Search results for: traditional knowledge resources classification
16340 Strategies for Synchronizing Chocolate Conching Data Using Dynamic Time Warping
Authors: Fernanda A. P. Peres, Thiago N. Peres, Flavio S. Fogliatto, Michel J. Anzanello
Abstract:
Batch processes are widely used in food industry and have an important role in the production of high added value products, such as chocolate. Process performance is usually described by variables that are monitored as the batch progresses. Data arising from these processes are likely to display a strong correlation-autocorrelation structure, and are usually monitored using control charts based on multiway principal components analysis (MPCA). Process control of a new batch is carried out comparing the trajectories of its relevant process variables with those in a reference set of batches that yielded products within specifications; it is clear that proper determination of the reference set is key for the success of a correct signalization of non-conforming batches in such quality control schemes. In chocolate manufacturing, misclassifications of non-conforming batches in the conching phase may lead to significant financial losses. In such context, the accuracy of process control grows in relevance. In addition to that, the main assumption in MPCA-based monitoring strategies is that all batches are synchronized in duration, both the new batch being monitored and those in the reference set. Such assumption is often not satisfied in chocolate manufacturing process. As a consequence, traditional techniques as MPCA-based charts are not suitable for process control and monitoring. To address that issue, the objective of this work is to compare the performance of three dynamic time warping (DTW) methods in the alignment and synchronization of chocolate conching process variables’ trajectories, aimed at properly determining the reference distribution for multivariate statistical process control. The power of classification of batches in two categories (conforming and non-conforming) was evaluated using the k-nearest neighbor (KNN) algorithm. Real data from a milk chocolate conching process was collected and the following variables were monitored over time: frequency of soybean lecithin dosage, rotation speed of the shovels, current of the main motor of the conche, and chocolate temperature. A set of 62 batches with durations between 495 and 1,170 minutes was considered; 53% of the batches were known to be conforming based on lab test results and experts’ evaluations. Results showed that all three DTW methods tested were able to align and synchronize the conching dataset. However, synchronized datasets obtained from these methods performed differently when inputted in the KNN classification algorithm. Kassidas, MacGregor and Taylor’s (named KMT) method was deemed the best DTW method for aligning and synchronizing a milk chocolate conching dataset, presenting 93.7% accuracy, 97.2% sensitivity and 90.3% specificity in batch classification, being considered the best option to determine the reference set for the milk chocolate dataset. Such method was recommended due to the lowest number of iterations required to achieve convergence and highest average accuracy in the testing portion using the KNN classification technique.Keywords: batch process monitoring, chocolate conching, dynamic time warping, reference set distribution, variable duration
Procedia PDF Downloads 16716339 Social Networking Sites: A Platform for Communication and Collaboration for Visually Impaired
Authors: Sufia Khowaja, Nishat Fatima
Abstract:
Social networking sites are significant for visually impaired to overcome the unique challenges they face and access the resources they need to succeed in their education and beyond which might be difficult to obtain through traditional means. It provides them an opportunity to build relationships, stay connected with their support network as well as to develop social skills which give them emotional support to fell less isolated. In this connection the study is conducted with the aim to determine the use of social networking sites, purpose of using and activities performed by visually impaired at Delhi University, Delhi, Jawaharlal Nehru University, Delhi and Jamia Milia Islamia, Delhi. The study followed survey technique in which structured interview is followed to collect data from 137 visually impaired students and analysed using ‘SPSS ver23’. The findings of the study revealed that mostly used social networking sites are whatsapp by 89.23% students of DU, 95.12% of JNU, 87.09% of JMI, followed by e-mail by 78.46% of DU, 78.04% of JNU, 64.51%; youtube by 73.84% DU, 90.24% JNU, 80.64% JMI. Purpose for using these sites is for academics mentioned by 96.92% DU, 100% JNU, 93.54% JMI. Activities performed on sites are sending and receiving messaging 96.92% DU, 92.68% JNU, 93.55% JMI, communicating with friends and family as well as getting academic information. Findings of the study will be helpful for libraries to disseminate their services and resources as well as latest updates to their visually impaired users with the help of most used tools.Keywords: social networking sites, visually impaired, Delhi University, Jawaharlal Nehru University, Jamia Milia Islamia
Procedia PDF Downloads 9016338 Automatic Staging and Subtype Determination for Non-Small Cell Lung Carcinoma Using PET Image Texture Analysis
Authors: Seyhan Karaçavuş, Bülent Yılmaz, Ömer Kayaaltı, Semra İçer, Arzu Taşdemir, Oğuzhan Ayyıldız, Kübra Eset, Eser Kaya
Abstract:
In this study, our goal was to perform tumor staging and subtype determination automatically using different texture analysis approaches for a very common cancer type, i.e., non-small cell lung carcinoma (NSCLC). Especially, we introduced a texture analysis approach, called Law’s texture filter, to be used in this context for the first time. The 18F-FDG PET images of 42 patients with NSCLC were evaluated. The number of patients for each tumor stage, i.e., I-II, III or IV, was 14. The patients had ~45% adenocarcinoma (ADC) and ~55% squamous cell carcinoma (SqCCs). MATLAB technical computing language was employed in the extraction of 51 features by using first order statistics (FOS), gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), and Laws’ texture filters. The feature selection method employed was the sequential forward selection (SFS). Selected textural features were used in the automatic classification by k-nearest neighbors (k-NN) and support vector machines (SVM). In the automatic classification of tumor stage, the accuracy was approximately 59.5% with k-NN classifier (k=3) and 69% with SVM (with one versus one paradigm), using 5 features. In the automatic classification of tumor subtype, the accuracy was around 92.7% with SVM one vs. one. Texture analysis of FDG-PET images might be used, in addition to metabolic parameters as an objective tool to assess tumor histopathological characteristics and in automatic classification of tumor stage and subtype.Keywords: cancer stage, cancer cell type, non-small cell lung carcinoma, PET, texture analysis
Procedia PDF Downloads 32616337 Building Knowledge-Based Entrepreneurial Ecosystem in the Beginning of a Startup Nation: Case of Vietnam
Authors: Ngoc T. B. Hoang
Abstract:
With a young population showing a greatly entrepreneurial spirit, Vietnam has become a potential land for a growing knowledge-based entrepreneurial ecosystem (KBEE). KBEE is the key to new job formation, and well solution for the crisis of unemployment of higher education graduates and powerful engine for knowledge-based development and building the knowledge based economy in Vietnam. Consequently, Vietnam is attempting to build a healthy KBEE, giving local entrepreneurs more opportunities to develop their businesses. The purpose of the research article is to sketch up a general map to show the current situation of Vietnam's startup ecosystem in the beginning of a startup nation and take into consideration the influence of socio-cultural norms, institutional landscape and socio-economic factors on motivation to develop a KBEE. This paper also proposes a qualitative approach to explore the relationship between these and other elements of Vietnamese entrepreneurial ecosystems. Eventually, viable recommendations are drawn for Vietnamese entrepreneurs and policymakers to improve the quality of the knowledge-based entrepreneurial ecosystem in Vietnam.Keywords: entrepreneurship, knowledge-based entrepreneurial ecosystem, startup ecosystem, Vietnam
Procedia PDF Downloads 28416336 Infant and Young Child Dietary Diversification Using Locally Available Foods after Nutrition Education in Rural Malawi
Authors: G. C. Phiri, E. A. Heil, A. A. Kalimbira, E. Muehlhoff, C. Masangano, B. M. Mtimuni, J. Herrmann, M. B. Krawinkel, I. Jordan
Abstract:
Background and objectives: High prevalence of undernutrition in Malawi is caused by poor complementary foods. Lack of knowledge of age appropriate food within the household might affect utilization of available resources. FAO-Malawi implemented nutrition education (NE) sessions in 200 villages in Kasungu and Mzimba districts from December 2012 to April 2013 targeting 15 caregivers per village of children aged 6-18 months, grandmothers, spouses and community leaders. Two trained volunteers per village facilitated 10 NE sessions on breastfeeding, food safety and hygiene and complementary feeding using locally available resources. This study assessed the reported dietary diversification practices of infant and young child after nutrition education and the factors that influenced adoption of the practice. Methodology: Questionnaire-based interviews with caregivers were conducted in 16 randomly selected villages (n=108) before training-(t1) and seven months after training-(t2). Knowledge score (KS) was calculated on the indicators breastfeeding, hygiene and complementary feeding. Count regression was performed using SPSS 22. Eight focus group discussions (FGDs) were separately conducted among caregivers and grandmothers in 4 villages. Content analysis was used to analyze FGDs data. Results: Following NE, caregivers' KS significantly increased (p<0.001) between t1 and t2 for breastfeeding (7.7 vs. 9.8, max=18), hygiene (3.8 vs. 5.9, max=7) and complementary feeding (10.2 vs. 16.2, max=26). Caregivers indicated that they stopped preparation of plain-refined maize meal porridge after they gained knowledge on dietary diversification of complementary foods. They learnt mushing and pounding of ingredients for enriched porridge. Whole-maize meal or potatoes were often enriched with vegetables, legumes, small fish or eggs and cooking oil. Children liked the taste of enriched porridge. Amount of enriched porridge consumed at each sitting increase among previously fussy-eater children. Meal frequency increased by including fruits as snacks in child’s diet. Grandmothers observed preparation of enriched porridge among the mothers using locally available foods. Grandmothers liked the taste of enriched porridge and not the greenish color of the porridge. Both grandmothers and mothers reported that children were playing independently after consuming enriched porridge and were strong and healthy. These motivated adoption of the practice. Conclusion: Increased knowledge and skill of preparation and utilisation of locally available foods promoted children’s dietary diversification. Children liking the enriched porridge motivated adoption of dietary diversification.Keywords: behaviour change, complementary feeding, dietary diversification, IYCN
Procedia PDF Downloads 47216335 Systematic Evaluation of Convolutional Neural Network on Land Cover Classification from Remotely Sensed Images
Authors: Eiman Kattan, Hong Wei
Abstract:
In using Convolutional Neural Network (CNN) for classification, there is a set of hyperparameters available for the configuration purpose. This study aims to evaluate the impact of a range of parameters in CNN architecture i.e. AlexNet on land cover classification based on four remotely sensed datasets. The evaluation tests the influence of a set of hyperparameters on the classification performance. The parameters concerned are epoch values, batch size, and convolutional filter size against input image size. Thus, a set of experiments were conducted to specify the effectiveness of the selected parameters using two implementing approaches, named pertained and fine-tuned. We first explore the number of epochs under several selected batch size values (32, 64, 128 and 200). The impact of kernel size of convolutional filters (1, 3, 5, 7, 10, 15, 20, 25 and 30) was evaluated against the image size under testing (64, 96, 128, 180 and 224), which gave us insight of the relationship between the size of convolutional filters and image size. To generalise the validation, four remote sensing datasets, AID, RSD, UCMerced and RSCCN, which have different land covers and are publicly available, were used in the experiments. These datasets have a wide diversity of input data, such as number of classes, amount of labelled data, and texture patterns. A specifically designed interactive deep learning GPU training platform for image classification (Nvidia Digit) was employed in the experiments. It has shown efficiency in both training and testing. The results have shown that increasing the number of epochs leads to a higher accuracy rate, as expected. However, the convergence state is highly related to datasets. For the batch size evaluation, it has shown that a larger batch size slightly decreases the classification accuracy compared to a small batch size. For example, selecting the value 32 as the batch size on the RSCCN dataset achieves the accuracy rate of 90.34 % at the 11th epoch while decreasing the epoch value to one makes the accuracy rate drop to 74%. On the other extreme, setting an increased value of batch size to 200 decreases the accuracy rate at the 11th epoch is 86.5%, and 63% when using one epoch only. On the other hand, selecting the kernel size is loosely related to data set. From a practical point of view, the filter size 20 produces 70.4286%. The last performed image size experiment shows a dependency in the accuracy improvement. However, an expensive performance gain had been noticed. The represented conclusion opens the opportunities toward a better classification performance in various applications such as planetary remote sensing.Keywords: CNNs, hyperparamters, remote sensing, land cover, land use
Procedia PDF Downloads 16916334 Knowledge, Attitudes and Its Associated Factors on the Provision of Psychological First Aid during Response to Disasters among Public Health Midwives in Colombo
Authors: S. P. Hewagama
Abstract:
Different kinds of distressing events happen in the world causing a wide range of reactions and feelings. Psychological first aid (PFA) is humane supportive response for suffering. All health workers especially PHMs who play a major role as first responders in a disaster should be able to provide basic PFA effectively. Aim of this study was to assess the knowledge, attitudes and associated factors on the provision of PFA among PHMs during disasters. A descriptive cross-sectional study was carried out among 307 Public Health Midwives in Colombo RDHS area. In the study population, 86.6% (n=266) of the respondents were aware of the term “Psychological first aid” while 13.4% (n=41) were not aware. The total knowledge score was good in majority 85.4%(n=262) of the respondents while only 14.3%(n=45) had a poor knowledge on PFA. There was the statistically significant difference in relation to the level of education with the total knowledge score. Comprehensive desirable attitudes towards PFA was low (30.61%, n=94). According to the study, only a less than a quarter (21.82%, (n = 67)) of the study population had received training on PFA. More than half (56%, n=172) of the respondents had experience in responding to disasters. Conclusions and Recommendations: The overall knowledge and attitudes were found to be satisfactory. However, it is important to improve the knowledge level of the PHMs by providing training and workshops on PFA.Keywords: disaster, humane supportive assistance, psychological first aid, public health midwives
Procedia PDF Downloads 25916333 Mystical Principles of Islamic Art
Authors: Seyed Razi Nousavi Gilani
Abstract:
Islamic culture and especially the Shia is full of mystical and philosophical elements. A close look at the history of Islamic civilization, which is supposed to represent the teachings and words of faith leaders with the knowledge and use of the philosophical and mystical concepts, has influenced Islamic art. This article explains the influence of Shiite Islamic teachings and their teachings of mystical elements on Islamic art and examines as case studies in the arts such as architecture, calligraphy and painting. These arts have always been associated with mystical and philosophical teachings in view of traditional artists.Keywords: mystics, Islamic Art, Islamic culture, mystic
Procedia PDF Downloads 28516332 University Arabic/Foreign Language Teacher's Competences, Professionalism and the Challenges and Opportunities
Authors: Abeer Heider
Abstract:
The article considers the definitions of teacher’s competences and professionalism from different perspectives of Arab and foreign scientists. A special attention is paid to the definition, classification of the stages and components of University Arabic /foreign language teacher’s professionalism. The results of the survey are offered and recommendations are given. In this paper, only some of the problems of defining professional competence and professionalism of the university Arabic/ foreign language teacher have been mentioned. It needs much more analysis and discussion, because the quality of training today’s competitive and mobile students with a good knowledge of foreign languages depends directly on the teachers’ professional level.Keywords: teacher’s professional competences, Arabic/ foreign language teacher’s professionalism, teacher evaluation, teacher quality
