Search results for: sensor node data processing
27299 Analyze and Visualize Eye-Tracking Data
Authors: Aymen Sekhri, Emmanuel Kwabena Frimpong, Bolaji Mubarak Ayeyemi, Aleksi Hirvonen, Matias Hirvonen, Tedros Tesfay Andemichael
Abstract:
Fixation identification, which involves isolating and identifying fixations and saccades in eye-tracking protocols, is an important aspect of eye-movement data processing that can have a big impact on higher-level analyses. However, fixation identification techniques are frequently discussed informally and rarely compared in any meaningful way. With two state-of-the-art algorithms, we will implement fixation detection and analysis in this work. The velocity threshold fixation algorithm is the first algorithm, and it identifies fixation based on a threshold value. For eye movement detection, the second approach is U'n' Eye, a deep neural network algorithm. The goal of this project is to analyze and visualize eye-tracking data from an eye gaze dataset that has been provided. The data was collected in a scenario in which individuals were shown photos and asked whether or not they recognized them. The results of the two-fixation detection approach are contrasted and visualized in this paper.Keywords: human-computer interaction, eye-tracking, CNN, fixations, saccades
Procedia PDF Downloads 13527298 Problems of Boolean Reasoning Based Biclustering Parallelization
Authors: Marcin Michalak
Abstract:
Biclustering is the way of two-dimensional data analysis. For several years it became possible to express such issue in terms of Boolean reasoning, for processing continuous, discrete and binary data. The mathematical backgrounds of such approach — proved ability of induction of exact and inclusion–maximal biclusters fulfilling assumed criteria — are strong advantages of the method. Unfortunately, the core of the method has quite high computational complexity. In the paper the basics of Boolean reasoning approach for biclustering are presented. In such context the problems of computation parallelization are risen.Keywords: Boolean reasoning, biclustering, parallelization, prime implicant
Procedia PDF Downloads 12527297 The Trigger-DAQ System in the Mu2e Experiment
Authors: Antonio Gioiosa, Simone Doanti, Eric Flumerfelt, Luca Morescalchi, Elena Pedreschi, Gianantonio Pezzullo, Ryan A. Rivera, Franco Spinella
Abstract:
The Mu2e experiment at Fermilab aims to measure the charged-lepton flavour violating neutrino-less conversion of a negative muon into an electron in the field of an aluminum nucleus. With the expected experimental sensitivity, Mu2e will improve the previous limit of four orders of magnitude. The Mu2e data acquisition (DAQ) system provides hardware and software to collect digitized data from the tracker, calorimeter, cosmic ray veto, and beam monitoring systems. Mu2e’s trigger and data acquisition system (TDAQ) uses otsdaq as its solution. developed at Fermilab, otsdaq uses the artdaq DAQ framework and art analysis framework, under-the-hood, for event transfer, filtering, and processing. Otsdaq is an online DAQ software suite with a focus on flexibility and scalability while providing a multi-user, web-based interface accessible through the Chrome or Firefox web browser. The detector read out controller (ROC) from the tracker and calorimeter stream out zero-suppressed data continuously to the data transfer controller (DTC). Data is then read over the PCIe bus to a software filter algorithm that selects events which are finally combined with the data flux that comes from a cosmic ray veto system (CRV).Keywords: trigger, daq, mu2e, Fermilab
Procedia PDF Downloads 15527296 Arduino Pressure Sensor Cushion for Tracking and Improving Sitting Posture
Authors: Andrew Hwang
Abstract:
The average American worker sits for thirteen hours a day, often with poor posture and infrequent breaks, which can lead to health issues and back problems. The Smart Cushion was created to alert individuals of their poor postures, and may potentially alleviate back problems and correct poor posture. The Smart Cushion is a portable, rectangular, foam cushion, with five strategically placed pressure sensors, that utilizes an Arduino Uno circuit board and specifically designed software, allowing it to collect data from the five pressure sensors and store the data on an SD card. The data is then compiled into graphs and compared to controlled postures. Before volunteers sat on the cushion, their levels of back pain were recorded on a scale from 1-10. Data was recorded for an hour during sitting, and then a new, corrected posture was suggested. After using the suggested posture for an hour, the volunteers described their level of discomfort on a scale from 1-10. Different patterns of sitting postures were generated that were able to serve as early warnings of potential back problems. By using the Smart Cushion, the areas where different volunteers were applying the most pressure while sitting could be identified, and the sitting postures could be corrected. Further studies regarding the relationships between posture and specific regions of the body are necessary to better understand the origins of back pain; however, the Smart Cushion is sufficient for correcting sitting posture and preventing the development of additional back pain.Keywords: Arduino Sketch Algorithm, biomedical technology, pressure sensors, Smart Cushion
Procedia PDF Downloads 13427295 Massively-Parallel Bit-Serial Neural Networks for Fast Epilepsy Diagnosis: A Feasibility Study
Authors: Si Mon Kueh, Tom J. Kazmierski
Abstract:
There are about 1% of the world population suffering from the hidden disability known as epilepsy and major developing countries are not fully equipped to counter this problem. In order to reduce the inconvenience and danger of epilepsy, different methods have been researched by using a artificial neural network (ANN) classification to distinguish epileptic waveforms from normal brain waveforms. This paper outlines the aim of achieving massive ANN parallelization through a dedicated hardware using bit-serial processing. The design of this bit-serial Neural Processing Element (NPE) is presented which implements the functionality of a complete neuron using variable accuracy. The proposed design has been tested taking into consideration non-idealities of a hardware ANN. The NPE consists of a bit-serial multiplier which uses only 16 logic elements on an Altera Cyclone IV FPGA and a bit-serial ALU as well as a look-up table. Arrays of NPEs can be driven by a single controller which executes the neural processing algorithm. In conclusion, the proposed compact NPE design allows the construction of complex hardware ANNs that can be implemented in a portable equipment that suits the needs of a single epileptic patient in his or her daily activities to predict the occurrences of impending tonic conic seizures.Keywords: Artificial Neural Networks (ANN), bit-serial neural processor, FPGA, Neural Processing Element (NPE)
Procedia PDF Downloads 32127294 Mesoporous Carbon Ceramic SiO2/C Prepared by Sol-Gel Method and Modified with Cobalt Phthalocyanine and Used as an Electrochemical Sensor for Nitrite
Authors: Abdur Rahim, Lauro Tatsuo Kubota, Yoshitaka Gushikem
Abstract:
Carbon ceramic mesoporous SiO2/50wt%C (SBET= 170 m2g-1), where C is graphite, was prepared by the sol gel method. Scanning electron microscopy images and the respective element mapping showed that, within the magnification used, no phase segregation was detectable. It presented the electric conductivities of 0.49 S cm-1. This material was used to support cobalt phthalocyanine, prepared in situ, to assure a homogeneous dispersion of the electro active complex in the pores of the matrix. The surface density of cobalt phthalocyanine, on the matrix surfaces was 0.015 mol cm-2. Pressed disk, made with SiO2/50wt%C/CoPc, was used to fabricate an electrode and tested as sensors for nitrite determination by electro chemical technique. A linear response range between 0.039 and 0.42 mmol l−1,and correlation coefficient r=0.9996 was obtained. The electrode was chemically very stable and presented very high sensitivity for this analyte, with a limit of detection, LOD = 1.087 x 10-6 mol L-1.Keywords: SiO2/C/CoPc, sol-gel method, electrochemical sensor, nitrite oxidation, carbon ceramic material, cobalt phthalocyanine
Procedia PDF Downloads 31727293 Energy Efficient Massive Data Dissemination Through Vehicle Mobility in Smart Cities
Authors: Salman Naseer
Abstract:
One of the main challenges of operating a smart city (SC) is collecting the massive data generated from multiple data sources (DS) and to transmit them to the control units (CU) for further data processing and analysis. These ever-increasing data demands require not only more and more capacity of the transmission channels but also results in resource over-provision to meet the resilience requirements, thus the unavoidable waste because of the data fluctuations throughout the day. In addition, the high energy consumption (EC) and carbon discharges from these data transmissions posing serious issues to the environment we live in. Therefore, to overcome the issues of intensive EC and carbon emissions (CE) of massive data dissemination in Smart Cities, we propose an energy efficient and carbon reduction approach by utilizing the daily mobility of the existing vehicles as an alternative communications channel to accommodate the data dissemination in smart cities. To illustrate the effectiveness and efficiency of our approach, we take the Auckland City in New Zealand as an example, assuming massive data generated by various sources geographically scattered throughout the Auckland region to the control centres located in city centre. The numerical results show that our proposed approach can provide up to 5 times lower delay as transferring the large volume of data by utilizing the existing daily vehicles’ mobility than the conventional transmission network. Moreover, our proposed approach offers about 30% less EC and CE than that of conventional network transmission approach.Keywords: smart city, delay tolerant network, infrastructure offloading, opportunistic network, vehicular mobility, energy consumption, carbon emission
Procedia PDF Downloads 14227292 Sensitive Electrochemical Sensor for Simultaneous Detection of Endocrine Disruptors, Bisphenol A and 4- Nitrophenol Using La₂Cu₂O₅ Modified Glassy Carbon Electrode
Authors: S. B. Mayil Vealan, C. Sekar
Abstract:
Bisphenol A (BIS A) and 4 Nitrophenol (4N) are the most prevalent environmental endocrine-disrupting chemicals which mimic hormones and have a direct relationship to the development and growth of animal and human reproductive systems. Moreover, intensive exposure to the compound is related to prostate and breast cancer, infertility, obesity, and diabetes. Hence, accurate and reliable determination techniques are crucial for preventing human exposure to these harmful chemicals. Lanthanum Copper Oxide (La₂Cu₂O₅) nanoparticles were synthesized and investigated through various techniques such as scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy. Cyclic voltammetry and square wave voltammetry techniques are employed to evaluate the electrochemical behavior of as-synthesized samples toward the electrochemical detection of Bisphenol A and 4-Nitrophenol. Under the optimal conditions, the oxidation current increased linearly with increasing the concentration of BIS A and 4-N in the range of 0.01 to 600 μM with a detection limit of 2.44 nM and 3.8 nM. These are the lowest limits of detection and the widest linear ranges in the literature for this determination. The method was applied to the simultaneous determination of BIS A and 4-N in real samples (food packing materials and river water) with excellent recovery values ranging from 95% to 99%. Better stability, sensitivity, selectivity and reproducibility, fast response, and ease of preparation made the sensor well-suitable for the simultaneous determination of bisphenol and 4 Nitrophenol. To the best of our knowledge, this is the first report in which La₂Cu₂O₅ nano particles were used as efficient electron mediators for the fabrication of endocrine disruptor (BIS A and 4N) chemical sensors.Keywords: endocrine disruptors, electrochemical sensor, Food contacting materials, lanthanum cuprates, nanomaterials
Procedia PDF Downloads 8627291 The Impact of Artificial Intelligence on Food Industry
Authors: George Hanna Abdelmelek Henien
Abstract:
Quality and safety issues are common in Ethiopia's food processing industry, which can negatively impact consumers' health and livelihoods. The country is known for its various agricultural products that are important to the economy. However, food quality and safety policies and management practices in the food processing industry have led to many health problems, foodborne illnesses and economic losses. This article aims to show the causes and consequences of food safety and quality problems in the food processing industry in Ethiopia and discuss possible solutions to solve them. One of the main reasons for food quality and safety in Ethiopia's food processing industry is the lack of adequate regulation and enforcement mechanisms. Inadequate food safety and quality policies have led to inefficiencies in food production. Additionally, the failure to monitor and enforce existing regulations has created a good opportunity for unscrupulous companies to engage in harmful practices that endanger the lives of citizens. The impact on food quality and safety is significant due to loss of life, high medical costs, and loss of consumer confidence in the food processing industry. Foodborne diseases such as diarrhoea, typhoid and cholera are common in Ethiopia, and food quality and safety play an important role in . Additionally, food recalls due to contamination or contamination often cause significant economic losses in the food processing industry. To solve these problems, the Ethiopian government began taking measures to improve food quality and safety in the food processing industry. One of the most prominent initiatives is the Ethiopian Food and Drug Administration (EFDA), which was established in 2010 to monitor and control the quality and safety of food and beverage products in the country. EFDA has implemented many measures to improve food safety, such as carrying out routine inspections, monitoring the import of food products and implementing labeling requirements. Another solution that can improve food quality and safety in the food processing industry in Ethiopia is the implementation of food safety management system (FSMS). FSMS is a set of procedures and policies designed to identify, assess and control food safety risks during food processing. Implementing a FSMS can help companies in the food processing industry identify and address potential risks before they harm consumers. Additionally, implementing an FSMS can help companies comply with current safety and security regulations. Consequently, improving food safety policy and management system in Ethiopia's food processing industry is important to protect people's health and improve the country's economy. . Addressing the root causes of food quality and safety and implementing practical solutions that can help improve the overall food safety and quality in the country, such as establishing regulatory bodies and implementing food management systems.Keywords: food quality, food safety, policy, management system, food processing industry food traceability, industry 4.0, internet of things, block chain, best worst method, marcos
