Search results for: validation techniques
6785 Validation of Solar PV Inverter Harmonics Behaviour at Different Power Levels in a Test Network
Authors: Wilfred Fritz
Abstract:
Grid connected solar PV inverters need to be compliant to standard regulations regarding unwanted harmonic generation. This paper gives an introduction to harmonics, solar PV inverter voltage regulation and balancing through compensation and investigates the behaviour of harmonic generation at different power levels. Practical measurements of harmonics and power levels with a power quality data logger were made, on a test network at a university in Germany. The test setup and test results are discussed. The major finding was that between the morning and afternoon load peak windows when the PV inverters operate under low solar insolation and low power levels, more unwanted harmonics are generated. This has a huge impact on the power quality of the grid as well as capital and maintenance costs. The design of a single-tuned harmonic filter towards harmonic mitigation is presented.Keywords: harmonics, power quality, pulse width modulation, total harmonic distortion
Procedia PDF Downloads 2406784 Effect of Highly Pressurized Dispersion Arc Nozzle on Breakup of Oil Leakage in Offshore
Authors: N. M. M. Ammar, S. M. Mustaqim, N. M. Nadzir
Abstract:
The most important problem occurs on oil spills in sea water is to reduce the oil spills size. This study deals with the development of high pressurized nozzle using dispersion method for oil leakage in offshore. 3D numerical simulation results were obtained using ANSYS Fluent 13.0 code and correlate with the experimental data for validation. This paper studies the contribution of the process on flow speed and pressure of the flow from two different geometrical designs of nozzles and to generate a spray pattern suitable for dispersant application. Factor of size distribution of droplets generated by the nozzle is calculated using pressures ranging from 2 to 6 bars. Results obtain from both analyses shows a significant spray pattern and flow distribution as well as distance. Results also show a significant contribution on the effect of oil leakage in terms of the diameter of the oil spills break up.Keywords: arc nozzle, CFD simulation, droplets, oil spills
Procedia PDF Downloads 4196783 Multi-Level Pulse Width Modulation to Boost the Power Efficiency of Switching Amplifiers for Analog Signals with Very High Crest Factor
Authors: Jan Doutreloigne
Abstract:
The main goal of this paper is to develop a switching amplifier with optimized power efficiency for analog signals with a very high crest factor such as audio or DSL signals. Theoretical calculations show that a switching amplifier architecture based on multi-level pulse width modulation outperforms all other types of linear or switching amplifiers in that respect. Simulations on a 2 W multi-level switching audio amplifier, designed in a 50 V 0.35 mm IC technology, confirm its superior performance in terms of power efficiency. A real silicon implementation of this audio amplifier design is currently underway to provide experimental validation.Keywords: audio amplifier, multi-level switching amplifier, power efficiency, pulse width modulation, PWM, self-oscillating amplifier
Procedia PDF Downloads 3436782 An Advanced Approach to Detect and Enumerate Soil-Transmitted Helminth Ova from Wastewater
Authors: Vivek B. Ravindran, Aravind Surapaneni, Rebecca Traub, Sarvesh K. Soni, Andrew S. Ball
Abstract:
Parasitic diseases have a devastating, long-term impact on human health and welfare. More than two billion people are infected with soil-transmitted helminths (STHs), including the roundworms (Ascaris), hookworms (Necator and Ancylostoma) and whipworm (Trichuris) with majority occurring in the tropical and subtropical regions of the world. Despite its low prevalence in developed countries, the removal of STHs from wastewater remains crucial to allow the safe use of sludge or recycled water in agriculture. Conventional methods such as incubation and optical microscopy are cumbersome; consequently, the results drastically vary from person-to-person observing the ova (eggs) under microscope. Although PCR-based methods are an alternative to conventional techniques, it lacks the ability to distinguish between viable and non-viable helminth ova. As a result, wastewater treatment industries are in major need for radically new and innovative tools to detect and quantify STHs eggs with precision, accuracy and being cost-effective. In our study, we focus on the following novel and innovative techniques: -Recombinase polymerase amplification and Surface enhanced Raman spectroscopy (RPA-SERS) based detection of helminth ova. -Use of metal nanoparticles and their relative nanozyme activity. -Colorimetric detection, differentiation and enumeration of genera of helminth ova using hydrolytic enzymes (chitinase and lipase). -Propidium monoazide (PMA)-qPCR to detect viable helminth ova. -Modified assay to recover and enumerate helminth eggs from fresh raw sewage. -Transcriptome analysis of ascaris ova in fresh raw sewage. The aforementioned techniques have the potential to replace current conventional and molecular methods thereby producing a standard protocol for the determination and enumeration of helminth ova in sewage sludge.Keywords: colorimetry, helminth, PMA-QPCR, nanoparticles, RPA, viable
Procedia PDF Downloads 2996781 A Survey on Intelligent Connected-Vehicle Applications Based on Intercommunication Techniques in Smart Cities
Authors: B. Karabuluter, O. Karaduman
Abstract:
