Search results for: synchronous machine parameters
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11422

Search results for: synchronous machine parameters

10222 Optimizing Exposure Parameters in Digital Mammography: A Study in Morocco

Authors: Talbi Mohammed, Oustous Aziz, Ben Messaoud Mounir, Sebihi Rajaa, Khalis Mohammed

Abstract:

Background: Breast cancer is the leading cause of death for women around the world. Screening mammography is the reference examination, due to its sensitivity for detecting small lesions and micro-calcifications. Therefore, it is essential to ensure quality mammographic examinations with the most optimal dose. These conditions depend on the choice of exposure parameters. Clinically, practices must be evaluated in order to determine the most appropriate exposure parameters. Material and Methods: We performed our measurements on a mobile mammography unit (PLANMED Sofie-classic.) in Morocco. A solid dosimeter (AGMS Radcal) and a MTM 100 phantom allow to quantify the delivered dose and the image quality. For image quality assessment, scores are defined by the rate of visible inserts (MTM 100 phantom), obtained and compared for each acquisition. Results: The results show that the parameters of the mammography unit on which we have made our measurements can be improved in order to offer a better compromise between image quality and breast dose. The last one can be reduced up from 13.27% to 22.16%, while preserving comparable image quality.

Keywords: Mammography, Breast Dose, Image Quality, Phantom

Procedia PDF Downloads 174
10221 Effect of Pre-treatment with Salicylic Acid on Vegetative Growth and Yield Components of Wheat under Salinity

Authors: Saad M. Howladar, Mike Dennett

Abstract:

At first harvest, results showed that salinity (tap water, 100 and 200 mM NaCl) induced a significant decrease in all growth parameters in both Yecora Rojo and Paragon cultivars. The greatest effect of salinity was a decrease in leaf area. The same tendency was observed with specific leaf area, and total fresh and dry weights and their components. Green leaf and tiller numbers were reduced by the same extent in both cultivars. The corresponding final harvest, all growth parameters also reduced with increased salinity. Yield and yield components were also reduced by salinity with similar effects in both cultivars. Chlorophyll fluorescence, expressed as Fv/Fm, and gas exchange parameters were decreased significantly with increase in salinity in both cultivars. In contrast, seed protein content was increased significantly with increase in salinity. Salicylic acid (SA) application induced no significant improvements in growth parameters and yield components.

Keywords: salinity, salicylic acid, growth, chlorophyll fluorescence, gas exchange, yield

Procedia PDF Downloads 472
10220 Unlocking Green Hydrogen Potential: A Machine Learning-Based Assessment

Authors: Said Alshukri, Mazhar Hussain Malik

Abstract:

Green hydrogen is hydrogen produced using renewable energy sources. In the last few years, Oman aimed to reduce its dependency on fossil fuels. Recently, the hydrogen economy has become a global trend, and many countries have started to investigate the feasibility of implementing this sector. Oman created an alliance to establish the policy and rules for this sector. With motivation coming from both global and local interest in green hydrogen, this paper investigates the potential of producing hydrogen from wind and solar energies in three different locations in Oman, namely Duqm, Salalah, and Sohar. By using machine learning-based software “WEKA” and local metrological data, the project was designed to figure out which location has the highest wind and solar energy potential. First, various supervised models were tested to obtain their prediction accuracy, and it was found that the Random Forest (RF) model has the best prediction performance. The RF model was applied to 2021 metrological data for each location, and the results indicated that Duqm has the highest wind and solar energy potential. The system of one wind turbine in Duqm can produce 8335 MWh/year, which could be utilized in the water electrolysis process to produce 88847 kg of hydrogen mass, while a solar system consisting of 2820 solar cells is estimated to produce 1666.223 MWh/ year which is capable of producing 177591 kg of hydrogen mass.

Keywords: green hydrogen, machine learning, wind and solar energies, WEKA, supervised models, random forest

Procedia PDF Downloads 79
10219 Parametric Optimization of Wire Electric Discharge Machining (WEDM) for Aluminium Metal Matrix Composites

Authors: G. Rajyalakhmi, C. Karthik, Gerson Desouza, Rimmie Duraisamy

Abstract:

In this present work, metal matrix composites with combination of aluminium with (Sic/Al2O3) were fabricated using stir casting technique. The objective of the present work is to optimize the process parameters of Wire Electric Discharge Machining (WEDM) composites. Pulse ON Time, Pulse OFF Time, wire feed and sensitivity are considered as input process parameters with responses Material Removal Rate (MRR), Surface Roughness (SR) for optimization of WEDM process. Taguchi L18 Orthogonal Array (OA) is used for experimentation. Grey Relational Analysis (GRA) is coupled with Taguchi technique for multiple process parameters optimization. ANOVA (Analysis of Variance) is used for finding the impact of process parameters individually. Finally confirmation experiments were carried out to validate the predicted results.