Procedia PDF Downloads 45616331 Enhancing Spatial Interpolation: A Multi-Layer Inverse Distance Weighting Model for Complex Regression and Classification Tasks in Spatial Data Analysis
Authors: Yakin Hajlaoui, Richard Labib, Jean-François Plante, Michel Gamache
Abstract:
This study introduces the Multi-Layer Inverse Distance Weighting Model (ML-IDW), inspired by the mathematical formulation of both multi-layer neural networks (ML-NNs) and Inverse Distance Weighting model (IDW). ML-IDW leverages ML-NNs' processing capabilities, characterized by compositions of learnable non-linear functions applied to input features, and incorporates IDW's ability to learn anisotropic spatial dependencies, presenting a promising solution for nonlinear spatial interpolation and learning from complex spatial data. it employ gradient descent and backpropagation to train ML-IDW, comparing its performance against conventional spatial interpolation models such as Kriging and standard IDW on regression and classification tasks using simulated spatial datasets of varying complexity. the results highlight the efficacy of ML-IDW, particularly in handling complex spatial datasets, exhibiting lower mean square error in regression and higher F1 score in classification.Keywords: deep learning, multi-layer neural networks, gradient descent, spatial interpolation, inverse distance weighting
Procedia PDF Downloads 5216330 Radar Track-based Classification of Birds and UAVs
Authors: Altilio Rosa, Chirico Francesco, Foglia Goffredo
Abstract:
In recent years, the number of Unmanned Aerial Vehicles (UAVs) has significantly increased. The rapid development of commercial and recreational drones makes them an important part of our society. Despite the growing list of their applications, these vehicles pose a huge threat to civil and military installations: detection, classification and neutralization of such flying objects become an urgent need. Radar is an effective remote sensing tool for detecting and tracking flying objects, but scenarios characterized by the presence of a high number of tracks related to flying birds make especially challenging the drone detection task: operator PPI is cluttered with a huge number of potential threats and his reaction time can be severely affected. Flying birds compared to UAVs show similar velocity, RADAR cross-section and, in general, similar characteristics. Building from the absence of a single feature that is able to distinguish UAVs and birds, this paper uses a multiple features approach where an original feature selection technique is developed to feed binary classifiers trained to distinguish birds and UAVs. RADAR tracks acquired on the field and related to different UAVs and birds performing various trajectories were used to extract specifically designed target movement-related features based on velocity, trajectory and signal strength. An optimization strategy based on a genetic algorithm is also introduced to select the optimal subset of features and to estimate the performance of several classification algorithms (Neural network, SVM, Logistic regression…) both in terms of the number of selected features and misclassification error. Results show that the proposed methods are able to reduce the dimension of the data space and to remove almost all non-drone false targets with a suitable classification accuracy (higher than 95%).Keywords: birds, classification, machine learning, UAVs
Procedia PDF Downloads 22216329 Perception of Hygiene Knowledge among Staff Working in Top Five Famous Restaurants of Male’
Authors: Zulaikha Reesha Rashaad
Abstract:
One of the major factors which can contribute greatly to success of catering businesses is to employ food and beverage staff having sound hygiene knowledge. Individuals having sound knowledge of hygiene has a higher chance of following safe food practices in food production. One of the leading causes of food poisoning and food borne illnesses has been identified as lack of hygiene knowledge among food and beverage staff working in catering establishments and restaurants. This research aims to analyze the hygiene knowledge among food and beverage staff working in top five restaurants of Male’, in relation to their age, educational background, occupation and training. The research uses quantitative and descriptive methods in data collection and in data analysis. Data was obtained through random sampling technique with self-administered survey questionnaires which was completed by 60 respondents working in 5 different restaurants operating at top level in Male’. The respondents of the research were service staff and chefs working in these restaurants. The responses to the questionnaires have been analyzed by using SPSS. The results of the research indicated that age, education level, occupation and training correlated with hygiene knowledge perception scores.Keywords: food and beverage staff, food poisoning, food production, hygiene knowledge
Procedia PDF Downloads 28916328 AI Tutor: A Computer Science Domain Knowledge Graph-Based QA System on JADE platform
Authors: Yingqi Cui, Changran Huang, Raymond Lee
Abstract:
In this paper, we proposed an AI Tutor using ontology and natural language process techniques to generate a computer science domain knowledge graph and answer users’ questions based on the knowledge graph. We define eight types of relation to extract relationships between entities according to the computer science domain text. The AI tutor is separated into two agents: learning agent and Question-Answer (QA) agent and developed on JADE (a multi-agent system) platform. The learning agent is responsible for reading text to extract information and generate a corresponding knowledge graph by defined patterns. The QA agent can understand the users’ questions and answer humans’ questions based on the knowledge graph generated by the learning agent.Keywords: artificial intelligence, natural Language processing, knowledge graph, intelligent agents, QA system