Procedia PDF Downloads 6327290 Grisotti Flap as Treatment for Central Tumors of the Breast
Authors: R. Pardo, P. Menendez, MA Gil-Olarte, S. Sanchez, E. García, R. Quintana, J. Martín
Abstract:
Introduction : Within oncoplastic breast techniques there is increased interest in immediate partial breast reconstruction. The volume resected is greater than that of conventional conservative techniques. Central tumours of the breast have classically been treated with a mastectomy with regard to oncological safety and cosmetic secondary effects after wide central resection of the nipple and breast tissue beneath. Oncological results for central quadrantectomy have a recurrence level, disease- free period and survival identical to mastectomy. Grissoti flap is an oncoplastic surgical technique that allows the surgeon to perform a safe central quadrantectomy with excellent cosmetic results. Material and methods: The Grissoti flap is a glandular cutaneous advancement rotation flap that can fill the defect in the central portion of the excised breast. If the inferior border is affected by tumour and further surgery is decided upon at the Multidisciplinary Team Meeting, it will be necessary to perform a mastectomy. All patients with a Grisotti flap undergoing surgery since 2009 were reviewed obtaining the following data: age, hystopathological diagnosis, size, operating time, volume of tissue resected, postoperative admission time, re-excisions due to positive margins affected by tumour, wound dehiscence, complications and recurrence. Analysis and results of sentinel node biopsy were also obtained. Results: 12 patients underwent surgery between 2009-2015. The mean age was 54 years (34-67) . All had a preoperative diagnosis of ductal infiltrative carcinoma of less than 2 cm,. Diagnosis was made with Ultrasound, Mamography or both . Magnetic resonance was used in 5 cases. No patients had preoperative positive axilla after ultrasound exploration. Mean operating time was 104 minutes (84-130). Postoperative stay was 24 hours. Mean volume resected was 159 cc (70-286). In one patient the surgical border was affected by tumour and a further procedure with resection of the affected border was performed as ambulatory surgery. The sentinel node biopsy was positive for micrometastasis in only two cases. In one case lymphadenectomy was performed in 2009. In the other, treated in 2015, no lymphadenectomy was performed as the patient had a favourable histopathological prognosis and the multidisciplinary team meeting agreed that lymphadenectomy was not required. No recurrence has been diagnosed in any of the patients who underwent surgery and they are all disease free at present. Conclusions: Conservative surgery for retroareolar central tumours of the breast results in good local control of the disease with free surgical borders, including resection of the nipple areola complex and pectoral major muscle fascia. Reconstructive surgery with the inferior Grissoti flap adequately fills the defect after central quadrantectomy with creation of a new cutaneous disc where a new nipple areola complex is reconstructed with a local flap or micropigmentation. This avoids the need for contralateral symmetrization. Sentinel Node biopsy can be performed without added morbidity. When feasible, the Grissoti flap will avoid skin-sparing mastectomy for central breast tumours that will require the use of an expander, prosthesis or myocutaneous flap, with all the complications of a more complex operation.Keywords: Grisotti flap, oncoplastic surgery, central tumours, breast
Procedia PDF Downloads 34227289 Ethanolamine Detection with Composite Films
Authors: S. A. Krutovertsev, A. E. Tarasova, L. S. Krutovertseva, O. M. Ivanova
Abstract:
The aim of the work was to get stable sensitive films with good sensitivity to ethanolamine (C2H7NO) in air. Ethanolamine is used as adsorbent in different processes of gas purification and separation. Besides it has wide industrial application. Chemical sensors of sorption type are widely used for gas analysis. Their behavior is determined by sensor characteristics of sensitive sorption layer. Forming conditions and characteristics of chemical gas sensors based on nanostructured modified silica films activated by different admixtures have been studied. As additives molybdenum containing polyoxometalates of the eighteen series were incorporated in silica films. The method of hydrolythic polycondensation from tetraethyl orthosilicate solutions was used for forming such films in this work. The method’s advantage is a possibility to introduce active additives directly into an initial solution. This method enables to obtain sensitive thin films with high specific surface at room temperature. Particular properties make polyoxometalates attractive as active additives for forming of gas-sensitive films. As catalyst of different redox processes, they can either accelerate the reaction of the matrix with analyzed gas or interact with it, and it results in changes of matrix’s electrical properties Polyoxometalates based films were deposited on the test structures manufactured by microelectronic planar technology with interdigitated electrodes. Modified silica films were deposited by a casting method from solutions based on tetraethyl orthosilicate and polyoxometalates. Polyoxometalates were directly incorporated into initial solutions. Composite nanostructured films were deposited by drop casting method on test structures with a pair of interdigital metal electrodes formed at their surface. The sensor’s active area was 4.0 x 4.0 mm, and electrode gap was egual 0.08 mm. Morphology of the layers surface were studied with Solver-P47 scanning probe microscope (NT-MDT, Russia), the infrared spectra were investigated by a Bruker EQUINOX 55 (Germany). The conditions of film formation varied during the tests. Electrical parameters of the sensors were measured electronically in real-time mode. Films had highly developed surface with value of 450 m2/g and nanoscale pores. Thickness of them was 0,2-0,3 µm. The study shows that the conditions of the environment affect markedly the sensors characteristics, which can be improved by choosing of the right procedure of forming and processing. Addition of polyoxometalate into silica film resulted in stabilization of film mass and changed markedly of electrophysical characteristics. Availability of Mn3P2Mo18O62 into silica film resulted in good sensitivity and selectivity to ethanolamine. Sensitivity maximum was observed at weight content of doping additive in range of 30–50% in matrix. With ethanolamine concentration changing from 0 to 100 ppm films’ conductivity increased by 10-12 times. The increase of sensor’s sensitivity was received owing to complexing reaction of tested substance with cationic part of polyoxometalate. This fact results in intramolecular redox reaction which sharply change electrophysical properties of polyoxometalate. This process is reversible and takes place at room temperature.Keywords: ethanolamine, gas analysis, polyoxometalate, silica film