Keywords: parametric optimization, particulate reinforced metal matrix composites, Taguchi-grey relational analysis, WEDM

Procedia PDF Downloads 582
10218 Sensitivity Studies for a Pin Homojunction a-Si:H Solar Cell

Authors: Leila Ayat, Afak Meftah

Abstract:

Amorphous-silicon alloys have great promise as low cost solar cell materials. They have excellent photo-conductivity and high optical absorption to sunlight. Now PIN a-Si:H based solar cells are widely used in power generation modules. However, to improve the performance of these cells further, a better fundamental under-standing of the factors limiting cell performance in the homo junction PIN structure is necessary. In this paper we discuss the sensitivity of light J-V characteristics to various device and material parameters in PIN homo junction solar cells. This work is a numerical simulation of the output parameters of a PIN a-Si:H solar cell under AM1.5 spectrum. These parameters are the short circuit current (Jsc), the open circuit voltage (Voc), the fill factor (FF), the conversion efficiency. The simulation was performed with SCAPS-1D software version 3.3 developed at ELIS in Belgium by Marc Burgelman et al. The obtained results are in agreement with experiment. In addition, the effect of the thickness, doping density, capture cross sections of the gap states and the band microscopic mobilities on the output parameters of the cell are also presented.

Keywords: amorphous silicon p-i-n junctions, thin film, solar cells, sensitivity

Procedia PDF Downloads 521
10217 Wireless Sensor Anomaly Detection Using Soft Computing

Authors: Mouhammd Alkasassbeh, Alaa Lasasmeh

Abstract:

We live in an era of rapid development as a result of significant scientific growth. Like other technologies, wireless sensor networks (WSNs) are playing one of the main roles. Based on WSNs, ZigBee adds many features to devices, such as minimum cost and power consumption, and increasing the range and connect ability of sensor nodes. ZigBee technology has come to be used in various fields, including science, engineering, and networks, and even in medicinal aspects of intelligence building. In this work, we generated two main datasets, the first being based on tree topology and the second on star topology. The datasets were evaluated by three machine learning (ML) algorithms: J48, meta.j48 and multilayer perceptron (MLP). Each topology was classified into normal and abnormal (attack) network traffic. The dataset used in our work contained simulated data from network simulation 2 (NS2). In each database, the Bayesian network meta.j48 classifier achieved the highest accuracy level among other classifiers, of 99.7% and 99.2% respectively.

Keywords: IDS, Machine learning, WSN, ZigBee technology

Procedia PDF Downloads 544
10216 Early Stage Suicide Ideation Detection Using Supervised Machine Learning and Neural Network Classifier

Authors: Devendra Kr Tayal, Vrinda Gupta, Aastha Bansal, Khushi Singh, Sristi Sharma, Hunny Gaur

Abstract:

In today's world, suicide is a serious problem. In order to save lives, early suicide attempt detection and prevention should be addressed. A good number of at-risk people utilize social media platforms to talk about their issues or find knowledge on related chores. Twitter and Reddit are two of the most common platforms that are used for expressing oneself. Extensive research has already been done in this field. Through supervised classification techniques like Nave Bayes, Bernoulli Nave Bayes, and Multiple Layer Perceptron on a Reddit dataset, we demonstrate the early recognition of suicidal ideation. We also performed comparative analysis on these approaches and used accuracy, recall score, F1 score, and precision score for analysis.

Keywords: machine learning, suicide ideation detection, supervised classification, natural language processing

Procedia PDF Downloads 91
10215 Relation of Radar and Hail Parameters in the Continetal Part of Croatia

Authors: Damir Počakal

Abstract:

Continental part Croatia is exposed, mainly in the summer months, to the frequent occurrence of severe thunderstorms and hail. In the 1960s, aiming to protect and reduce the damage, an operational hail suppression system was introduced in that area. The current protected area is 26800 km2 and has about 580 hail suppression stations (rockets and ground generators) which are managed with 8 radar centres (S-band radars). In order to obtain objective and precise hailstone measurement for different research studies, hailpads were installed on all this stations in 2001. Additionally the dense hailpad network with the dimensions of 20 km x 30 km (1 hailpad per 4 km2), was established in the area with the highest average number of days with hail in Croatia in 2002. This paper presents analysis of relation between radar measured parameters of Cb cells in the time of hail fall with physical parameters of hail (max. diameter, number of hail stones and kinetic energy) measured on hailpads in period 2002 -2014. In addition are compared radar parameters of Cb cells with and without hail on the ground located at the same time over the polygon area.