Procedia PDF Downloads 18716327 Transfer Knowledge From Multiple Source Problems to a Target Problem in Genetic Algorithm
Authors: Terence Soule, Tami Al Ghamdi
Abstract:
To study how to transfer knowledge from multiple source problems to the target problem, we modeled the Transfer Learning (TL) process using Genetic Algorithms as the model solver. TL is the process that aims to transfer learned data from one problem to another problem. The TL process aims to help Machine Learning (ML) algorithms find a solution to the problems. The Genetic Algorithms (GA) give researchers access to information that we have about how the old problem is solved. In this paper, we have five different source problems, and we transfer the knowledge to the target problem. We studied different scenarios of the target problem. The results showed combined knowledge from multiple source problems improves the GA performance. Also, the process of combining knowledge from several problems results in promoting diversity of the transferred population.Keywords: transfer learning, genetic algorithm, evolutionary computation, source and target
Procedia PDF Downloads 14016326 Urban Form of the Traditional Arabic City in the Light of Islamic Values
Authors: Akeel Noori Al-Mulla Hwaish
Abstract:
The environmental impact, economics, social and cultural factors, and the processes by which people define history and meaning had influenced the dynamic shape and character of the traditional Islamic Arabic city. Therefore, in regard to the period when Islam was at its peak (7th- 13th Centuries), Islamic city wasn’t the highly dynamited at the scale of buildings and city planning that demonstrates a distinguished city as an ‘Islamic’ as appeared after centuries when the function of the buildings and their particular arrangement and planning scheme in relation to one another that defined an Islamic city character. The architectural features of the urban fabric of the traditional Arabic Islamic city are a reflection of the spiritual, social, and cultural characteristics of the people. It is a combination of Islamic values ‘Din’ and life needs ‘Dunia’ as Prophet Muhammad built the first Mosque in Madinah in the 1st year of his migration to it, then the Suq or market on 2nd of Hijrah, attached to the mosque to signify the birth of a new Muslims community which considers both, ’Din’ and ‘Dunia’ and initiated nucleus for what which called after that as an ‘Islamic’ city. This research will discuss the main characteristics and components of the traditional Arab cities and demonstrate the impact of the Islamic values on shaping the planning layout and general built environment features of the early traditional Arab cities.Keywords: urban, Islamic, Arabic, city
Procedia PDF Downloads 19916325 Knowledge Management in a Combined/Joint Environment
Authors: Cory Cannon
Abstract:
In the current era of shrinking budgets, increasing amounts of worldwide natural disasters, state and non-state initiated conflicts within the world. The response has involved multinational coalitions to conduct effective military operations. The need for a Knowledge Management strategy when developing these coalitions have been overlooked in the past and the need for developing these accords early on will save time and help shape the way information and knowledge are transferred from the staff and action officers of the coalition to the decision-makers in order to make timely decisions within an ever changing environment. The aim of this paper is to show how Knowledge Management has developed within the United States military and how the transformation of working within a Combined/ Joint environment in both the Middle East and the Far East has improved relations between members of the coalitions as well as being more effective as a military force. These same principles could be applied to multinational corporations when dealing with cultures and decision-making processes.Keywords: civil-military, culture, joint environment, knowledge management
Procedia PDF Downloads 36416324 Solar Light-Driving Photoconversion of CO₂ Into Renewable Hydrocarbon Fuels
Authors: Yong Zhou, Congping Wu, Zhigang Zou
Abstract:
With the rapid societal development, energy demand has increased exponentially and is mainly based on traditional and nonrenewable energy resources, such as petroleum, fossil fuels, and coal. The combustion of carbon-containing fuels releases a large amount of CO₂, causing the greenhouse effect that contribute to climate change. Photocatalytic CO₂ reduction into solar fuels is a promising approach to simultaneously alleviate current energy and environmental issues. In this study, we report the synthesis of a series of atomically ultrathin 2D structures, which contain an ultrahigh fraction of surface atoms, benefitting for efficiency and selectivity regulation of the target products toward CO₂ photoconversion.Keywords: Photocatalysis, CO₂, Solar fuels, Nanostructure
Procedia PDF Downloads 5916323 Study on the Stages of Knowledge Flow in Central Libraries of Tehran Universities by the Pattern of American Productivity & Quality Center
Authors: Amir Reza Asnafi, Ehsan Tajabadi, Mohsen Hajizeinolabedini
Abstract:
The purpose of this study is to identify the concept of knowledge flow in central libraries of Tehran universities in by the pattern of American Productivity & Quality Center (APQC). The present study is an applied and descriptive survey in terms of its purpose and the methodology used. In this study, APQC framework was used for data collection. The study population is managers and supervisors of central libraries’ departments of public universities of Tehran belonging to the Ministry of Science, Research and Technology. These libraries include: Central Libraries of Al-Zahra University, Amir Kabir, Tarbiat Modarres, Tehran, Khajeh Nasir Toosi University of Technology, Shahed, Sharif, Shahid Beheshti, Allameh Tabataba'i University, Iran University of Science and Technology. Due to the limited number of members of the community, sampling was not performed and the census was conducted instead. The study of knowledge flow in central libraries of public universities in Tehran showed that in seven dimensions of knowledge flow of APQC, these libraries are far from desirable level and to achieve the ideal point, many activities in the field of knowledge flow need to be made, therefore suggestions were made in this study to reach the desired level. One Sample t Test in this research showed that these libraries are at a poor level in terms of these factors: in the dimensions of creation, identification and use of knowledge at a medium level and in the aspects of knowledge acquisition, review, sharing and access and also Manova test or Multivariable Analyze of Variance proved that there was no significant difference between the dimensions of knowledge flow between these libraries and the status of the knowledge flow in these libraries is at the same level as well. Except for the knowledge creation aspect that is slightly different in this regard that was mentioned before.Keywords: knowledge flow, knowledge management, APQC, Tehran’s academic university libraries
Procedia PDF Downloads 16416322 Network Conditioning and Transfer Learning for Peripheral Nerve Segmentation in Ultrasound Images
Authors: Harold Mauricio Díaz-Vargas, Cristian Alfonso Jimenez-Castaño, David Augusto Cárdenas-Peña, Guillermo Alberto Ortiz-Gómez, Alvaro Angel Orozco-Gutierrez
Abstract:
Precise identification of the nerves is a crucial task performed by anesthesiologists for an effective Peripheral Nerve Blocking (PNB). Now, anesthesiologists use ultrasound imaging equipment to guide the PNB and detect nervous structures. However, visual identification of the nerves from ultrasound images is difficult, even for trained specialists, due to artifacts and low contrast. The recent advances in deep learning make neural networks a potential tool for accurate nerve segmentation systems, so addressing the above issues from raw data. The most widely spread U-Net network yields pixel-by-pixel segmentation by encoding the input image and decoding the attained feature vector into a semantic image. This work proposes a conditioning approach and encoder pre-training to enhance the nerve segmentation of traditional U-Nets. Conditioning is achieved by the one-hot encoding of the kind of target nerve a the network input, while the pre-training considers five well-known deep networks for image classification. The proposed approach is tested in a collection of 619 US images, where the best C-UNet architecture yields an 81% Dice coefficient, outperforming the 74% of the best traditional U-Net. Results prove that pre-trained models with the conditional approach outperform their equivalent baseline by supporting learning new features and enriching the discriminant capability of the tested networks.Keywords: nerve segmentation, U-Net, deep learning, ultrasound imaging, peripheral nerve blocking
Procedia PDF Downloads 10716321 Review of Hydrologic Applications of Conceptual Models for Precipitation-Runoff Process
Authors: Oluwatosin Olofintoye, Josiah Adeyemo, Gbemileke Shomade
Abstract:
The relationship between rainfall and runoff is an important issue in surface water hydrology therefore the understanding and development of accurate rainfall-runoff models and their applications in water resources planning, management and operation are of paramount importance in hydrological studies. This paper reviews some of the previous works on the rainfall-runoff process modeling. The hydrologic applications of conceptual models and artificial neural networks (ANNs) for the precipitation-runoff process modeling were studied. Gradient training methods such as error back-propagation (BP) and evolutionary algorithms (EAs) are discussed in relation to the training of artificial neural networks and it is shown that application of EAs to artificial neural networks training could be an alternative to other training methods. Therefore, further research interest to exploit the abundant expert knowledge in the area of artificial intelligence for the solution of hydrologic and water resources planning and management problems is needed.Keywords: artificial intelligence, artificial neural networks, evolutionary algorithms, gradient training method, rainfall-runoff model
Procedia PDF Downloads 45416320 Tracking Filtering Algorithm Based on ConvLSTM
Authors: Ailing Yang, Penghan Song, Aihua Cai
Abstract:
The nonlinear maneuvering target tracking problem is mainly a state estimation problem when the target motion model is uncertain. Traditional solutions include Kalman filtering based on Bayesian filtering framework and extended Kalman filtering. However, these methods need prior knowledge such as kinematics model and state system distribution, and their performance is poor in state estimation of nonprior complex dynamic systems. Therefore, in view of the problems existing in traditional algorithms, a convolution LSTM target state estimation (SAConvLSTM-SE) algorithm based on Self-Attention memory (SAM) is proposed to learn the historical motion state of the target and the error distribution information measured at the current time. The measured track point data of airborne radar are processed into data sets. After supervised training, the data-driven deep neural network based on SAConvLSTM can directly obtain the target state at the next moment. Through experiments on two different maneuvering targets, we find that the network has stronger robustness and better tracking accuracy than the existing tracking methods.Keywords: maneuvering target, state estimation, Kalman filter, LSTM, self-attention
Procedia PDF Downloads 17716319 Deep Graph Embeddings for the Analysis of Short Heartbeat Interval Time Series
Authors: Tamas Madl
Abstract:
Sudden cardiac death (SCD) constitutes a large proportion of cardiovascular mortalities, provides little advance warning, and the risk is difficult to recognize based on ubiquitous, low cost medical equipment such as the standard, 12-lead, ten second ECG. Autonomic abnormalities have been shown to be strongly predictive of SCD risk; yet current methods are not trivially applicable to the brevity and low temporal and electrical resolution of standard ECGs. Here, we build horizontal visibility graph representations of very short inter-beat interval time series, and perform unsuper- vised representation learning in order to convert these variable size objects into fixed-length vectors preserving similarity rela- tions. We show that such representations facilitate classification into healthy vs. at-risk patients on two different datasets, the Mul- tiparameter Intelligent Monitoring in Intensive Care II and the PhysioNet Sudden Cardiac Death Holter Database. Our results suggest that graph representation learning of heartbeat interval time series facilitates robust classification even in sequences as short as ten seconds.Keywords: sudden cardiac death, heart rate variability, ECG analysis, time series classification
Procedia PDF Downloads 23416318 Lexical Classification of Compounds in Berom: A Semantic Description of N-V Nominal Compounds
Authors: Pam Bitrus Marcus
Abstract:
Compounds in Berom, a Niger-Congo language that is spoken in parts of central Nigeria, have been understudied, and the semantics of N-V nominal compounds have not been sufficiently delineated. This study describes the lexical classification of compounds in Berom and, specifically, examines the semantics of nominal compounds with N-V constituents. The study relied on a data set of 200 compounds that were drawn from Bere Naha (a newsletter publication in Berom). Contrary to the nominalization process in defining the lexical class of compounds in languages, the study revealed that verbal and adjectival classes of compounds are also attested in Berom and N-V nominal compounds have an agentive or locative interpretation that is not solely determined by the meaning of the constituents of the compound but by the context of the usage.Keywords: berom, berom compounds, nominal compound, N-V compounds
Procedia PDF Downloads 7816317 Application of Granular Computing Paradigm in Knowledge Induction
Authors: Iftikhar U. Sikder
Abstract:
This paper illustrates an application of granular computing approach, namely rough set theory in data mining. The paper outlines the formalism of granular computing and elucidates the mathematical underpinning of rough set theory, which has been widely used by the data mining and the machine learning community. A real-world application is illustrated, and the classification performance is compared with other contending machine learning algorithms. The predictive performance of the rough set rule induction model shows comparative success with respect to other contending algorithms.Keywords: concept approximation, granular computing, reducts, rough set theory, rule induction
Procedia PDF Downloads 53116316 The Use of Modern Technology to Enhance English Language Teaching and Learning: An Analysis
Authors: Fazilet Alachaher (Benzerdjeb)
Abstract:
From the chalkboard to the abacus and beyond, technology has always played an important role in education. Educational technology refers to any teaching tool that helps supports learning, and given the rapid advancements in Information Technology and multimedia applications, the potential to support the teaching of foreign languages in our universities is ever greater. In language teaching and learning, we have a lot of to choose from the world of technology: TV, CDs, DVDs, Computers, the Internet, Email, and Blogs. The use of modern technologies can enrich the experience of learning a foreign language because they provide features that are not present in traditional technology. They can offer a wide range of multimedia resources, opportunities for intensive one-to-one learning in language labs and resources for authentic materials, which can be motivating to both students and teachers. The advent of Information and Communication Technology (ICT) and online interaction can also open up new range of self-access and distance learning opportunities The two last decades have witnessed a revolution due to the onset of technology, and has changed the dynamics of various industries, and has also influenced the way people live and work in society. That is why using the multimedia to create a certain context to teach English has its unique advantages. This paper tries then to analyse the necessity of multimedia technology to language teaching and brings out the problems faced by using these technologies. It also aims at making English teachers aware of the strategies to use it in an effective manner.Keywords: strategies English teaching, multimedia technology, advantages, disadvantages, English learning
Procedia PDF Downloads 46416315 Application of Fuzzy Clustering on Classification Agile Supply Chain Firms
Authors: Hamidreza Fallah Lajimi, Elham Karami, Alireza Arab, Fatemeh Alinasab
Abstract:
Being responsive is an increasingly important skill for firms in today’s global economy; thus firms must be agile. Naturally, it follows that an organization’s agility depends on its supply chain being agile. However, achieving supply chain agility is a function of other abilities within the organization. This paper analyses results from a survey of 71 Iran manufacturing companies in order to identify some of the factors for agile organizations in managing their supply chains. Then we classification this company in four cluster with fuzzy c-mean technique and with Four validations functional determine automatically the optimal number of clusters.Keywords: agile supply chain, clustering, fuzzy clustering, business engineering
Procedia PDF Downloads 71316314 E-learning resources for radiology training: Is an ideal program available?