Procedia PDF Downloads 21027288 Development of a Shape Based Estimation Technology Using Terrestrial Laser Scanning
Authors: Gichun Cha, Byoungjoon Yu, Jihwan Park, Minsoo Park, Junghyun Im, Sehwan Park, Sujung Sin, Seunghee Park
Abstract:
The goal of this research is to estimate a structural shape change using terrestrial laser scanning. This study proceeds with development of data reduction and shape change estimation algorithm for large-capacity scan data. The point cloud of scan data was converted to voxel and sampled. Technique of shape estimation is studied to detect changes in structure patterns, such as skyscrapers, bridges, and tunnels based on large point cloud data. The point cloud analysis applies the octree data structure to speed up the post-processing process for change detection. The point cloud data is the relative representative value of shape information, and it used as a model for detecting point cloud changes in a data structure. Shape estimation model is to develop a technology that can detect not only normal but also immediate structural changes in the event of disasters such as earthquakes, typhoons, and fires, thereby preventing major accidents caused by aging and disasters. The study will be expected to improve the efficiency of structural health monitoring and maintenance.Keywords: terrestrial laser scanning, point cloud, shape information model, displacement measurement
Procedia PDF Downloads 23427287 Accuracy Improvement of Traffic Participant Classification Using Millimeter-Wave Radar by Leveraging Simulator Based on Domain Adaptation
Authors: Tokihiko Akita, Seiichi Mita
Abstract:
A millimeter-wave radar is the most robust against adverse environments, making it an essential environment recognition sensor for automated driving. However, the reflection signal is sparse and unstable, so it is difficult to obtain the high recognition accuracy. Deep learning provides high accuracy even for them in recognition, but requires large scale datasets with ground truth. Specially, it takes a lot of cost to annotate for a millimeter-wave radar. For the solution, utilizing a simulator that can generate an annotated huge dataset is effective. Simulation of the radar is more difficult to match with real world data than camera image, and recognition by deep learning with higher-order features using the simulator causes further deviation. We have challenged to improve the accuracy of traffic participant classification by fusing simulator and real-world data with domain adaptation technique. Experimental results with the domain adaptation network created by us show that classification accuracy can be improved even with a few real-world data.Keywords: millimeter-wave radar, object classification, deep learning, simulation, domain adaptation
Procedia PDF Downloads 9327286 Peptide Aptasensor for Electrochemical Detection of Rheumatoid Arthritis
Authors: Shah Abbas
Abstract:
Rheumatoid arthritis is a systemic, inflammatory autoimmune disease, affecting an overall 1% of the global population. Despite being tremendous efforts by scientists, early diagnosis of RA still has not been achieved. In the current study, a Graphene oxide (GO) based electrochemical sensor has been developed for early diagnosis of RA through Cyclic voltammetry. Chitosan (CHI), a CPnatural polymer has also been incorporated along with GO in order to enhance the biocompatibility and functionalization potential of the biosensor. CCPs are known antigens for Anti Citrullinated Peptide Antibodies (ACPAs) which can be detected in serum even 14 years before the appearance of symptoms, thus they are believed to be an ideal target for the early diagnosis of RA. This study has yielded some promising results regarding the binding and detection of ACPAs through changes in the electrochemical properties of biosensing material. The cyclic voltammogram of this biosensor reflects the binding of ACPAs to the biosensor surface, due to its shifts observed in the current flow (cathodic current) as compared to the when no ACPAs bind as it is absent in RA negative patients.Keywords: rheumatoid arthritis, peptide sensor, graphene oxide, anti citrullinated peptide antibodies, cyclic voltammetry
Procedia PDF Downloads 14227285 Mobi-DiQ: A Pervasive Sensing System for Delirium Risk Assessment in Intensive Care Unit
Authors: Subhash Nerella, Ziyuan Guan, Azra Bihorac, Parisa Rashidi
Abstract:
Intensive care units (ICUs) provide care to critically ill patients in severe and life-threatening conditions. However, patient monitoring in the ICU is limited by the time and resource constraints imposed on healthcare providers. Many critical care indices such as mobility are still manually assessed, which can be subjective, prone to human errors, and lack granularity. Other important aspects, such as environmental factors, are not monitored at all. For example, critically ill patients often experience circadian disruptions due to the absence of effective environmental “timekeepers” such as the light/dark cycle and the systemic effect of acute illness on chronobiologic markers. Although the occurrence of delirium is associated with circadian disruption risk factors, these factors are not routinely monitored in the ICU. Hence, there is a critical unmet need to develop systems for precise and real-time assessment through novel enabling technologies. We have developed the mobility and circadian disruption quantification system (Mobi-DiQ) by augmenting biomarker and clinical data with pervasive sensing data to generate mobility and circadian cues related to mobility, nightly disruptions, and light and noise exposure. We hypothesize that Mobi-DiQ can provide accurate mobility and circadian cues that correlate with bedside clinical mobility assessments and circadian biomarkers, ultimately important for delirium risk assessment and prevention. The collected multimodal dataset consists of depth images, Electromyography (EMG) data, patient extremity movement captured by accelerometers, ambient light levels, Sound Pressure Level (SPL), and indoor air quality measured by volatile organic compounds, and the equivalent CO₂ concentration. For delirium risk assessment, the system recognizes mobility cues (axial body movement features and body key points) and circadian cues, including nightly disruptions, ambient SPL, and light intensity, as well as other environmental factors such as indoor air quality. The Mobi-DiQ system consists of three major components: the pervasive sensing system, a data storage and analysis server, and a data annotation system. For data collection, six local pervasive sensing systems were deployed, including a local computer and sensors. A video recording tool with graphical user interface (GUI) developed in python was used to