Keywords: Cb cell, hail, radar, hailpad

Procedia PDF Downloads 296
10214 Theoretical and Experimental Analysis of End Milling Process with Multiple Finger Inserted Cutters

Authors: G. Krishna Mohana Rao, P. Ravi Kumar

Abstract:

Milling is the process of removing unwanted material with suitable tool. Even though the milling process is having wider application, the vibration of machine tool and work piece during the process produces chatter on the products. Various methods of preventing the chatter have been incorporated into machine tool systems. Damper is cut into equal number of parts. Each part is called as finger. Multiple fingers were inserted in the hollow portion of the shank to reduce tool vibrations. In the present work, nonlinear static and dynamic analysis of the damper inserted end milling cutter used to reduce the chatter was done. A comparison is made for the milling cutter with multiple dampers. Surface roughness was determined by machining with multiple finger inserted milling cutters.

Keywords: damping inserts, end milling, vibrations, nonlinear dynamic analysis, number of fingers

Procedia PDF Downloads 525
10213 Land Suitability Prediction Modelling for Agricultural Crops Using Machine Learning Approach: A Case Study of Khuzestan Province, Iran

Authors: Saba Gachpaz, Hamid Reza Heidari

Abstract:

The sharp increase in population growth leads to more pressure on agricultural areas to satisfy the food supply. To achieve this, more resources should be consumed and, besides other environmental concerns, highlight sustainable agricultural development. Land-use management is a crucial factor in obtaining optimum productivity. Machine learning is a widely used technique in the agricultural sector, from yield prediction to customer behavior. This method focuses on learning and provides patterns and correlations from our data set. In this study, nine physical control factors, namely, soil classification, electrical conductivity, normalized difference water index (NDWI), groundwater level, elevation, annual precipitation, pH of water, annual mean temperature, and slope in the alluvial plain in Khuzestan (an agricultural hotspot in Iran) are used to decide the best agricultural land use for both rainfed and irrigated agriculture for ten different crops. For this purpose, each variable was imported into Arc GIS, and a raster layer was obtained. In the next level, by using training samples, all layers were imported into the python environment. A random forest model was applied, and the weight of each variable was specified. In the final step, results were visualized using a digital elevation model, and the importance of all factors for each one of the crops was obtained. Our results show that despite 62% of the study area being allocated to agricultural purposes, only 42.9% of these areas can be defined as a suitable class for cultivation purposes.

Keywords: land suitability, machine learning, random forest, sustainable agriculture

Procedia PDF Downloads 85
10212 Experimental Research of Corrosion Resistance Desalination Plant Pipe According to Weld Overlay Layers

Authors: Ryu Wonjin, Choi Hyeok, Park Joonhong

Abstract:

Overlay welding for improving surface properties is a method of the surface treatments which improve surface properties of material by welding materials of alloy having corrosion resistance on the basic material surface. Overlay welding affects contents of chemical components and weld hardness from different parts by dilution of the lamination layer thickness, and it determines surface properties. Therefore, overlay welding has to take into account thickness of the lamination layers with the process. As a result in this study examined contents of Fe, weldability of the base metal and monel materials, hardness and surface flatness from different parts according to each the lamination layer parameters by overlay welding monel materials with corrosion resources to the base material of carbon steel. Through this, evaluated effect by the lamination layer parameters of welding and presented decision methods of the lamination layer parameters of the overlay welding by the purpose of use.

Keywords: clad pipe, lamination layer parameters, monel, overlay welding

Procedia PDF Downloads 273
10211 Effect of Pre-Treatment with Salicylic Acid on Vegetative Growth and Yield Components of Saudi’s Wheat under Salinity

Authors: Saad Howladar, Mike Dennett

Abstract:

At first harvest, results showed that salinity (tap water, 100 and 200 mM NaCl) induced a significant decrease in all growth parameters in both Yecora Rojo and Paragon cultivars. The greatest effect of salinity was a decrease in leaf area. The same tendency was observed with specific leaf area, and total fresh and dry weights and their components. Green leaf and tiller numbers were reduced by the same extent in both cultivars. The corresponding final harvest, all growth parameters also reduced with increased salinity. Yield and yield components were also reduced by salinity with similar effects in both cultivars. Chlorophyll fluorescence, expressed as Fv/Fm, and gas exchange parameters were decreased significantly with increase in salinity in both cultivars. In contrast, seed protein content was increased significantly with increase in salinity. Salicylic acid (SA) application induced no significant improvements in growth parameters and yield components.

Keywords: salinity, salicylic acid, growth, chlorophyll fluorescence, gas exchange, yield

Procedia PDF Downloads 424
10210 The Eye Tracking Technique and the Study of Some Abstract Mathematical Concepts at the University

Authors: Tamara Díaz-Chang, Elizabeth-H Arredondo

Abstract:

This article presents the results of mixed approach research, where the ocular movements of students are examined while they solve questionnaires related to some abstract mathematical concepts. The objective of this research is to determine possible correlations between the parameters of ocular activity and the level of difficulty of the tasks. The difficulty level categories were established based on two types of criteria: a subjective one, through an evaluation, carried out by the subjects, and a behavioral one, related to obtaining the correct solution. Correlations of these criteria with ocular activity parameters, which were considered indicators of mental effort, were identified. The analysis of the data obtained allowed us to observe discrepancies in the categorization of difficulty levels based on subjective and behavioral criteria. There was a negative correlation of the eye movement parameters with the students' opinions on the level of difficulty of the questions, while a strong positive and significant correlation was noted between most of the parameters of ocular activity and the level of difficulty, determined by the percentage of correct answers. The results obtained by the analysis of the data suggest that eye movement parameters can be taken as indicators of the difficulty level of the tasks related to the study of some abstract mathematical concepts at the university.