Connected-Vehicles consists of intelligent vehicles, each of which can communicate with each other. Smart Cities are the most prominent application area of intelligent vehicles that can communicate with each other. The most important goal that is desired to be realized in Smart Cities planned for facilitating people's lives is to make transportation more comfortable and safe with intelligent/autonomous/driverless vehicles communicating with each other. In order to ensure these, the city must have communication infrastructure in the first place, and the vehicles must have the features to communicate with this infrastructure and with each other. In this context, intelligent transport studies to solve all transportation and traffic problems in classical cities continue to increase rapidly. In this study, current connected-vehicle applications developed for smart cities are considered in terms of communication techniques, vehicular networking, IoT, urban transportation implementations, intelligent traffic management, road safety, self driving. Taxonomies and assessments performed in the work show the trend of studies in inter-vehicle communication systems in smart cities and they are contributing to by ensuring that the requirements in this area are revealed.Keywords: smart city, connected vehicles, infrastructures, VANET, wireless communication, intelligent traffic management
Procedia PDF Downloads 5276780 Stochastic Variation of the Hubble's Parameter Using Ornstein-Uhlenbeck Process
Authors: Mary Chriselda A
Abstract:
This paper deals with the fact that the Hubble's parameter is not constant and tends to vary stochastically with time. This premise has been proven by converting it to a stochastic differential equation using the Ornstein-Uhlenbeck process. The formulated stochastic differential equation is further solved analytically using the Euler and the Kolmogorov Forward equations, thereby obtaining the probability density function using the Fourier transformation, thereby proving that the Hubble's parameter varies stochastically. This is further corroborated by simulating the observations using Python and R-software for validation of the premise postulated. We can further draw conclusion that the randomness in forces affecting the white noise can eventually affect the Hubble’s Parameter leading to scale invariance and thereby causing stochastic fluctuations in the density and the rate of expansion of the Universe.Keywords: Chapman Kolmogorov forward differential equations, fourier transformation, hubble's parameter, ornstein-uhlenbeck process , stochastic differential equations
Procedia PDF Downloads 2026779 Synthesis and Spectrophotometric Study of Omeprazole Charge Transfer Complexes with Bromothymol Blue, Methyl Orange, and Picric Acid
Authors: Saeeda Nadir Ali, Najma Sultana, Muhammad Saeed Arayne
Abstract:
Charge transfer complexes of omeprazole with bromothymol blue, methyl orange, and picric acid in the Beer’s law ranges 7-56, 6-48, and 10-80 µg mL-1, exhibiting stoichiometric ratio 1:1, and maximum wavelength 400, 420 and 373 nm respectively have been studied in aqueous medium. ICH guidelines were followed for validation study. Spectroscopic parameters including oscillator’s strength, dipole moment, ionization potential, energy of complexes, resonance energy, association constant and Gibb’s free energy changes have also been investigated and Benesi-Hildebrand plot in each case has been obtained. In addition, the methods were fruitfully employed for omeprazole determination in pharmaceutical formulations with no excipients obstruction during analysis. Solid omeprazole complexes with all the acceptors were synthesized and then structure was elucidated by IR and 1H NMR spectroscopy.Keywords: omeprazole, bromothymol blue, methyl orange and picric acid, charge transfer complexes
Procedia PDF Downloads 5416778 Savi Scout versus Wire-Guided Localization in Non-palpable Breast Lesions – Comparison of Breast Tissue Volume and Weight and Excision Safety Margin
Authors: Walid Ibrahim, Abdul Kasem, Sudeendra Doddi, Ilaria Giono, Tareq Sabagh, Muhammad Ammar, Nermin Osman
Abstract:
Background: wire-guided localization (WL) is the most widely used method for the localization of non-palpable breast lesions. SAVI SCOUT occult lesion localization (SSL) is a new technique in breast-conservative surgery. SSL has the potential benefit of improving radiology workflow as well as accurate localization. Purpose: The purpose of this study is to compare the breast tissue specimen volume and weight and margin excision between WL and SSL. Materials and methods: A single institution retrospective analysis of 377 female patients who underwent wide local breast excision with SAVI SCOUT and or wire-guided technique between 2018 and 2021 in a UK University teaching hospital. Breast department. Breast tissue specimen volume and weight, and margin excision have been evaluated in the three groups of different localization. Results: Three hundred and seventy-seven patients were studied. Of these, 261 had wire localization, 88 had SCOUT and 28 had dual localization techniques. Tumor size ranged from 1 to 75mm (Median 20mm). The pathology specimen weight ranged from 1 to 466gm (Median 46.8) and the volume ranged from 1.305 to 1560cm³ (Median 106.32 cm³). SCOUT localization was associated with a significantly low specimen weight than wire or the dual technique localization (Median 41gm vs 47.3gm and 47gm, p = 0.029). SCOUT was not associated with better specimen volume with a borderline significance in comparison to wire and combined techniques (Median 108cm³ vs 105cm³ and 105cm³, p = 0.047). There was a significant correlation between tumor size and pathology specimen weight in the three groups. SCOUT showed a better >2mm safety margin in comparison to the other 2 techniques (p = 0.031). Conclusion: Preoperative SCOUT localization is associated with better specimen weight and better specimen margin. SCOUT did not show any benefits in terms of specimen volume which may be due to difficulty in getting the accurate specimen volume due to the irregularity of the soft tissue specimen.Keywords: scout, wire, localization, breast
