quality (LSQ) levels in the context of 3PL industry in Jordan. The study focused on the most important factors in LSQ and used a managerial tool that guides 3PL companies in making LSQ improvements based on a quadrant analysis of two main dimensions: LSQ declared importance and LSQ inferred importance. Although, a considerable amount of research has been conducted to investigate the relationship between logistics service quality (LSQ) and customer satisfaction, there remains a lack of developing managerial tools to aid in the process of LSQ improvement decision-making. Moreover, the main advantage for the companies to use 3PL service providers as a trend is due to the realised percentage of cost reduction on the total cost of logistics operations and the incremental improvement in customer service. In this regard, having a managerial tool that help 3PL service providers in managing the LSQ factors portfolio effectively and efficiently would be a great investment for service providers. One way of suggesting LSQ improvement actions for 3PL service providers is via the adoption of analysis tools that perform attribute categorisation such as Importance–Performance matrix. In mind of the above, it can be stated that the use of quadrant analysis will provide a valuable opportunity for 3PL service providers to identify improvement opportunities as customer service attributes or factors importance are identified in two different techniques that complete each other. Moreover, the data were collected through conducting a survey and 293 questionnaires were returned from business-to-business (B2B) customers of 3PL companies in Jordan. The results showed that the LSQ factors vary in their importance and 3PL companies should focus on some LSQ factors more than other factors. Moreover, ordering procedures, timeliness/responsiveness LSQ factors considered being crucial in 3PL businesses and therefore they need to have more focus and development by 3PL service providers in the Jordanian market.

Keywords: logistics service quality, managerial decisions, quadrant analysis, third party logistics service provider

Procedia PDF Downloads 127
743 Development of an Appropriate Method for the Determination of Multiple Mycotoxins in Pork Processing Products by UHPLC-TCFLD

Authors: Jason Gica, Yi-Hsieng Samuel Wu, Deng-Jye Yang, Yi-Chen Chen

Abstract:

Mycotoxins, harmful secondary metabolites produced by certain fungi species, pose significant risks to animals and humans worldwide. Their stable properties lead to contamination during grain harvesting, transportation, and storage, as well as in processed food products. The prevalence of mycotoxin contamination has attracted significant attention due to its adverse impact on food safety and global trade. The secondary contamination pathway from animal products has been identified as an important route of exposure, posing health risks for livestock and humans consuming contaminated products. Pork, one of the highly consumed meat products in Taiwan according to the National Food Consumption Database, plays a critical role in the nation's diet and economy. Given its substantial consumption, pork processing products are a significant component of the food supply chain and a potential source of mycotoxin contamination. This study is paramount for formulating effective regulations and strategies to mitigate mycotoxin-related risks in the food supply chain. By establishing a reliable analytical method, this research contributes to safeguarding public health and enhancing the quality of pork processing products. The findings will serve as valuable guidance for policymakers, food industries, and consumers to ensure a safer food supply chain in the face of emerging mycotoxin challenges. An innovative and efficient analytical approach is proposed using Ultra-High Performance Liquid Chromatography coupled with Temperature Control Fluorescence Detector Light (UHPLC-TCFLD) to determine multiple mycotoxins in pork meat samples due to its exceptional capacity to detect multiple mycotoxins at the lowest levels of concentration, making it highly sensitive and reliable for comprehensive mycotoxin analysis. Additionally, its ability to simultaneously detect multiple mycotoxins in a single run significantly reduces the time and resources required for analysis, making it a cost-effective solution for monitoring mycotoxin contamination in pork processing products. The research aims to optimize the efficient mycotoxin QuEChERs extraction method and rigorously validate its accuracy and precision. The results will provide crucial insights into mycotoxin levels in pork processing products.