Keywords: abstract mathematical concepts, cognitive neuroscience, eye-tracking, university education

Procedia PDF Downloads 120
10209 Using Geo-Statistical Techniques and Machine Learning Algorithms to Model the Spatiotemporal Heterogeneity of Land Surface Temperature and its Relationship with Land Use Land Cover

Authors: Javed Mallick

Abstract:

In metropolitan areas, rapid changes in land use and land cover (LULC) have ecological and environmental consequences. Saudi Arabia's cities have experienced tremendous urban growth since the 1990s, resulting in urban heat islands, groundwater depletion, air pollution, loss of ecosystem services, and so on. From 1990 to 2020, this study examines the variance and heterogeneity in land surface temperature (LST) caused by LULC changes in Abha-Khamis Mushyet, Saudi Arabia. LULC was mapped using the support vector machine (SVM). The mono-window algorithm was used to calculate the land surface temperature (LST). To identify LST clusters, the local indicator of spatial associations (LISA) model was applied to spatiotemporal LST maps. In addition, the parallel coordinate (PCP) method was used to investigate the relationship between LST clusters and urban biophysical variables as a proxy for LULC. According to LULC maps, urban areas increased by more than 330% between 1990 and 2018. Between 1990 and 2018, built-up areas had an 83.6% transitional probability. Furthermore, between 1990 and 2020, vegetation and agricultural land were converted into built-up areas at a rate of 17.9% and 21.8%, respectively. Uneven LULC changes in built-up areas result in more LST hotspots. LST hotspots were associated with high NDBI but not NDWI or NDVI. This study could assist policymakers in developing mitigation strategies for urban heat islands

Keywords: land use land cover mapping, land surface temperature, support vector machine, LISA model, parallel coordinate plot

Procedia PDF Downloads 78
10208 An Application-Driven Procedure for Optimal Signal Digitization of Automotive-Grade Ultrasonic Sensors

Authors: Mohamed Shawki Elamir, Heinrich Gotzig, Raoul Zoellner, Patrick Maeder

Abstract:

In this work, a methodology is presented for identifying the optimal digitization parameters for the analog signal of ultrasonic sensors. These digitization parameters are the resolution of the analog to digital conversion and the sampling rate. This is accomplished through the derivation of characteristic curves based on Fano inequality and the calculation of the mutual information content over a given dataset. The mutual information is calculated between the examples in the dataset and the corresponding variation in the feature that needs to be estimated. The optimal parameters are identified in a manner that ensures optimal estimation performance while preventing inefficiency in using unnecessarily powerful analog to digital converters.

Keywords: analog to digital conversion, digitization, sampling rate, ultrasonic

Procedia PDF Downloads 207
10207 Comparative Study of the Quality of Treated Water and Sludge from Wastewater Treatment Plants in the Peri-Urban Area of Casablanca

Authors: Meryem Zarri, Mohame Tahiri, Fouad Amraoui

Abstract:

In the context of water resources shortage that Morocco is experiencing in recent years, the mobilization of non-conventional resources becomes a necessity. The reuse of treated water and the bioconversion of biological sewage sludge into value-added products is considered an environmentally friendly and economical approach to the management of this significant resource which represent at least 80 % of consumed fresh wate In this work, we compare the quality of treated water and sewage sludge from wastewater treatment plants in the peri-urban Casablanca by analyzing different physicochemical and bacteriological parameters. The choice was made for three wastewater plants installed in different regions and monitored either by LYDEC and Commune of Had Soualem and use different technologies. Recycling of treated water in agriculture and watering of green spaces is dependent on the compliance of the parameters with international standards (WHO, FAO, …etc.) The preliminary tests of the samples taken during the second half of the year 2021 showed that the advanced technologies put in place at the level of the Mediouna and the airport zone stations (membrane reactor and activated sludge, respectively) give water to the output of the stations more respectful of the standards required in terms of physicochemical parameters (pH, Conductivity, Tubidity, COD, BOD5, TNK, and TPK) and bacteriological (fecal germs, Escherichia Coli, streptococci, Helminthes eggs). The parameters relating to the Had Soualem natural lagoon station are generally at the tolerance’s threshold. The results of analyzes relating to the residual sludge collected at the end of the cycle are, on the whole satisfactory despite a fluctuating variability of the bacteriological parameters.