Procedia PDF Downloads 1106777 Bioproduction of Indirubin from Fermentation and Renewable Sugars Through Genomic and Metabolomic Engineering of a Bacterial Strain
Authors: Vijay H. Ingole, Efthimia Lioliou
Abstract:
Indirubin, a key bioactive component of traditional Chinese medicine, has gained increasing recognition for its potential in modern biomedical applications, particularly in pharmacology and therapeutics. The present work aimed to harness the potential by engineering an Escherichia coli strain capable of high-yield indirubin production. Through meticulous genetic engineering, we optimized the metabolic pathways in E. coli to enhance indirubin synthesis. Further, to explored the optimization of culture media and indirubin yield via batch and fed-batch fermentation techniques. By fine-tuning upstream process (USP) parameters, including nutrient composition, pH, temperature, and aeration, we established conditions that maximized both cell growth and indirubin production. Additionally, significant efforts were dedicated to refining downstream process (DSP) conditions for the extraction, purification, and quantification of indirubin. Utilizing advanced biochemical methods and analytical techniques such as UHPLC, we ensured the production of high purity indirubin. This approach not only improved the economic viability of indirubin bioproduction but also aligned with the principles of green production and sustainability.Keywords: indirubin, bacterial strain, fermentation, HPLC
Procedia PDF Downloads 286776 Decision Support for Modularisation: Engineering Construction Case Studies
Authors: Rolla Monib, Chris Ian Goodier, Alistair Gibb
Abstract:
This paper aims to investigate decision support strategies in the EC sector to determine the most appropriate degree of modularization. This is achieved through three oil and gas (O&G) and two power plant case studies via semi-structured interviews (n=59 and n=27, respectively), analysis of project documents, and case study-specific semi-structured validation interviews (n=12 and n=8). New terminology to distinguish degrees of modularization is proposed, along with a decision-making support checklist and a diagrammatic decision-making support figure. Results indicate that the EC sub-sectors were substantially more satisfied with the application of component, structural, or traditional modularization compared with system modularization for some types of modules. Key drivers for decisions on the degree of modularization vary across module types. This paper can help the EC sector determine the most suitable degree of modularization via a decision-making support strategy.Keywords: modularization, engineering construction, case study, decision support
Procedia PDF Downloads 946775 Mobile Application Interventions in Positive Psychology: Current Status and Recommendations for Effective App Design
Authors: Gus Salazar, Jeremy Bekker, Lauren Linford, Jared Warren
Abstract:
Positive psychology practices allow for its principles to be applied to all people, regardless of their current level of functioning. To increase the dissemination of these practices, interventions are being adapted for use with digital technology, such as mobile apps. However, the research regarding positive psychology mobile app interventions is still in its infancy. In an effort to facilitate progress in this important area, we 1) conducted a qualitative review to summarize the current state of the positive psychology mobile app literature and 2) developed research-supported recommendations for positive psychology app development to maximize behavior change. In our literature review, we found that while positive psychology apps varied widely in content and purpose, there was a near-complete lack of research supporting their effectiveness. Most apps provided no rationale for the behavioral change techniques (BCTs) they employed in their app, and most did not develop their app with specific theoretical frameworks or design models in mind. Given this problem, we recommended four steps for effective positive psychology app design. First, developers must establish their app in a research-supported theory of change. Second, researchers must select appropriate behavioral change techniques which are consistent with their app’s goals. Third, researchers must leverage effective design principles. These steps will help mobile applications use data-driven methods for encouraging behavior change in their users. Lastly, we discuss directions for future research. In particular, researchers must investigate the effectiveness of various BCTs in positive psychology interventions. Although there is some research on this point, we do not yet clearly understand the mechanisms within the apps that lead to behavior change. Additionally, app developers must also provide data on the effectiveness of their mobile apps. As developers follow these steps for effective app development and as researchers continue to investigate what makes these apps most effective, we will provide millions of people in need with access to research-based mental health resources.Keywords: behavioral change techniques, mobile app, mobile intervention, positive psychology
Procedia PDF Downloads 2266774 Modeling and Simulation of Textile Effluent Treatment Using Ultrafiltration Membrane Technology