Keywords: multiple-mycotoxin analysis, pork processing products, QuEChERs, UHPLC-TCFLD, validation

Procedia PDF Downloads 69
742 Developing Methodology of Constructing the Unified Action Plan for External and Internal Risks in University

Authors: Keiko Tamura, Munenari Inoguchi, Michiyo Tsuji

Abstract:

When disasters occur, in order to raise the speed of each decision making and response, it is common that delegation of authority is carried out. This tendency is particularly evident when the department or branch of the organization are separated by the physical distance from the main body; however, there are some issues to think about. If the department or branch is too dependent on the head office in the usual condition, they might feel lost in the disaster response operation when they are face to the situation. Avoiding this problem, an organization should decide how to delegate the authority and also who accept the responsibility for what before the disaster. This paper will discuss about the method which presents an approach for executing the delegation of authority process, implementing authorities, management by objectives, and preparedness plans and agreement. The paper will introduce the examples of efforts for the three research centers of Niigata University, Japan to arrange organizations capable of taking necessary actions for disaster response. Each center has a quality all its own. One is the center for carrying out the research in order to conserve the crested ibis (or Toki birds in Japanese), the endangered species. The another is the marine biological laboratory. The third one is very unique because of the old growth forests maintained as the experimental field. Those research centers are in the Sado Island, located off the coast of Niigata Prefecture, is Japan's second largest island after Okinawa and is known for possessing a rich history and culture. It takes 65 minutes jetfoil (high-speed ferry) ride to get to Sado Island from the mainland. The three centers are expected to be easily isolated at the time of a disaster. A sense of urgency encourages 3 centers in the process of organizational restructuring for enhancing resilience. The research team from the risk management headquarters offer those procedures; Step 1: Offer the hazard scenario based on the scientific evidence, Step 2: Design a risk management organization for disaster response function, Step 3: Conduct the participatory approach to make consensus about the overarching objectives, Step 4: Construct the unified operational action plan for 3 centers, Step 5: Simulate how to respond in each phase based on the understanding the various phases of the timeline of a disaster. Step 6: Document results to measure performance and facilitate corrective action. This paper shows the result of verifying the output and effects.

Keywords: delegation of authority, disaster response, risk management, unified command

Procedia PDF Downloads 125
741 Human Interaction Skills and Employability in Courses with Internships: Report of a Decade of Success in Information Technology

Authors: Filomena Lopes, Miguel Magalhaes, Carla Santos Pereira, Natercia Durao, Cristina Costa-Lobo

Abstract:

The option to implement curricular internships with undergraduate students is a pedagogical option with some good results perceived by academic staff, employers, and among graduates in general and IT (Information Technology) in particular. Knowing that this type of exercise has never been so relevant, as one tries to give meaning to the future in a landscape of rapid and deep changes. We have as an example the potential disruptive impact on the jobs of advances in robotics, artificial intelligence and 3-D printing, which is a focus of fierce debate. It is in this context that more and more students and employers engage in the pursuit of career-promoting responses and business development, making their investment decisions of training and hiring. Three decades of experience and research in computer science degree and in information systems technologies degree at the Portucalense University, Portuguese private university, has provided strong evidence of its advantages. The Human Interaction Skills development as well as the attractiveness of such experiences for students are topics assumed as core in the Ccnception and management of the activities implemented in these study cycles. The objective of this paper is to gather evidence of the Human Interaction Skills explained and valued within the curriculum internship experiences of IT students employability. Data collection was based on the application of questionnaire to intern counselors and to students who have completed internships in these undergraduate courses in the last decade. The trainee supervisor, responsible for monitoring the performance of IT students in the evolution of traineeship activities, evaluates the following Human Interaction Skills: Motivation and interest in the activities developed, interpersonal relationship, cooperation in company activities, assiduity, ease of knowledge apprehension, Compliance with norms, insertion in the work environment, productivity, initiative, ability to take responsibility, creativity in proposing solutions, and self-confidence. The results show that these undergraduate courses promote the development of Human Interaction Skills and that these students, once they finish their degree, are able to initiate remunerated work functions, mainly by invitation of the institutions in which they perform curricular internships. Findings obtained from the present study contribute to widen the analysis of its effectiveness in terms of future research and actions in regard to the transition from Higher Education pathways to the Labour Market.