Keywords: urban wastewater treatment plants, purified wastewater, sewage sludge, physicochemical parameters, bacteriological parameters, peri-urban area of ​​casablanca, morocco

Procedia PDF Downloads 156
10206 Theoretical and ML-Driven Identification of a Mispriced Credit Risk

Authors: Yuri Katz, Kun Liu, Arunram Atmacharan

Abstract:

Due to illiquidity, mispricing on Credit Markets is inevitable. This creates huge challenges to banks and investors as they seek to find new ways of risk valuation and portfolio management in a post-credit crisis world. Here, we analyze the difference in behavior of the spread-to-maturity in investment and high-yield categories of US corporate bonds between 2014 and 2023. Deviation from the theoretical dependency of this measure in the universe under study allows to identify multiple cases of mispriced credit risk. Remarkably, we observe mispriced bonds in both categories of credit ratings. This identification is supported by the application of the state-of-the-art machine learning model in more than 90% of cases. Noticeably, the ML-driven model-based forecasting of a category of bond’s credit ratings demonstrate an excellent out-of-sample accuracy (AUC = 98%). We believe that these results can augment conventional valuations of credit portfolios.

Keywords: credit risk, credit ratings, bond pricing, spread-to-maturity, machine learning

Procedia PDF Downloads 81
10205 Performance of Neural Networks vs. Radial Basis Functions When Forming a Metamodel for Residential Buildings

Authors: Philip Symonds, Jon Taylor, Zaid Chalabi, Michael Davies

Abstract:

With the world climate projected to warm and major cities in developing countries becoming increasingly populated and polluted, governments are tasked with the problem of overheating and air quality in residential buildings. This paper presents the development of an adaptable model of these risks. Simulations are performed using the EnergyPlus building physics software. An accurate metamodel is formed by randomly sampling building input parameters and training on the outputs of EnergyPlus simulations. Metamodels are used to vastly reduce the amount of computation time required when performing optimisation and sensitivity analyses. Neural Networks (NNs) are compared to a Radial Basis Function (RBF) algorithm when forming a metamodel. These techniques were implemented using the PyBrain and scikit-learn python libraries, respectively. NNs are shown to perform around 15% better than RBFs when estimating overheating and air pollution metrics modelled by EnergyPlus.

Keywords: neural networks, radial basis functions, metamodelling, python machine learning libraries

Procedia PDF Downloads 448
10204 Genetic Algorithms for Parameter Identification of DC Motor ARMAX Model and Optimal Control

Authors: A. Mansouri, F. Krim

Abstract:

This paper presents two techniques for DC motor parameters identification. We propose a numerical method using the adaptive extensive recursive least squares (AERLS) algorithm for real time parameters estimation. This algorithm, based on minimization of quadratic criterion, is realized in simulation for parameters identification of DC motor autoregressive moving average with extra inputs (ARMAX). As advanced technique, we use genetic algorithms (GA) identification with biased estimation for high dynamic performance speed regulation. DC motors are extensively used in variable speed drives, for robot and solar panel trajectory control. GA effectiveness is derived through comparison of the two approaches.

Keywords: ARMAX model, DC motor, AERLS, GA, optimization, parameter identification, PID speed regulation

Procedia PDF Downloads 381
10203 Optimization of Surface Roughness in Additive Manufacturing Processes via Taguchi Methodology

Authors: Anjian Chen, Joseph C. Chen

Abstract:

This paper studies a case where the targeted surface roughness of fused deposition modeling (FDM) additive manufacturing process is improved. The process is designing to reduce or eliminate the defects and improve the process capability index Cp and Cpk for an FDM additive manufacturing process. The baseline Cp is 0.274 and Cpk is 0.654. This research utilizes the Taguchi methodology, to eliminate defects and improve the process. The Taguchi method is used to optimize the additive manufacturing process and printing parameters that affect the targeted surface roughness of FDM additive manufacturing. The Taguchi L9 orthogonal array is used to organize the parameters' (four controllable parameters and one non-controllable parameter) effectiveness on the FDM additive manufacturing process. The four controllable parameters are nozzle temperature [°C], layer thickness [mm], nozzle speed [mm/s], and extruder speed [%]. The non-controllable parameter is the environmental temperature [°C]. After the optimization of the parameters, a confirmation print was printed to prove that the results can reduce the amount of defects and improve the process capability index Cp from 0.274 to 1.605 and the Cpk from 0.654 to 1.233 for the FDM additive manufacturing process. The final results confirmed that the Taguchi methodology is sufficient to improve the surface roughness of FDM additive manufacturing process.