capture depth image frames for analyzing patient mobility. All sensor data is encrypted, then automatically uploaded to the Mobi-DiQ server through a secured VPN connection. Several data pipelines are developed to automate the data transfer, curation, and data preparation for annotation and model training. The data curation and post-processing are performed on the server. A custom secure annotation tool with GUI was developed to annotate depth activity data. The annotation tool is linked to the MongoDB database to record the data annotation and to provide summarization. Docker containers are also utilized to manage services and pipelines running on the server in an isolated manner. The processed clinical data and annotations are used to train and develop real-time pervasive sensing systems to augment clinical decision-making and promote targeted interventions. In the future, we intend to evaluate our system as a clinical implementation trial, as well as to refine and validate it by using other data sources, including neurological data obtained through continuous electroencephalography (EEG).Keywords: deep learning, delirium, healthcare, pervasive sensing
Procedia PDF Downloads 9327284 Fluorescence-Based Biosensor for Dopamine Detection Using Quantum Dots
Authors: Sylwia Krawiec, Joanna Cabaj, Karol Malecha
Abstract:
Nowadays, progress in the field of the analytical methods is of great interest for reliable biological research and medical diagnostics. Classical techniques of chemical analysis, despite many advantages, do not permit to obtain immediate results or automatization of measurements. Chemical sensors have displaced the conventional analytical methods - sensors combine precision, sensitivity, fast response and the possibility of continuous-monitoring. Biosensor is a chemical sensor, which except of conventer also possess a biologically active material, which is the basis for the detection of specific chemicals in the sample. Each biosensor device mainly consists of two elements: a sensitive element, where is recognition of receptor-analyte, and a transducer element which receives the signal and converts it into a measurable signal. Through these two elements biosensors can be divided in two categories: due to the recognition element (e.g immunosensor) and due to the transducer (e.g optical sensor). Working of optical sensor is based on measurements of quantitative changes of parameters characterizing light radiation. The most often analyzed parameters include: amplitude (intensity), frequency or polarization. Changes in the optical properties one of the compound which reacts with biological material coated on the sensor is analyzed by a direct method, in an indirect method indicators are used, which changes the optical properties due to the transformation of the testing species. The most commonly used dyes in this method are: small molecules with an aromatic ring, like rhodamine, fluorescent proteins, for example green fluorescent protein (GFP), or nanoparticles such as quantum dots (QDs). Quantum dots have, in comparison with organic dyes, much better photoluminescent properties, better bioavailability and chemical inertness. These are semiconductor nanocrystals size of 2-10 nm. This very limited number of atoms and the ‘nano’-size gives QDs these highly fluorescent properties. Rapid and sensitive detection of dopamine is extremely important in modern medicine. Dopamine is very important neurotransmitter, which mainly occurs in the brain and central nervous system of mammals. Dopamine is responsible for the transmission information of moving through the nervous system and plays an important role in processes of learning or memory. Detection of dopamine is significant for diseases associated with the central nervous system such as Parkinson or schizophrenia. In developed optical biosensor for detection of dopamine, are used graphene quantum dots (GQDs). In such sensor dopamine molecules coats the GQD surface - in result occurs quenching of fluorescence due to Resonance Energy Transfer (FRET). Changes in fluorescence correspond to specific concentrations of the neurotransmitter in tested sample, so it is possible to accurately determine the concentration of dopamine in the sample.Keywords: biosensor, dopamine, fluorescence, quantum dots
Procedia PDF Downloads 36427283 Surveillance of Super-Extended Objects: Bimodal Approach
Authors: Andrey V. Timofeev, Dmitry Egorov
Abstract:
This paper describes an effective solution to the task of a remote monitoring of super-extended objects (oil and gas pipeline, railways, national frontier). The suggested solution is based on the principle of simultaneously monitoring of seismoacoustic and optical/infrared physical fields. The principle of simultaneous monitoring of those fields is not new but in contrast to the known solutions the suggested approach allows to control super-extended objects with very limited operational costs. So-called C-OTDR (Coherent Optical Time Domain Reflectometer) systems are used to monitor the seismoacoustic field. Far-CCTV systems are used to monitor the optical/infrared field. A simultaneous data processing provided by both systems allows effectively detecting and classifying target activities, which appear in the monitored objects vicinity. The results of practical usage had shown high effectiveness of the suggested approach.Keywords: C-OTDR monitoring system, bimodal processing, LPboost, SVM
Procedia PDF Downloads 47027282 Learning Predictive Models for Efficient Energy Management of Exhibition Hall
Authors: Jeongmin Kim, Eunju Lee, Kwang Ryel Ryu
Abstract:
This paper addresses the problem of predictive control for energy management of large-scaled exhibition halls, where a lot of energy is consumed to maintain internal atmosphere under certain required conditions. Predictive control achieves better energy efficiency by optimizing the operation of air-conditioning facilities with not only the current but also some future status taken into account. In this paper, we propose to use predictive models learned from past sensor data of hall environment, for use in optimizing the operating plan for the air-conditioning facilities by simulating future environmental change. We have implemented an emulator of an exhibition hall by using EnergyPlus, a widely used building energy emulation tool, to collect data for learning environment-change models. Experimental results show that the learned models predict future change highly accurately on a short-term basis.Keywords: predictive control, energy management, machine learning, optimization
Procedia PDF Downloads 27427281 Breast Cancer Metastasis Detection and Localization through Transfer-Learning Convolutional Neural Network Classification Based on Convolutional Denoising Autoencoder Stack
Authors: Varun Agarwal
Abstract:
Introduction: With the advent of personalized medicine, histopathological review of whole slide images (WSIs) for cancer diagnosis presents an exceedingly time-consuming, complex task. Specifically, detecting metastatic regions in WSIs of sentinel lymph node biopsies necessitates a full-scanned, holistic evaluation of the image. Thus, digital pathology, low-level image manipulation algorithms, and machine learning provide significant advancements in improving the efficiency and accuracy of WSI analysis. Using Camelyon16 data, this paper proposes a deep learning pipeline to automate and ameliorate breast cancer metastasis localization and WSI classification. Methodology: The model broadly follows five stages -region of interest detection, WSI partitioning into image tiles, convolutional neural network (CNN) image-segment classifications, probabilistic mapping of tumor localizations, and further processing for whole WSI classification. Transfer learning is applied to the task, with the implementation of Inception-ResNetV2 - an effective CNN classifier that uses residual connections to enhance feature representation, adding convolved outputs in the inception unit to the proceeding input data. Moreover, in order to augment the performance of the transfer learning CNN, a stack of convolutional denoising autoencoders (CDAE) is applied to produce embeddings that enrich image representation. Through a saliency-detection algorithm, visual training segments are generated, which are then processed through a denoising autoencoder -primarily consisting of convolutional, leaky rectified linear unit, and batch normalization layers- and subsequently a contrast-normalization function. A spatial pyramid pooling algorithm extracts the key features from the processed image, creating a viable feature map for the CNN that minimizes spatial resolution and noise. Results and Conclusion: The simplified and effective architecture of the fine-tuned transfer learning Inception-ResNetV2 network enhanced with the CDAE stack yields state of the art performance in WSI classification and tumor localization, achieving AUC scores of 0.947 and 0.753, respectively. The convolutional feature retention and compilation with the residual connections to inception units synergized with the input denoising algorithm enable the pipeline to serve as an effective, efficient tool in the histopathological review of WSIs.Keywords: breast cancer, convolutional neural networks, metastasis mapping, whole slide images
Procedia PDF Downloads 13027280 Detect Circles in Image: Using Statistical Image Analysis
Authors: Fathi M. O. Hamed, Salma F. Elkofhaifee
Abstract:
The aim of this work is to detect geometrical shape objects in an image. In this paper, the object is considered to be as a circle shape. The identification requires find three characteristics, which are number, size, and location of the object. To achieve the goal of this work, this paper presents an algorithm that combines from some of statistical approaches and image analysis techniques. This algorithm has been implemented to arrive at the major objectives in this paper. The algorithm has been evaluated by using simulated data, and yields good results, and then it has been applied to real data.Keywords: image processing, median filter, projection, scale-space, segmentation, threshold
Procedia PDF Downloads 43227279 Reading Comprehension in Profound Deaf Readers
Authors: S. Raghibdoust, E. Kamari
Abstract:
Research show that reduced functional hearing has a detrimental influence on the ability of an individual to establish proper phonological representations of words, since the phonological representations are claimed to mediate the conceptual processing of written words. Word processing efficiency is expected to decrease with a decrease in functional hearing. In other words, it is predicted that hearing individuals would be more capable of word processing than individuals with hearing loss, as their functional hearing works normally. Studies also demonstrate that the quality of the functional hearing affects reading comprehension via its effect on their word processing skills. In other words, better hearing facilitates the development of phonological knowledge, and can promote enhanced strategies for the recognition of written words, which in turn positively affect higher-order processes underlying reading comprehension. The aims of this study were to investigate and compare the effect of deafness on the participants’ abilities to process written words at the lexical and sentence levels through using two online and one offline reading comprehension tests. The performance of a group of 8 deaf male students (ages 8-12) was compared with that of a control group of normal hearing male students. All the participants had normal IQ and visual status, and came from an average socioeconomic background. None were diagnosed with a particular learning or motor disability. The language spoken in the homes of all participants was Persian. Two tests of word processing were developed and presented to the participants using OpenSesame software, in order to measure the speed and accuracy of their performance at the two perceptual and conceptual levels. In the third offline test of reading comprehension which comprised of semantically plausible and semantically implausible subject relative clauses, the participants had to select the correct answer out of two choices. The data derived from the statistical analysis using SPSS software indicated that hearing and deaf participants had a similar word processing performance both in terms of speed and accuracy of their responses. The results also showed that there was no significant difference between the performance of the deaf and hearing participants in comprehending semantically plausible sentences (p > 0/05). However, a significant difference between the performances of the two groups was observed with respect to their comprehension of semantically implausible sentences (p < 0/05). In sum, the findings revealed that the seriously impoverished sentence reading ability characterizing the profound deaf subjects of the present research, exhibited their reliance on reading strategies that are based on insufficient or deviant structural knowledge, in particular in processing semantically implausible sentences, rather than a failure to efficiently process written words at the lexical level. This conclusion, of course, does not mean to say that deaf individuals may never experience deficits at the word processing level, deficits that impede their understanding of written texts. However, as stated in previous researches, it sounds reasonable to assume that the more deaf individuals get familiar with written words, the better they can recognize them, despite having a profound phonological weakness.Keywords: deafness, reading comprehension, reading strategy, word processing, subject and object relative sentences
Procedia PDF Downloads 33827278 Discovery of Exoplanets in Kepler Data Using a Graphics Processing Unit Fast Folding Method and a Deep Learning Model
Authors: Kevin Wang, Jian Ge, Yinan Zhao, Kevin Willis
Abstract:
Kepler has discovered over 4000 exoplanets and candidates. However, current transit planet detection techniques based on the wavelet analysis and the Box Least Squares (BLS) algorithm have limited sensitivity in detecting minor planets with a low signal-to-noise ratio (SNR) and long periods with only 3-4 repeated signals over the mission lifetime of 4 years. This paper presents a novel precise-period transit signal detection methodology based on a new Graphics Processing Unit (GPU) Fast Folding algorithm in conjunction with a Convolutional Neural Network (CNN) to detect low SNR and/or long-period transit planet signals. A comparison with BLS is conducted on both simulated light curves and real data, demonstrating that the new method has higher speed, sensitivity, and reliability. For instance, the new system can detect transits with SNR as low as three while the performance of BLS drops off quickly around SNR of 7. Meanwhile, the GPU Fast Folding method folds light curves 25 times faster than BLS, a significant gain that allows exoplanet detection to occur at unprecedented period precision. This new method has been tested with all known transit signals with 100% confirmation. In addition, this new method has been successfully applied to the Kepler of Interest (KOI) data and identified a few new Earth-sized Ultra-short period (USP) exoplanet candidates and habitable planet candidates. The results highlight the promise for GPU Fast Folding as a replacement to the traditional BLS algorithm for finding small and/or long-period habitable and Earth-sized planet candidates in-transit data taken with Kepler and other space transit missions such as TESS(Transiting Exoplanet Survey Satellite) and PLATO(PLAnetary Transits and Oscillations of stars).Keywords: algorithms, astronomy data analysis, deep learning, exoplanet detection methods, small planets, habitable planets, transit photometry
Procedia PDF Downloads 22427277 Evidence Theory Enabled Quickest Change Detection Using Big Time-Series Data from Internet of Things
Authors: Hossein Jafari, Xiangfang Li, Lijun Qian, Alexander Aved, Timothy Kroecker
Abstract:
Traditionally in sensor networks and recently in the Internet of Things, numerous heterogeneous sensors are deployed in distributed manner to monitor a phenomenon that often can be model by an underlying stochastic process. The big time-series data collected by the sensors must be analyzed to detect change in the stochastic process as quickly as possible with tolerable false alarm rate. However, sensors may have different accuracy and sensitivity range, and they decay along time. As a result, the big time-series data collected by the sensors will contain uncertainties and sometimes they are conflicting. In this study, we present a framework to take advantage of Evidence Theory (a.k.a. Dempster-Shafer and Dezert-Smarandache Theories) capabilities of representing and managing uncertainty and conflict to fast change detection and effectively deal with complementary hypotheses. Specifically, Kullback-Leibler divergence is used as the similarity metric to calculate the distances between the estimated current distribution with the pre- and post-change distributions. Then mass functions are calculated and related combination rules are applied to combine the mass values among all sensors. Furthermore, we applied the method to estimate the minimum number of sensors needed to combine, so computational efficiency could be improved. Cumulative sum test is then applied on the ratio of pignistic probability to detect and declare the change for decision making purpose. Simulation results using both synthetic data and real data from experimental setup demonstrate the effectiveness of the presented schemes.Keywords: CUSUM, evidence theory, kl divergence, quickest change detection, time series data
Procedia PDF Downloads 33427276 An Enhanced AODV Routing Protocol for Wireless Sensor and Actuator Networks
Authors: Apidet Booranawong, Wiklom Teerapabkajorndet
Abstract:
An enhanced ad-hoc on-demand distance vector routing (E-AODV) protocol for control system applications in wireless sensor and actuator networks (WSANs) is proposed. Our routing algorithm is designed by considering both wireless network communication and the control system aspects. Control system error and network delay are the main selection criteria in our routing protocol. The control and communication performance is evaluated on multi-hop IEEE 802.15.4 networks for building-temperature control systems. The Gilbert-Elliott error model is employed to simulate packet loss in wireless networks. The simulation results demonstrate that the E-AODV routing approach can significantly improve the communication performance better than an original AODV routing under various packet loss rates. However, the control performance result by our approach is not much improved compared with the AODV routing solution.Keywords: WSANs, building temperature control, AODV routing protocol, control system error, settling time, delay, delivery ratio
Procedia PDF Downloads 33827275 Cognitive Dysfunctioning and the Fronto-Limbic Network in Bipolar Disorder Patients: A Fmri Meta-Analysis
Authors: Rahele Mesbah, Nic Van Der Wee, Manja Koenders, Erik Giltay, Albert Van Hemert, Max De Leeuw
Abstract:
Introduction: Patients with bipolar disorder (BD), characterized by depressive and manic episodes, often suffer from cognitive dysfunction. An up-to-date meta-analysis of functional Magnetic Resonance Imaging (fMRI) studies examining cognitive function in BD is lacking. Objective: The aim of the current fMRI meta-analysis is to investigate brain functioning of bipolar patients compared with healthy subjects within three domains of emotion processing, reward processing, and working memory. Method: Differences in brain regions activation were tested within whole-brain analysis using the activation likelihood estimation (ALE) method. Separate analyses were performed for each cognitive domain. Results: A total of 50 fMRI studies were included: 20 studies used an emotion processing (316 BD and 369 HC) task, 9 studies a reward processing task (215 BD and 213 HC), and 21 studies used a working memory task (503 BD and 445 HC). During emotion processing, BD patients hyperactivated parts of the left amygdala and hippocampus as compared to HC’s, but showed hypoactivation in the inferior frontal gyrus (IFG). Regarding reward processing, BD patients showed hyperactivation in part of the orbitofrontal cortex (OFC). During working memory, BD patients showed increased activity in the prefrontal cortex (PFC) and anterior cingulate cortex (ACC). Conclusions: This meta-analysis revealed evidence for activity disturbances in several brain areas involved in the cognitive functioning of BD patients. Furthermore, most of the found regions are part of the so-called fronto-limbic network which is hypothesized to be affected as a result of BD candidate genes' expression.Keywords: cognitive functioning, fMRI analysis, bipolar disorder, fronto-limbic network
Procedia PDF Downloads 46227274 Spatial Audio Player Using Musical Genre Classification
Authors: Jun-Yong Lee, Hyoung-Gook Kim
Abstract:
In this paper, we propose a smart music player that combines the musical genre classification and the spatial audio processing. The musical genre is classified based on content analysis of the musical segment detected from the audio stream. In parallel with the classification, the spatial audio quality is achieved by adding an artificial reverberation in a virtual acoustic space to the input mono sound. Thereafter, the spatial sound is boosted with the given frequency gains based on the musical genre when played back. Experiments measured the accuracy of detecting the musical segment from the audio stream and its musical genre classification. A listening test was performed based on the virtual acoustic space based spatial audio processing.Keywords: automatic equalization, genre classification, music segment detection, spatial audio processing
Procedia PDF Downloads 42927273 Emotional Artificial Intelligence and the Right to Privacy
Authors: Emine Akar