Authors: Eric Fang, Robert Chen, Ghim Song Chia, Bien Soo Tan
Abstract:
Objective and Rationale: Training of radiology residents hinges on practical, on-the-job training in all facets and modalities of diagnostic radiology. Although residency is structured to be comprehensive, clinical exposure depends on the case mix available locally and during the posting period. To supplement clinical training, there are several e-learning resources available to allow for greater exposure to radiological cases. The objective of this study was to survey residents and faculty on the usefulness of these e-learning resources. Methods: E-learning resources were shortlisted with input from radiology residents, Google search and online discussion groups, and screened by their purported focus. Twelve e-learning resources were found to meet the criteria. Both radiology residents and experienced radiology faculty were then surveyed electronically. The e-survey asked for ratings on breadth, depth, testing capability and user-friendliness for each resource, as well as for rankings for the top 3 resources. Statistical analysis was performed using SAS 9.4. Results: Seventeen residents and fifteen faculties completed an e-survey. Mean response rate was 54% ± 8% (Range: 14- 96%). Ratings and rankings were statistically identical between residents and faculty. On a 5-point rating scale, breadth was 3.68 ± 0.18, depth was 3.95 ± 0.14, testing capability was 2.64 ± 0.16 and user-friendliness was 3.39 ± 0.13. Top-ranked resources were STATdx (first), Radiopaedia (second) and Radiology Assistant (third). 9% of responders singled out R-ITI as potentially good but ‘prohibitively costly’. Statistically significant predictive factors for higher rankings are familiarity with the resource (p = 0.001) and user-friendliness (p = 0.006). Conclusion: A good e-learning system will complement on-the-job training with a broad case base, deep discussion and quality trainee evaluation. Based on our study on twelve e-learning resources, no single program fulfilled all requirements. The perception and use of radiology e-learning resources depended more on familiarity and user-friendliness than on content differences and testing capability.Keywords: e-learning, medicine, radiology, survey
Procedia PDF Downloads 33316313 Knowledge Transfer in Industrial Clusters
Authors: Ana Paula Lisboa Sohn, Filipa Dionísio Vieria, Nelson Casarotto, Idaulo José Cunha
Abstract:
This paper aims at identifying and analyzing the knowledge transmission channels in textile and clothing clusters located in Brazil and in Europe. Primary data was obtained through interviews with key individuals. The collection of primary data was carried out based on a questionnaire with ten categories of indicators of knowledge transmission. Secondary data was also collected through a literature review and through international organizations sites. Similarities related to the use of the main transmission channels of knowledge are observed in all cases. The main similarities are: influence of suppliers of machinery, equipment and raw materials; imitation of products and best practices; training promoted by technical institutions and businesses; and cluster companies being open to acquire new knowledge. The main differences lie in the relationship between companies, where in Europe the intensity of this relationship is bigger when compared to Brazil. The differences also occur in importance and frequency of the relationship with the government, with the cultural environment, and with the activities of research and development. It is also found factors that reduce the importance of geographical proximity in transmission of knowledge, and in generating trust and the establishment of collaborative behavior.Keywords: industrial clusters, interorganizational learning, knowledge transmission channels, textile and clothing industry
Procedia PDF Downloads 36616312 Handloom Weaving Quality and Fashion Development Process for Traditional Costumes in the Contemporary Global Fashion Market in Ethiopia
Authors: Adiyam Amare
Abstract:
This research explores the handloom weaving quality and fashion development process for traditional Ethiopian costumes, particularly focusing on the challenges and opportunities within the contemporary global fashion market. Through a qualitative approach, including interviews and direct observations, the study identifies key factors affecting the handloom industry, such as quality improvement, market integration, and cultural preservation. The findings suggest that enhancing production quality, modernizing techniques, and fostering global market participation can significantly improve the competitiveness of Ethiopian traditional garments in the global fashion industry.Keywords: fashion, culture, design, textile
Procedia PDF Downloads 2316311 Using GIS for Assessment and Modelling of Oil Spill Risk at Vulnerable Coastal Resources: Of Misratah Coast, Libya
Authors: Abduladim Maitieg
Abstract:
The oil manufacture is one of the main productive activities in Libya and has a massive infrastructure, including offshore drilling and exploration and wide oil export platform sites that located in coastal area. There is a threat to marine and coastal area of oil spills is greatest in those sites with a high spills comes from urban and industry, parallel to that, monitoring oil spills and risk emergency strategy is weakness, An approach for estimating a coastal resources vulnerability to oil spills is presented based on abundance, environmental and Scio-economic importance, distance to oil spill resources and oil risk likelihood. As many as 10 coastal resources were selected for oil spill assessment at the coast. This study aims to evaluate, determine and establish vulnerable coastal resource maps and estimating the rate of oil spill comes for different oil spill resources in Misratah marine environment. In the study area there are two type of oil spill resources, major oil resources come from offshore oil industries which are 96 km from the Coast and Loading/Uploading oil platform. However, the miner oil resources come from urban sewage pipes and fish ports. In order to analyse the collected database, the Geographic information system software has been used to identify oil spill location, to map oil tracks in front of study area, and developing seasonal vulnerable costal resources maps. This work shows that there is a differential distribution of the degree of vulnerability to oil spills along the coastline, with values ranging from high vulnerability and low vulnerability, and highlights the link between oil spill movement and coastal resources vulnerability. The results of assessment found most of costal freshwater spring sites are highly vulnerable to oil spill due to their location on the intertidal zone and their close to proximity to oil spills recourses such as Zreag coast. Furthermore, the Saltmarsh coastline is highly vulnerable to oil spill risk due to characterisation as it contains a nesting area of sea turtles and feeding places for migratory birds and the . Oil will reach the coast in winter season according to oil spill movement. Coastal tourist beaches in the north coast are considered as highly vulnerable to oil spill due to location and closeness to oil spill resources.Keywords: coastal recourses vulnerability, oil spill trajectory, gnome software, Misratah coast- Libya, GIS
Procedia PDF Downloads 315