Keywords: human interaction skills, employability, internships, information technology, higher education

Procedia PDF Downloads 287
740 Dependence of Densification, Hardness and Wear Behaviors of Ti6Al4V Powders on Sintering Temperature

Authors: Adewale O. Adegbenjo, Elsie Nsiah-Baafi, Mxolisi B. Shongwe, Mercy Ramakokovhu, Peter A. Olubambi

Abstract:

The sintering step in powder metallurgy (P/M) processes is very sensitive as it determines to a large extent the properties of the final component produced. Spark plasma sintering over the past decade has been extensively used in consolidating a wide range of materials including metallic alloy powders. This novel, non-conventional sintering method has proven to be advantageous offering full densification of materials, high heating rates, low sintering temperatures, and short sintering cycles over conventional sintering methods. Ti6Al4V has been adjudged the most widely used α+β alloy due to its impressive mechanical performance in service environments, especially in the aerospace and automobile industries being a light metal alloy with the capacity for fuel efficiency needed in these industries. The P/M route has been a promising method for the fabrication of parts made from Ti6Al4V alloy due to its cost and material loss reductions and the ability to produce near net and intricate shapes. However, the use of this alloy has been largely limited owing to its relatively poor hardness and wear properties. The effect of sintering temperature on the densification, hardness, and wear behaviors of spark plasma sintered Ti6Al4V powders was investigated in this present study. Sintering of the alloy powders was performed in the 650–850°C temperature range at a constant heating rate, applied pressure and holding time of 100°C/min, 50 MPa and 5 min, respectively. Density measurements were carried out according to Archimedes’ principle and microhardness tests were performed on sectioned as-polished surfaces at a load of 100gf and dwell time of 15 s. Dry sliding wear tests were performed at varied sliding loads of 5, 15, 25 and 35 N using the ball-on-disc tribometer configuration with WC as the counterface material. Microstructural characterization of the sintered samples and wear tracks were carried out using SEM and EDX techniques. The density and hardness characteristics of sintered samples increased with increasing sintering temperature. Near full densification (99.6% of the theoretical density) and Vickers’ micro-indentation hardness of 360 HV were attained at 850°C. The coefficient of friction (COF) and wear depth improved significantly with increased sintering temperature under all the loading conditions examined, except at 25 N indicating better mechanical properties at high sintering temperatures. Worn surface analyses showed the wear mechanism was a synergy of adhesive and abrasive wears, although the former was prevalent.

Keywords: hardness, powder metallurgy, spark plasma sintering, wear

Procedia PDF Downloads 273
739 A Validated Estimation Method to Predict the Interior Wall of Residential Buildings Based on Easy to Collect Variables

Authors: B. Gepts, E. Meex, E. Nuyts, E. Knaepen, G. Verbeeck

Abstract:

The importance of resource efficiency and environmental impact assessment has raised the interest in knowing the amount of materials used in buildings. If no BIM model or energy performance certificate is available, material quantities can be obtained through an estimation or time-consuming calculation. For the interior wall area, no validated estimation method exists. However, in the case of environmental impact assessment or evaluating the existing building stock as future material banks, knowledge of the material quantities used in interior walls is indispensable. This paper presents a validated method for the estimation of the interior wall area for dwellings based on easy-to-collect building characteristics. A database of 4963 residential buildings spread all over Belgium is used. The data are collected through onsite measurements of the buildings during the construction phase (between mid-2010 and mid-2017). The interior wall area refers to the area of all interior walls in the building, including the inner leaf of exterior (party) walls, minus the area of windows and doors, unless mentioned otherwise. The two predictive modelling techniques used are 1) a (stepwise) linear regression and 2) a decision tree. The best estimation method is selected based on the best R² k-fold (5) fit. The research shows that the building volume is by far the most important variable to estimate the interior wall area. A stepwise regression based on building volume per building, building typology, and type of house provides the best fit, with R² k-fold (5) = 0.88. Although the best R² k-fold value is obtained when the other parameters ‘building typology’ and ‘type of house’ are included, the contribution of these variables can be seen as statistically significant but practically irrelevant. Thus, if these parameters are not available, a simplified estimation method based on only the volume of the building can also be applied (R² k-fold = 0.87). The robustness and precision of the method (output) are validated three times. Firstly, the prediction of the interior wall area is checked by means of alternative calculations of the building volume and of the interior wall area; thus, other definitions are applied to the same data. Secondly, the output is tested on an extension of the database, so it has the same definitions but on other data. Thirdly, the output is checked on an unrelated database with other definitions and other data. The validation of the estimation methods demonstrates that the methods remain accurate when underlying data are changed. The method can support environmental as well as economic dimensions of impact assessment, as it can be used in early design. As it allows the prediction of the amount of interior wall materials to be produced in the future or that might become available after demolition, the presented estimation method can be part of material flow analyses on input and on output.

Keywords: buildings as material banks, building stock, estimation method, interior wall area

Procedia PDF Downloads 30
738 Bioinformatic Strategies for the Production of Glycoproteins in Algae

Authors: Fadi Saleh, Çığdem Sezer Zhmurov

Abstract:

Biopharmaceuticals represent one of the wildest developing fields within biotechnology, and the biological macromolecules being produced inside cells have a variety of applications for therapies. In the past, mammalian cells, especially CHO cells, have been employed in the production of biopharmaceuticals. This is because these cells can achieve human-like completion of PTM. These systems, however, carry apparent disadvantages like high production costs, vulnerability to contamination, and limitations in scalability. This research is focused on the utilization of microalgae as a bioreactor system for the synthesis of biopharmaceutical glycoproteins in relation to PTMs, particularly N-glycosylation. The research points to a growing interest in microalgae as a potential substitute for more conventional expression systems. A number of advantages exist in the use of microalgae, including rapid growth rates, the lack of common human pathogens, controlled scalability in bioreactors, and the ability of some PTMs to take place. Thus, the potential of microalgae to produce recombinant proteins with favorable characteristics makes this a promising platform in order to produce biopharmaceuticals. The study focuses on the examination of the N-glycosylation pathways across different species of microalgae. This investigation is important as N-glycosylation—the process by which carbohydrate groups are linked to proteins—profoundly influences the stability, activity, and general performance of glycoproteins. Additionally, bioinformatics methodologies are employed to explain the genetic pathways implicated in N-glycosylation within microalgae, with the intention of modifying these organisms to produce glycoproteins suitable for human consumption. In this way, the present comparative analysis of the N-glycosylation pathway in humans and microalgae can be used to bridge both systems in order to produce biopharmaceuticals with humanized glycosylation profiles within the microalgal organisms. The results of the research underline microalgae's potential to help improve some of the limitations associated with traditional biopharmaceutical production systems. The study may help in the creation of a cost-effective and scale-up means of producing quality biopharmaceuticals by modifying microalgae genetically to produce glycoproteins with N-glycosylation that is compatible with humans. Improvements in effectiveness will benefit biopharmaceutical production and the biopharmaceutical sector with this novel, green, and efficient expression platform. This thesis, therefore, is thorough research into the viability of microalgae as an efficient platform for producing biopharmaceutical glycoproteins. Based on the in-depth bioinformatic analysis of microalgal N-glycosylation pathways, a platform for their engineering to produce human-compatible glycoproteins is set out in this work. The findings obtained in this research will have significant implications for the biopharmaceutical industry by opening up a new way of developing safer, more efficient, and economically more feasible biopharmaceutical manufacturing platforms.