Authors: Samia Rabet, Rachida Chemini, Gerhard Schäfer, Farid Aiouache
Abstract:
The textile industry generates large quantities of wastewater, which poses significant environmental problems due to its complex composition and high levels of pollutants loaded principally with heavy metals, large amounts of COD, and dye. Separation treatment methods are often known for their effectiveness in removing contaminants whereas membrane separation techniques are a promising process for the treatment of textile effluent due to their versatility, efficiency, and low energy requirements. This study focuses on the modeling and simulation of membrane separation technologies with a cross-flow filtration process for textile effluent treatment. It aims to explore the application of mathematical models and computational simulations using ASPEN Plus Software in the prediction of a complex and real effluent separation. The results demonstrate the effectiveness of modeling and simulation techniques in predicting pollutant removal efficiencies with a global deviation percentage of 1.83% between experimental and simulated results; membrane fouling behavior, and overall process performance (hydraulic resistance, membrane porosity) were also estimated and indicating that the membrane losses 10% of its efficiency after 40 min of working.Keywords: membrane separation, ultrafiltration, textile effluent, modeling, simulation
Procedia PDF Downloads 596773 Automatic Identification and Classification of Contaminated Biodegradable Plastics using Machine Learning Algorithms and Hyperspectral Imaging Technology
Authors: Nutcha Taneepanichskul, Helen C. Hailes, Mark Miodownik
Abstract:
Plastic waste has emerged as a critical global environmental challenge, primarily driven by the prevalent use of conventional plastics derived from petrochemical refining and manufacturing processes in modern packaging. While these plastics serve vital functions, their persistence in the environment post-disposal poses significant threats to ecosystems. Addressing this issue necessitates approaches, one of which involves the development of biodegradable plastics designed to degrade under controlled conditions, such as industrial composting facilities. It is imperative to note that compostable plastics are engineered for degradation within specific environments and are not suited for uncontrolled settings, including natural landscapes and aquatic ecosystems. The full benefits of compostable packaging are realized when subjected to industrial composting, preventing environmental contamination and waste stream pollution. Therefore, effective sorting technologies are essential to enhance composting rates for these materials and diminish the risk of contaminating recycling streams. In this study, it leverage hyperspectral imaging technology (HSI) coupled with advanced machine learning algorithms to accurately identify various types of plastics, encompassing conventional variants like Polyethylene terephthalate (PET), Polypropylene (PP), Low density polyethylene (LDPE), High density polyethylene (HDPE) and biodegradable alternatives such as Polybutylene adipate terephthalate (PBAT), Polylactic acid (PLA), and Polyhydroxyalkanoates (PHA). The dataset is partitioned into three subsets: a training dataset comprising uncontaminated conventional and biodegradable plastics, a validation dataset encompassing contaminated plastics of both types, and a testing dataset featuring real-world packaging items in both pristine and contaminated states. Five distinct machine learning algorithms, namely Partial Least Squares Discriminant Analysis (PLS-DA), Support Vector Machine (SVM), Convolutional Neural Network (CNN), Logistic Regression, and Decision Tree Algorithm, were developed and evaluated for their classification performance. Remarkably, the Logistic Regression and CNN model exhibited the most promising outcomes, achieving a perfect accuracy rate of 100% for the training and validation datasets. Notably, the testing dataset yielded an accuracy exceeding 80%. The successful implementation of this sorting technology within recycling and composting facilities holds the potential to significantly elevate recycling and composting rates. As a result, the envisioned circular economy for plastics can be established, thereby offering a viable solution to mitigate plastic pollution.Keywords: biodegradable plastics, sorting technology, hyperspectral imaging technology, machine learning algorithms
Procedia PDF Downloads 826772 Aqueous Extract of Argemone Mexicana Roots for Effective Corrosion Inhibition of Mild Steel in HCl Environment
Authors: Gopal Ji, Priyanka Dwivedi, Shanthi Sundaram, Rajiv Prakash
Abstract:
Inhibition effect of aqueous Argemone Mexicana root extract (AMRE) on mild steel corrosion in 1 M HCl has been studied by weight loss, Tafel polarization curves, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. Results indicate that inhibition ability of AMRE increases with the increasing amount of the extract. A maximum corrosion inhibition of 94% is acknowledged at the extract concentration of 400 mg L-1. Polarization curves and impedance spectra reveal that both cathodic and anodic reactions are suppressed due to passive layer formation at metal-acid interface. It is also confirmed by SEM micro graphs and FTIR studies. Furthermore, the effects of acid concentration (1-5 M), immersion time (120 hours) and temperature (30-60˚C) on inhibition potential of AMRE have been investigated by weight loss method and electrochemical techniques. Adsorption mechanism is also proposed on the basis of weight loss results, which shows good agreement with Langmuir isotherm.Keywords: mild steel, polarization, SEM, acid corrosion, EIS, green inhibition