Abstract:
The majority of privacy-related regulation has traditionally focused on concepts that are perceived to be well-understood or easily describable, such as certain categories of data and personal information or images. In the past century, such regulation appeared reasonably suitable for its purposes. However, technologies such as AI, combined with ever-increasing capabilities to collect, process, and store “big data”, not only require calibration of these traditional understandings but may require re-thinking of entire categories of privacy law. In the presentation, it will be explained, against the background of various emerging technologies under the umbrella term “emotional artificial intelligence”, why modern privacy law will need to embrace human emotions as potentially private subject matter. This argument can be made on a jurisprudential level, given that human emotions can plausibly be accommodated within the various concepts that are traditionally regarded as the underlying foundation of privacy protection, such as, for example, dignity, autonomy, and liberal values. However, the practical reasons for regarding human emotions as potentially private subject matter are perhaps more important (and very likely more convincing from the perspective of regulators). In that respect, it should be regarded as alarming that, according to most projections, the usefulness of emotional data to governments and, particularly, private companies will not only lead to radically increased processing and analysing of such data but, concerningly, to an exponential growth in the collection of such data. In light of this, it is also necessity to discuss options for how regulators could address this emerging threat.Keywords: AI, privacy law, data protection, big data
Procedia PDF Downloads 8827272 Detailed Quantum Circuit Design and Evaluation of Grover's Algorithm for the Bounded Degree Traveling Salesman Problem Using the Q# Language
Authors: Wenjun Hou, Marek Perkowski
Abstract:
The Traveling Salesman problem is famous in computing and graph theory. In short, it asks for the Hamiltonian cycle of the least total weight in a given graph with N nodes. All variations on this problem, such as those with K-bounded-degree nodes, are classified as NP-complete in classical computing. Although several papers propose theoretical high-level designs of quantum algorithms for the Traveling Salesman Problem, no quantum circuit implementation of these algorithms has been created up to our best knowledge. In contrast to previous papers, the goal of this paper is not to optimize some abstract complexity measures based on the number of oracle iterations, but to be able to evaluate the real circuit and time costs of the quantum computer. Using the emerging quantum programming language Q# developed by Microsoft, which runs quantum circuits in a quantum computer simulation, an implementation of the bounded-degree problem and its respective quantum circuit were created. To apply Grover’s algorithm to this problem, a quantum oracle was designed, evaluating the cost of a particular set of edges in the graph as well as its validity as a Hamiltonian cycle. Repeating the Grover algorithm with an oracle that finds successively lower cost each time allows to transform the decision problem to an optimization problem, finding the minimum cost of Hamiltonian cycles. N log₂ K qubits are put into an equiprobablistic superposition by applying the Hadamard gate on each qubit. Within these N log₂ K qubits, the method uses an encoding in which every node is mapped to a set of its encoded edges. The oracle consists of several blocks of circuits: a custom-written edge weight adder, node index calculator, uniqueness checker, and comparator, which were all created using only quantum Toffoli gates, including its special forms, which are Feynman and Pauli X. The oracle begins by using the edge encodings specified by the qubits to calculate each node that this path visits and adding up the edge weights along the way. Next, the oracle uses the calculated nodes from the previous step and check that all the nodes are unique. Finally, the oracle checks that the calculated cost is less than the previously-calculated cost. By performing the oracle an optimal number of times, a correct answer can be generated with very high probability. The oracle of the Grover Algorithm is modified using the recalculated minimum cost value, and this procedure is repeated until the cost cannot be further reduced. This algorithm and circuit design have been verified, using several datasets, to generate correct outputs.Keywords: quantum computing, quantum circuit optimization, quantum algorithms, hybrid quantum algorithms, quantum programming, Grover’s algorithm, traveling salesman problem, bounded-degree TSP, minimal cost, Q# language
Procedia PDF Downloads 19027271 Intelligent Human Pose Recognition Based on EMG Signal Analysis and Machine 3D Model
Authors: Si Chen, Quanhong Jiang
Abstract:
In the increasingly mature posture recognition technology, human movement information is widely used in sports rehabilitation, human-computer interaction, medical health, human posture assessment, and other fields today; this project uses the most original ideas; it is proposed to use the collection equipment for the collection of myoelectric data, reflect the muscle posture change on a degree of freedom through data processing, carry out data-muscle three-dimensional model joint adjustment, and realize basic pose recognition. Based on this, bionic aids or medical rehabilitation equipment can be further developed with the help of robotic arms and cutting-edge technology, which has a bright future and unlimited development space.Keywords: pose recognition, 3D animation, electromyography, machine learning, bionics
Procedia PDF Downloads 7927270 Catalytic Decomposition of High Energy Materials Using Nanoparticles of Copper Chromite
Authors: M. Sneha Reddy, M. Arun Kumar, V. Kameswara Rao
Abstract:
Chromites are binary transition metal oxides with a general formula of ACr₂O₄, where A = Mn²⁺, Fe²⁺, Co²⁺, Ni²⁺, and Cu²⁺. Chromites have a normal-type spinel structure with interesting applications in the areas of applied physics, material sciences, and geophysics. They have attracted great consideration because of their unique physicochemical properties and tremendous technological applications in nanodevices, sensor elements, and high-temperature ceramics with useful optical properties. Copper chromite is one of the most efficient spinel oxides, having pronounced commercial application as a catalyst in various chemical reactions like oxidation, hydrogenation, alkylation, dehydrogenation, decomposition of organic compounds, and hydrogen production. Apart from its usage in chemical industries, CuCr₂O₄ finds its major application as a burn rate modifier in solid propellant processing for space launch vehicles globally. Herein we synthesized the nanoparticles of copper chromite using the co-precipitation method. The synthesized nanoparticles were characterized by XRD, TEM, SEM, BET, and TG-DTA. The synthesized nanoparticles of copper chromites were used as a catalyst for the thermal decomposition of various high-energy materials.Keywords: copper chromite, coprecipitation method, high energy materials, catalytic thermal decomposition
Procedia PDF Downloads 77