Keywords: additive manufacturing, fused deposition modeling, surface roughness, six-sigma, Taguchi method, 3D printing

Procedia PDF Downloads 395
10202 Machine learning Assisted Selective Emitter design for Solar Thermophotovoltaic System

Authors: Ambali Alade Odebowale, Andargachew Mekonnen Berhe, Haroldo T. Hattori, Andrey E. Miroshnichenko

Abstract:

Solar thermophotovoltaic systems (STPV) have emerged as a promising solution to overcome the Shockley-Queisser limit, a significant impediment in the direct conversion of solar radiation into electricity using conventional solar cells. The STPV system comprises essential components such as an optical concentrator, selective emitter, and a thermophotovoltaic (TPV) cell. The pivotal element in achieving high efficiency in an STPV system lies in the design of a spectrally selective emitter or absorber. Traditional methods for designing and optimizing selective emitters are often time-consuming and may not yield highly selective emitters, posing a challenge to the overall system performance. In recent years, the application of machine learning techniques in various scientific disciplines has demonstrated significant advantages. This paper proposes a novel nanostructure composed of four-layered materials (SiC/W/SiO2/W) to function as a selective emitter in the energy conversion process of an STPV system. Unlike conventional approaches widely adopted by researchers, this study employs a machine learning-based approach for the design and optimization of the selective emitter. Specifically, a random forest algorithm (RFA) is employed for the design of the selective emitter, while the optimization process is executed using genetic algorithms. This innovative methodology holds promise in addressing the challenges posed by traditional methods, offering a more efficient and streamlined approach to selective emitter design. The utilization of a machine learning approach brings several advantages to the design and optimization of a selective emitter within the STPV system. Machine learning algorithms, such as the random forest algorithm, have the capability to analyze complex datasets and identify intricate patterns that may not be apparent through traditional methods. This allows for a more comprehensive exploration of the design space, potentially leading to highly efficient emitter configurations. Moreover, the application of genetic algorithms in the optimization process enhances the adaptability and efficiency of the overall system. Genetic algorithms mimic the principles of natural selection, enabling the exploration of a diverse range of emitter configurations and facilitating the identification of optimal solutions. This not only accelerates the design and optimization process but also increases the likelihood of discovering configurations that exhibit superior performance compared to traditional methods. In conclusion, the integration of machine learning techniques in the design and optimization of a selective emitter for solar thermophotovoltaic systems represents a groundbreaking approach. This innovative methodology not only addresses the limitations of traditional methods but also holds the potential to significantly improve the overall performance of STPV systems, paving the way for enhanced solar energy conversion efficiency.

Keywords: emitter, genetic algorithm, radiation, random forest, thermophotovoltaic

Procedia PDF Downloads 62
10201 Efficient Manageability and Intelligent Classification of Web Browsing History Using Machine Learning

Authors: Suraj Gururaj, Sumantha Udupa U.

Abstract:

Browsing the Web has emerged as the de facto activity performed on the Internet. Although browsing gets tracked, the manageability aspect of Web browsing history is very poor. In this paper, we have a workable solution implemented by using machine learning and natural language processing techniques for efficient manageability of user’s browsing history. The significance of adding such a capability to a Web browser is that it ensures efficient and quick information retrieval from browsing history, which currently is very challenging. Our solution guarantees that any important websites visited in the past can be easily accessible because of the intelligent and automatic classification. In a nutshell, our solution-based paper provides an implementation as a browser extension by intelligently classifying the browsing history into most relevant category automatically without any user’s intervention. This guarantees no information is lost and increases productivity by saving time spent revisiting websites that were of much importance.

Keywords: adhoc retrieval, Chrome extension, supervised learning, tile, Web personalization

Procedia PDF Downloads 379
10200 Influence of Age on Some Testicular and Spermatic Parameters in Kids and Bucks in Local Breed Arbia in Algeria

Authors: Boukhalfa Djemouai, Belkadi Souhila, Safsaf Boubakeur

Abstract:

To increase the profitability of the national herd so that it can meet the needs of the population, Algeria has proceeded to the introduction of new reproductive biotechnologies, including artificial insemination on natural heat, by induction and heat synchronization. This biotechnology uses the male way for the creation and dissemination of genetic progress. The study has focused on 30 goat kids and bucks local breed aged between 03 and 24 months, divided into 03 groups 03-06 months[Grp 1; n=9], 07-10 months [Grp 2; n=13] and 11-24 months [Grp 3; n=8], in order to determine the influence of age on testicular evolution by measurements of testis and scrotum, and the epididymis sperm parameters evaluation. These parameters are influenced by age variations (sperm and spermocytogram). The examined parameters have focused on testicular weight (grams), the scrotal circumference (cm), mass mobility (%), vitality rate (%), sperm concentration (x 109), and percentage of abnormal spermatozoa (%). The ANOVA reveals a significance effect of age on parameters: testis weight, scrotal circumference, sperm concentration, motility varying between high (p < 0.01) to very high significance (p < 0.001), while in viability and abnormalities no significance was observed between all groups. The value of these parameters increased significantly until the age of 02 years, while that of sperm abnormalities has increased in Grp2. The histological study of testicular development shows that the genetic spermatozoa function characterized by cell proliferation, which is more and more intense starting from the age of 05 months and can be considered as an age of puberty in the local breed goat Arbia and increases with animal age.