Procedia PDF Downloads 4936771 Effect in Animal Nutrition of Genetical Modified Plant(GM)
Authors: Abdullah Özbilgin, Oguzhan Kahraman, Mustafa Selçuk Alataş
Abstract:
Plant breeders have made and will continue to make important contributions toward meeting the need for more and better feed and food. The use of new techniques to modify the genetic makeup of plants to improve their properties has led to a new generation of crops, grains and their by-products for feed. Plant breeders have made and will continue to make important contributions toward meeting the need for more and better feed and food. The use of new techniques to modify the genetic makeup of plants to improve their properties has led to a new generation of crops, grains and their by-products for feed. The land area devoted to the cultivation of genetically modified (GM) plants has increased in recent years: in 2012 such plants were grown on over 170 million hectares globally, in 28 different countries, and are at resent used by 17.3 million farmers worldwide. The majority of GM plants are used as feed material for food-producing farm animals. Despite the facts that GM plants have been used as feed for years and a number of feeding studies have proved their safety for animals, they still give rise to emotional public discussion.Keywords: crops, genetical modified plant(GM), plant, safety
Procedia PDF Downloads 5666770 An Investigation of Surface Water Quality in an Industrial Area Using Integrated Approaches
Authors: Priti Saha, Biswajit Paul
Abstract:
Rapid urbanization and industrialization has increased the pollution load in surface water bodies. However, these water bodies are major source of water for drinking, irrigation, industrial activities and fishery. Therefore, water quality assessment is paramount importance to evaluate its suitability for all these purposes. This study focus to evaluate the surface water quality of an industrial city in eastern India through integrating interdisciplinary techniques. The multi-purpose Water Quality Index (WQI) assess the suitability for drinking, irrigation as well as fishery of forty-eight sampling locations, where 8.33% have excellent water quality (WQI:0-25) for fishery and 10.42%, 20.83% and 45.83% have good quality (WQI:25-50), which represents its suitability for drinking irrigation and fishery respectively. However, the industrial water quality was assessed through Ryznar Stability Index (LSI), which affirmed that only 6.25% of sampling locations have neither corrosive nor scale forming properties (RSI: 6.2-6.8). Integration of these statistical analysis with geographical information system (GIS) helps in spatial assessment. It identifies of the regions where the water quality is suitable for its use in drinking, irrigation, fishery as well as industrial activities. This research demonstrates the effectiveness of statistical and GIS techniques for water quality assessment.Keywords: surface water, water quality assessment, water quality index, spatial assessment
Procedia PDF Downloads 1816769 An Appraisal of Maintenance Management Practices in Federal University Dutse and Jigawa State Polytechnic Dutse, Nigeria
Authors: Aminu Mubarak Sadis
Abstract:
This study appraised the maintenance management practice in Federal University Dutse and Jigawa State Polytechnic Dutse, in Nigeria. The Physical Planning, Works and Maintenance Departments of the two Higher Institutions (Federal University Dutse and Jigawa State Polytechnic) are responsible for production and maintenance management of their physical assets. Over–enrollment problem has been a common feature in the higher institutions in Nigeria, Data were collected by the administered questionnaires and subsequent oral interview to authenticate the completed questionnaires. Random sampling techniques was used in selecting 150 respondents across the various institutions (Federal University Dutse and Jigawa State Polytechnic Dutse). Data collected was analyzed using Statistical Package for Social Science (SPSS) and t-test statistical techniques The conclusion was that maintenance management activities are yet to be given their appropriate attention on functions of the university and polytechnic which are crucial to improving teaching, learning and research. The unit responsible for maintenance and managing facilities should focus on their stated functions and effect changes were possible.Keywords: appraisal, maintenance management, university, Polytechnic, practices
Procedia PDF Downloads 2526768 The Concept of Neurostatistics as a Neuroscience
Authors: Igwenagu Chinelo Mercy
Abstract:
This study is on the concept of Neurostatistics in relation to neuroscience. Neuroscience also known as neurobiology is the scientific study of the nervous system. In the study of neuroscience, it has been noted that brain function and its relations to the process of acquiring knowledge and behaviour can be better explained by the use of various interrelated methods. The scope of neuroscience has broadened over time to include different approaches used to study the nervous system at different scales. On the other hand, Neurostatistics based on this study is viewed as a statistical concept that uses similar techniques of neuron mechanisms to solve some problems especially in the field of life science. This study is imperative in this era of Artificial intelligence/Machine leaning in the sense that clear understanding of the technique and its proper application could assist in solving some medical disorder that are mainly associated with the nervous system. This will also help in layman’s understanding of the technique of the nervous system in order to overcome some of the health challenges associated with it. For this concept to be well understood, an illustrative example using a brain associated disorder was used for demonstration. Structural equation modelling was adopted in the analysis. The results clearly show the link between the techniques of statistical model and nervous system. Hence, based on this study, the appropriateness of Neurostatistics application in relation to neuroscience could be based on the understanding of the behavioural pattern of both concepts.Keywords: brain, neurons, neuroscience, neurostatistics, structural equation modeling