Keywords: microalgae, glycoproteins, post-translational modification, genome

Procedia PDF Downloads 24
737 Effect of Fuel Type on Design Parameters and Atomization Process for Pressure Swirl Atomizer and Dual Orifice Atomizer for High Bypass Turbofan Engine

Authors: Mohamed K. Khalil, Mohamed S. Ragab

Abstract:

Atomizers are used in many engineering applications including diesel engines, petrol engines and spray combustion in furnaces as well as gas turbine engines. These atomizers are used to increase the specific surface area of the fuel, which achieve a high rate of fuel mixing and evaporation. In all combustion systems reduction in mean drop size is a challenge which has many advantages since it leads to rapid and easier ignition, higher volumetric heat release rate, wider burning range and lower exhaust concentrations of the pollutant emissions. Pressure atomizers have a different configuration for design such as swirl atomizer (simplex), dual orifice, spill return, plain orifice, duplex and fan spray. Simplex pressure atomizers are the most common type of all. Among all types of atomizers, pressure swirl types resemble a special category since they differ in quality of atomization, the reliability of operation, simplicity of construction and low expenditure of energy. But, the disadvantages of these atomizers are that they require very high injection pressure and have low discharge coefficient owing to the fact that the air core covers the majority of the atomizer orifice. To overcome these problems, dual orifice atomizer was designed. This paper proposes a detailed mathematical model design procedure for both pressure swirl atomizer (Simplex) and dual orifice atomizer, examines the effects of varying fuel type and makes a clear comparison between the two types. Using five types of fuel (JP-5, JA1, JP-4, Diesel and Bio-Diesel) as a case study, reveal the effect of changing fuel type and its properties on atomizers design and spray characteristics. Which effect on combustion process parameters; Sauter Mean Diameter (SMD), spray cone angle and sheet thickness with varying the discharge coefficient from 0.27 to 0.35 during takeoff for high bypass turbofan engines. The spray atomizer performance of the pressure swirl fuel injector was compared to the dual orifice fuel injector at the same differential pressure and discharge coefficient using Excel. The results are analyzed and handled to form the final reliability results for fuel injectors in high bypass turbofan engines. The results show that the Sauter Mean Diameter (SMD) in dual orifice atomizer is larger than Sauter Mean Diameter (SMD) in pressure swirl atomizer, the film thickness (h) in dual orifice atomizer is less than the film thickness (h) in pressure swirl atomizer. The Spray Cone Angle (α) in pressure swirl atomizer is larger than Spray Cone Angle (α) in dual orifice atomizer.

Keywords: gas turbine engines, atomization process, Sauter mean diameter, JP-5

Procedia PDF Downloads 165
736 Synthesis and Characterization of High-Aspect-Ratio Hematite Nanostructures for Solar Water Splitting

Authors: Paula Quiterio, Arlete Apolinario, Celia T. Sousa, Joao Azevedo, Paula Dias, Adelio Mendes, Joao P. Araujo

Abstract:

Nowadays one of the mankind's greatest challenges has been the supply of low-cost and environmentally friendly energy sources as an alternative to non-renewable fossil fuels. Hydrogen has been considered a promising solution, representing a clean and low-cost fuel. It can be produced directly from clean and abundant resources, such as sunlight and water, using photoelectrochemical cells (PECs), in a process that mimics the nature´s photosynthesis. Hematite (alpha-Fe2O3) has attracted considerable attention as a promising photoanode for solar water splitting, due to its high chemical stability, nontoxicity, availability and low band gap (2.2 eV), which allows reaching a high thermodynamic solar-to-hydrogen efficiency of 16.8 %. However, the main drawbacks of hematite such as the short hole diffusion length and the poor conductivity that lead to high electron-hole recombination result in significant PEC efficiency losses. One strategy to overcome these limitations and to increase the PEC efficiency is to use 1D nanostructures, such as nanotubes (NTs) and nanowires (NWs), which present high aspect ratios and large surface areas providing direct pathways for electron transport up to the charge collector and minimizing the recombination losses. In particular, due to the ultrathin walls of the NTs, the holes can reach the surface faster than in other nanostructures, representing a key factor for the NTs photoresponse. In this work, we prepared hematite NWs and NTs, respectively by hydrothermal process and electrochemical anodization. For hematite NWs growing, we studied the effect of variable hydrothermal conditions, different annealing temperatures and time, and the use of Ti and Sn dopants on the morphology and PEC performance. The crystalline phase characterization by X-ray diffraction was crucial to distinguish the formation of hematite and other iron oxide phases, alongside its effect on the photoanodes conductivity and consequent PEC efficiency. The conductivity of the as-prepared NWs is very low, in the order of 10-5 S cm-1, but after doping and annealing optimization it increased by a factor of 105. A high photocurrent density of 1.02 mA cm-2 at 1.45 VRHE was obtained under simulated sunlight, which is a very promising value for this kind of hematite nanostructures. The stability of the photoelectrodes was also tested, presenting good stability after several J-V measurements over time. The NTs, synthesized by fast anodizations with potentials ranging from 20-100 V, presented a linear growth of the NTs pore walls, with very low thicknesses from 10 - 18 nm. These preliminary results are also very promising for the use of hematite photoelectrodes on PEC hydrogen applications.

Keywords: hematite, nanotubes, nanowires, photoelectrochemical cells

Procedia PDF Downloads 229
735 Finite Element Modeling of Mass Transfer Phenomenon and Optimization of Process Parameters for Drying of Paddy in a Hybrid Solar Dryer

Authors: Aprajeeta Jha, Punyadarshini P. Tripathy

Abstract:

Drying technologies for various food processing operations shares an inevitable linkage with energy, cost and environmental sustainability. Hence, solar drying of food grains has become imperative choice to combat duo challenges of meeting high energy demand for drying and to address climate change scenario. But performance and reliability of solar dryers depend hugely on sunshine period, climatic conditions, therefore, offer a limited control over drying conditions and have lower efficiencies. Solar drying technology, supported by Photovoltaic (PV) power plant and hybrid type solar air collector can potentially overpower the disadvantages of solar dryers. For development of such robust hybrid dryers; to ensure quality and shelf-life of paddy grains the optimization of process parameter becomes extremely critical. Investigation of the moisture distribution profile within the grains becomes necessary in order to avoid over drying or under drying of food grains in hybrid solar dryer. Computational simulations based on finite element modeling can serve as potential tool in providing a better insight of moisture migration during drying process. Hence, present work aims at optimizing the process parameters and to develop a 3-dimensional (3D) finite element model (FEM) for predicting moisture profile in paddy during solar drying. COMSOL Multiphysics was employed to develop a 3D finite element model for predicting moisture profile. Furthermore, optimization of process parameters (power level, air velocity and moisture content) was done using response surface methodology in design expert software. 3D finite element model (FEM) for predicting moisture migration in single kernel for every time step has been developed and validated with experimental data. The mean absolute error (MAE), mean relative error (MRE) and standard error (SE) were found to be 0.003, 0.0531 and 0.0007, respectively, indicating close agreement of model with experimental results. Furthermore, optimized process parameters for drying paddy were found to be 700 W, 2.75 m/s at 13% (wb) with optimum temperature, milling yield and drying time of 42˚C, 62%, 86 min respectively, having desirability of 0.905. Above optimized conditions can be successfully used to dry paddy in PV integrated solar dryer in order to attain maximum uniformity, quality and yield of product. PV-integrated hybrid solar dryers can be employed as potential and cutting edge drying technology alternative for sustainable energy and food security.

Keywords: finite element modeling, moisture migration, paddy grain, process optimization, PV integrated hybrid solar dryer

Procedia PDF Downloads 150