Keywords: kids and bucks, epididymis sperm, testicular measurements, Arbia breed

Procedia PDF Downloads 133
10199 Characteization and Optimization of S-Parameters of Microwave Circuits

Authors: N. Ourabia, M. Boubaker Ourabia

Abstract:

An approach for modeling and numerical simulation of passive planar structures using the edge line concept is developed. With this method, we develop an efficient modeling technique for microstrip discontinuities. The technique obtains closed form expressions for the equivalent circuits which are used to model these discontinuities. Then, it would be easy to handle and to characterize complicated structures like T and Y junctions, truncated junctions, arbitrarily shaped junctions, cascading junctions and more generally planar multiport junctions. Another advantage of this method is that the edge line concept for arbitrary shape junctions operates with real parameters circuits. The validity of the method was further confirmed by comparing our results for various discontinuities (bend, filters) with those from HFSS as well as from other published sources.

Keywords: optimization, CAD analysis, microwave circuits, S-parameters

Procedia PDF Downloads 454
10198 Machine Learning Facing Behavioral Noise Problem in an Imbalanced Data Using One Side Behavioral Noise Reduction: Application to a Fraud Detection

Authors: Salma El Hajjami, Jamal Malki, Alain Bouju, Mohammed Berrada

Abstract:

With the expansion of machine learning and data mining in the context of Big Data analytics, the common problem that affects data is class imbalance. It refers to an imbalanced distribution of instances belonging to each class. This problem is present in many real world applications such as fraud detection, network intrusion detection, medical diagnostics, etc. In these cases, data instances labeled negatively are significantly more numerous than the instances labeled positively. When this difference is too large, the learning system may face difficulty when tackling this problem, since it is initially designed to work in relatively balanced class distribution scenarios. Another important problem, which usually accompanies these imbalanced data, is the overlapping instances between the two classes. It is commonly referred to as noise or overlapping data. In this article, we propose an approach called: One Side Behavioral Noise Reduction (OSBNR). This approach presents a way to deal with the problem of class imbalance in the presence of a high noise level. OSBNR is based on two steps. Firstly, a cluster analysis is applied to groups similar instances from the minority class into several behavior clusters. Secondly, we select and eliminate the instances of the majority class, considered as behavioral noise, which overlap with behavior clusters of the minority class. The results of experiments carried out on a representative public dataset confirm that the proposed approach is efficient for the treatment of class imbalances in the presence of noise.

Keywords: machine learning, imbalanced data, data mining, big data

Procedia PDF Downloads 132
10197 Study of the Use of Artificial Neural Networks in Islamic Finance

Authors: Kaoutar Abbahaddou, Mohammed Salah Chiadmi

Abstract:

The need to find a relevant way to predict the next-day price of a stock index is a real concern for many financial stakeholders and researchers. We have known across years the proliferation of several methods. Nevertheless, among all these methods, the most controversial one is a machine learning algorithm that claims to be reliable, namely neural networks. Thus, the purpose of this article is to study the prediction power of neural networks in the particular case of Islamic finance as it is an under-looked area. In this article, we will first briefly present a review of the literature regarding neural networks and Islamic finance. Next, we present the architecture and principles of artificial neural networks most commonly used in finance. Then, we will show its empirical application on two Islamic stock indexes. The accuracy rate would be used to measure the performance of the algorithm in predicting the right price the next day. As a result, we can conclude that artificial neural networks are a reliable method to predict the next-day price for Islamic indices as it is claimed for conventional ones.

Keywords: Islamic finance, stock price prediction, artificial neural networks, machine learning

Procedia PDF Downloads 239
10196 Regularizing Software for Aerosol Particles

Authors: Christine Böckmann, Julia Rosemann

Abstract:

We present an inversion algorithm that is used in the European Aerosol Lidar Network for the inversion of data collected with multi-wavelength Raman lidar. These instruments measure backscatter coefficients at 355, 532, and 1064 nm, and extinction coefficients at 355 and 532 nm. The algorithm is based on manually controlled inversion of optical data which allows for detailed sensitivity studies and thus provides us with comparably high quality of the derived data products. The algorithm allows us to derive particle effective radius, volume, surface-area concentration with comparably high confidence. The retrieval of the real and imaginary parts of the complex refractive index still is a challenge in view of the accuracy required for these parameters in climate change studies in which light-absorption needs to be known with high accuracy. Single-scattering albedo (SSA) can be computed from the retrieve microphysical parameters and allows us to categorize aerosols into high and low absorbing aerosols. From mathematical point of view the algorithm is based on the concept of using truncated singular value decomposition as regularization method. This method was adapted to work for the retrieval of the particle size distribution function (PSD) and is called hybrid regularization technique since it is using a triple of regularization parameters. The inversion of an ill-posed problem, such as the retrieval of the PSD, is always a challenging task because very small measurement errors will be amplified most often hugely during the solution process unless an appropriate regularization method is used. Even using a regularization method is difficult since appropriate regularization parameters have to be determined. Therefore, in a next stage of our work we decided to use two regularization techniques in parallel for comparison purpose. The second method is an iterative regularization method based on Pade iteration. Here, the number of iteration steps serves as the regularization parameter. We successfully developed a semi-automated software for spherical particles which is able to run even on a parallel processor machine. From a mathematical point of view, it is also very important (as selection criteria for an appropriate regularization method) to investigate the degree of ill-posedness of the problem which we found is a moderate ill-posedness. We computed the optical data from mono-modal logarithmic PSD and investigated particles of spherical shape in our simulations. We considered particle radii as large as 6 nm which does not only cover the size range of particles in the fine-mode fraction of naturally occurring PSD but also covers a part of the coarse-mode fraction of PSD. We considered errors of 15% in the simulation studies. For the SSA, 100% of all cases achieve relative errors below 12%. In more detail, 87% of all cases for 355 nm and 88% of all cases for 532 nm are well below 6%. With respect to the absolute error for non- and weak-absorbing particles with real parts 1.5 and 1.6 in all modes the accuracy limit +/- 0.03 is achieved. In sum, 70% of all cases stay below +/-0.03 which is sufficient for climate change studies.

Keywords: aerosol particles, inverse problem, microphysical particle properties, regularization

Procedia PDF Downloads 343
10195 Sentiment Analysis on the East Timor Accession Process to the ASEAN

Authors: Marcelino Caetano Noronha, Vosco Pereira, Jose Soares Pinto, Ferdinando Da C. Saores

Abstract:

One particularly popular social media platform is Youtube. It’s a video-sharing platform where users can submit videos, and other users can like, dislike or comment on the videos. In this study, we conduct a binary classification task on YouTube’s video comments and review from the users regarding the accession process of Timor Leste to become the eleventh member of the Association of South East Asian Nations (ASEAN). We scrape the data directly from the public YouTube video and apply several pre-processing and weighting techniques. Before conducting the classification, we categorized the data into two classes, namely positive and negative. In the classification part, we apply Support Vector Machine (SVM) algorithm. By comparing with Naïve Bayes Algorithm, the experiment showed SVM achieved 84.1% of Accuracy, 94.5% of Precision, and Recall 73.8% simultaneously.

Keywords: classification, YouTube, sentiment analysis, support sector machine

Procedia PDF Downloads 110
10194 Combined Machine That Fertilizes Evenly under Plowing on Slopes and Planning an Experiment

Authors: Qurbanov Huseyn Nuraddin

Abstract:

The results of scientific research on a machine that pours an equal amount of mineral fertilizer under the soil to increase the productivity of grain in mountain farming and obtain quality grain are substantiated. The average yield of the crop depends on the nature of the distribution of fertilizers in the soil. Therefore, the study of effective energy-saving methods for the application of mineral fertilizers is the actual task of modern agriculture. Depending on the type and variety of plants in mountain farming, there is an optimal norm of mineral fertilizers. Applying an equal amount of fertilizer to the soil is one of the conditions that increase the efficiency of the field. One of the main agro-technical indicators of the work of mineral fertilizing machines is to ensure equal distribution of mineral fertilizers in the field. Taking into account the above-mentioned issues, a combined plough has been improved in our laboratory.

Keywords: combined plough, mineral fertilizers, sprinkle fluently, fertilizer rate, cereals

Procedia PDF Downloads 73
10193 A Review of Intelligent Fire Management Systems to Reduce Wildfires

Authors: Nomfundo Ngombane, Topside E. Mathonsi

Abstract:

Remote sensing and satellite imaging have been widely used to detect wildfires; nevertheless, the technologies present some limitations in terms of early wildfire detection as the technologies are greatly influenced by weather conditions and can miss small fires. The fires need to have spread a few kilometers for the technologies to provide accurate detection. The South African Advanced Fire Information System uses MODIS (Moderate Resolution Imaging Spectroradiometer) as satellite imaging. MODIS has limitations as it can exclude small fires and can fall short in validating fire vulnerability. Thus in the future, a Machine Learning algorithm will be designed and implemented for the early detection of wildfires. A simulator will be used to evaluate the effectiveness of the proposed solution, and the results of the simulation will be presented.

Keywords: moderate resolution imaging spectroradiometer, advanced fire information system, machine learning algorithm, detection of wildfires

Procedia PDF Downloads 80