Procedia PDF Downloads 726767 Early Recognition and Grading of Cataract Using a Combined Log Gabor/Discrete Wavelet Transform with ANN and SVM
Authors: Hadeer R. M. Tawfik, Rania A. K. Birry, Amani A. Saad
Abstract:
Eyes are considered to be the most sensitive and important organ for human being. Thus, any eye disorder will affect the patient in all aspects of life. Cataract is one of those eye disorders that lead to blindness if not treated correctly and quickly. This paper demonstrates a model for automatic detection, classification, and grading of cataracts based on image processing techniques and artificial intelligence. The proposed system is developed to ease the cataract diagnosis process for both ophthalmologists and patients. The wavelet transform combined with 2D Log Gabor Wavelet transform was used as feature extraction techniques for a dataset of 120 eye images followed by a classification process that classified the image set into three classes; normal, early, and advanced stage. A comparison between the two used classifiers, the support vector machine SVM and the artificial neural network ANN were done for the same dataset of 120 eye images. It was concluded that SVM gave better results than ANN. SVM success rate result was 96.8% accuracy where ANN success rate result was 92.3% accuracy.Keywords: cataract, classification, detection, feature extraction, grading, log-gabor, neural networks, support vector machines, wavelet
Procedia PDF Downloads 3356766 Application of Unmanned Aerial Vehicle in Urban Rail Transit Intelligent Inspection
Authors: Xinglu Nie, Feifei Tang, Chuntao Wei, Zhimin Ruan, Qianhong Zhu
Abstract:
Current method of manual-style inspection can not fully meet the requirement of the urban rail transit security in China. In this paper, an intelligent inspection method using unmanned aerial vehicle (UAV) is utilized. A series of orthophoto of rail transit monitored area was collected by UAV, image correction and registration were operated among multi-phase images, then the change detection was used to detect the changes, judging the engineering activities and human activities that may become potential threats to the security of urban rail. Not only qualitative judgment, but also quantitative judgment of changes in the security control area can be provided by this method, which improves the objectives and efficiency of the patrol results. The No.6 line of Chongqing Municipality was taken as an example to verify the validation of this method.Keywords: rail transit, control of protected areas, intelligent inspection, UAV, change detection
Procedia PDF Downloads 3706765 Hyperspectral Mapping Methods for Differentiating Mangrove Species along Karachi Coast
Authors: Sher Muhammad, Mirza Muhammad Waqar
Abstract:
It is necessary to monitor and identify mangroves types and spatial extent near coastal areas because it plays an important role in coastal ecosystem and environmental protection. This research aims at identifying and mapping mangroves types along Karachi coast ranging from 24.79 to 24.85 degree in latitude and 66.91 to 66.97 degree in longitude using hyperspectral remote sensing data and techniques. Image acquired during February, 2012 through Hyperion sensor have been used for this research. Image preprocessing includes geometric and radiometric correction followed by Minimum Noise Fraction (MNF) and Pixel Purity Index (PPI). The output of MNF and PPI has been analyzed by visualizing it in n-dimensions for end-member extraction. Well-distributed clusters on the n-dimensional scatter plot have been selected with the region of interest (ROI) tool as end members. These end members have been used as an input for classification techniques applied to identify and map mangroves species including Spectral Angle Mapper (SAM), Spectral Feature Fitting (SFF), and Spectral Information Diversion (SID). Only two types of mangroves namely Avicennia Marina (white mangroves) and Avicennia Germinans (black mangroves) have been observed throughout the study area.Keywords: mangrove, hyperspectral, hyperion, SAM, SFF, SID
Procedia PDF Downloads 3626764 Concept for Knowledge out of Sri Lankan Non-State Sector: Performances of Higher Educational Institutes and Successes of Its Sector
Authors: S. Jeyarajan
Abstract:
Concept of knowledge is discovered from conducted study for successive Competition in Sri Lankan Non-State Higher Educational Institutes. The Concept discovered out of collected Knowledge Management Practices from Emerald inside likewise reputed literatures and of Non-State Higher Educational sector. A test is conducted to reveal existences and its reason behind of these collected practices in Sri Lankan Non-State Higher Education Institutes. Further, unavailability of such study and uncertain on number of participants for data collection in the Sri Lankan context contributed selection of research method as qualitative method, which used attributes of Delphi Method to manage those likewise uncertainty. Data are collected under Dramaturgical Method, which contributes efficient usage of the Delphi method. Grounded theory is selected as data analysis techniques, which is conducted in intermixed discourse to manage different perspectives of data that are collected systematically through perspective and modified snowball sampling techniques. Data are then analysed using Grounded Theory Development Techniques in Intermix discourses to manage differences in Data. Consequently, Agreement in the results of Grounded theories and of finding in the Foreign Study is discovered in the analysis whereas present study conducted as Qualitative Research and The Foreign Study conducted as Quantitative Research. As such, the Present study widens the discovery in the Foreign Study. Further, having discovered reason behind of the existences, the Present result shows Concept for Knowledge from Sri Lankan Non-State sector to manage higher educational Institutes in successful manner.Keywords: adherence of snowball sampling into perspective sampling, Delphi method in qualitative method, grounded theory development in intermix discourses of analysis, knowledge management for success of higher educational institutes
Procedia PDF Downloads 1746763 Rewriting, Reframing, and Restructuring the Story: A Narrative and Solution Focused Therapy Approach to Family Therapy
Authors: Eman Tadros
Abstract:
Solution Focused Therapy sheds a positive light on a client’s problem(s) by instilling hope, focusing on the connection with the client, and describing the problem in a way to display change being possible. Solution focused therapists highlight clients’ positive strengths, reframe what clients say, do, or believe in a positive statement, action, or belief. Narrative Therapy focuses on the stories individuals tell about their past in which shape their current and future lives. Changing the language used aids clients in reevaluating their values and views of themselves, this then constructs a more positive way of thinking about their story. Both therapies are based on treating each client as an individual with a problem rather than that the individual is a problem and being able to give power back to the client. The purpose of these ideologies is to open a client to alternative understandings. This paper displays how clinicians can empower and identify their clients’ positive strengths and resiliency factors. Narrative and Solution-Focused Techniques will be integrated to instill positivity and empowerment in clients. Techniques such as deconstruction, collaboration, complimenting, miracle/exception/scaling questioning will be analyzed and modeled. Furthermore, bridging Solution Focused Therapy and Narrative Therapy gives a voice to unheard client(s).Keywords: solution focused therapy, narrative therapy, empowerment, resilience
Procedia PDF Downloads 2406762 Data Mining Approach for Commercial Data Classification and Migration in Hybrid Storage Systems
Authors: Mais Haj Qasem, Maen M. Al Assaf, Ali Rodan
Abstract:
Parallel hybrid storage systems consist of a hierarchy of different storage devices that vary in terms of data reading speed performance. As we ascend in the hierarchy, data reading speed becomes faster. Thus, migrating the application’ important data that will be accessed in the near future to the uppermost level will reduce the application I/O waiting time; hence, reducing its execution elapsed time. In this research, we implement trace-driven two-levels parallel hybrid storage system prototype that consists of HDDs and SSDs. The prototype uses data mining techniques to classify application’ data in order to determine its near future data accesses in parallel with the its on-demand request. The important data (i.e. the data that the application will access in the near future) are continuously migrated to the uppermost level of the hierarchy. Our simulation results show that our data migration approach integrated with data mining techniques reduces the application execution elapsed time when using variety of traces in at least to 22%.Keywords: hybrid storage system, data mining, recurrent neural network, support vector machine
Procedia PDF Downloads 3096761 Numerical Simulation of the Flow around Wing-In-Ground Effect (WIG) Craft
Authors: A. Elbatran, Y. Ahmed, A. Radwan, M. Ishak
Abstract:
The use of WIG craft is representing an ambitious technology that will support in reducing time, effort, and money of the conventional marine transportation in the future. This paper investigates the aerodynamic characteristic of compound wing-in-ground effect (WIG) craft model. Drag coefficient, lift coefficient and Lift and drag ratio were studied numerically with respect to the ground clearance and the wing angle of attack. The modifications of the wing has been done in order to investigate the most suitable wing configuration that can increase the wing lift-to-drag ratio at low ground clearance. A numerical investigation was carried out in this research work using finite volume Reynolds-Averaged Navier-Stokes Equations (RANSE) code ANSYS CFX, Validation was carried out by using experiments. The experimental and the numerical results concluded that the lift to drag ratio decreased with the increasing of the ground clearance.Keywords: drag Coefficient, ground clearance, navier-stokes, WIG
Procedia PDF Downloads 3816760 Identifying and Analyzing the Role of Brand Loyalty towards Incumbent Smartphones in New Branded Smartphone Adoption: Approach by Dual Process Theory
Authors: Lee Woong-Kyu
Abstract:
Fierce competition in smartphone market may encourage users to switch brands when buying a new smartphone. However, many smartphone users continue to use the same brand although other branded smartphones are perceived to be more attractive. The purpose of this study is to identify and analyze the effects of brand loyalty toward incumbent smartphone on new smartphone adoption. For this purpose, a research model including two hypotheses, the positive effect on rational judgments and the negative effect on rational judgments, are proposed based on the dual process theory. For the validation of the research model, the data was collected by surveying Korean university students and tested by the group comparison between high and low brand loyalty. The results show that the two hypotheses were statistically supported.Keywords: brand loyalty, dual process theory, incumbent smartphone, smartphone adoption
Procedia PDF Downloads 2886759 Faults Diagnosis by Thresholding and Decision tree with Neuro-Fuzzy System
Authors: Y. Kourd, D. Lefebvre
Abstract:
The monitoring of industrial processes is required to ensure operating conditions of industrial systems through automatic detection and isolation of faults. This paper proposes a method of fault diagnosis based on a neuro-fuzzy hybrid structure. This hybrid structure combines the selection of threshold and decision tree. The validation of this method is obtained with the DAMADICS benchmark. In the first phase of the method, a model will be constructed that represents the normal state of the system to fault detection. Signatures of the faults are obtained with residuals analysis and selection of appropriate thresholds. These signatures provide groups of non-separable faults. In the second phase, we build faulty models to see the flaws in the system that cannot be isolated in the first phase. In the latest phase we construct the tree that isolates these faults.Keywords: decision tree, residuals analysis, ANFIS, fault diagnosis
Procedia PDF Downloads 6276758 Improvement of Direct Torque and Flux Control of Dual Stator Induction Motor Drive Using Intelligent Techniques
Authors: Kouzi Katia
Abstract:
This paper proposes a Direct Torque Control (DTC) algorithm of dual Stator Induction Motor (DSIM) drive using two approach intelligent techniques: Artificial Neural Network (ANN) approach replaces the switching table selector block of conventional DTC and Mamdani Fuzzy Logic controller (FLC) is used for stator resistance estimation. The fuzzy estimation method is based on an online stator resistance correction through the variations of stator current estimation error and its variation. The fuzzy logic controller gives the future stator resistance increment at the output. The main advantage of suggested algorithm control is to reduce the hardware complexity of conventional selectors, to avoid the drive instability that may occur in certain situation and ensure the tracking of the actual of the stator resistance. The effectiveness of the technique and the improvement of the whole system performance are proved by results.Keywords: artificial neural network, direct torque control, dual stator induction motor, fuzzy logic estimator, switching table
Procedia PDF Downloads 3456757 Knowledge Management in Practice: An Exploratory Study Applied to Consulting Firms
Authors: Evgeniya Ivanova
Abstract:
Nowadays, in the literature, there is still no fixed definition of knowledge management that often remains only as an academic discipline. The current market situation is changing very quickly, the need of new technologies is high, and knowledge management is the area that ensures that the know-how has not been lost during market development and adoption. The study examines how knowledge management is being leveraged and practiced in the management consultancy companies and provides not only the tips and best practices of applied knowledge management approaches but also the validation matrix for its successful or unsuccessful implementation. Different knowledge management approaches are explored on the basis of their practical implementation, including related challenges, knowledge sharing process, and barriers that are typical for consulting firms mostly driven by the agile working culture. The relevance of proposed topic is confirmed by the finding that corporate working culture and the exponentially developing technologies have a direct impact on the success of practical implementation of knowledge management.Keywords: knowledge management, knowledge management in practice, consulting firm, knowledge management success
Procedia PDF Downloads 2026756 Identification of Impact Load and Partial System Parameters Using 1D-CNN
Authors: Xuewen Yu, Danhui Dan
Abstract:
The identification of impact load and some hard-to-obtain system parameters is crucial for the activities of analysis, validation, and evaluation in the engineering field. This paper proposes a method that utilizes neural networks based on 1D-CNN to identify the impact load and partial system parameters from measured responses. To this end, forward computations are conducted to provide datasets consisting of the triples (parameter θ, input u, output y). Then neural networks are trained to learn the mapping from input to output, fu|{θ} : y → u, as well as from input and output to parameter, fθ : (u, y) → θ. Afterward, feeding the trained neural networks the measured output response, the input impact load and system parameter can be calculated, respectively. The method is tested on two simulated examples and shows sound accuracy in estimating the impact load (waveform and location) and system parameters.Keywords: convolutional neural network, impact load identification, system parameter identification, inverse problem
Procedia PDF Downloads 127