Search results for: renewable energy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8596

Search results for: renewable energy

7396 Green Procedure for Energy and Emission Balancing of Alternative Scenario Improvements for Cogeneration System: A Case of Hardwood Lumber Manufacturing Process

Authors: Aldona Kluczek

Abstract:

Energy efficient process have become a pressing research field in manufacturing. The arguments for having an effective industrial energy efficiency processes are interacted with factors: economic and environmental impact, and energy security. Improvements in energy efficiency are most often achieved by implementation of more efficient technology or manufacturing process. Current processes of electricity production represents the biggest consumption of energy and the greatest amount of emissions to the environment. The goal of this study is to improve the potential energy-savings and reduce greenhouse emissions related to improvement scenarios for the treatment of hardwood lumber produced by an industrial plant operating in the U.S. through the application of green balancing procedure, in order to find the preferable efficient technology. The green procedure for energy is based on analysis of energy efficiency data. Three alternative scenarios of the cogeneration systems plant (CHP) construction are considered: generation of fresh steam, the purchase of a new boiler with the operating pressure 300 pounds per square inch gauge (PSIG), an installation of a new boiler with a 600 PSIG pressure. In this paper, the application of a bottom-down modelling for energy flow to devise a streamlined Energy and Emission Flow Analyze method for the technology of producing electricity is illustrated. It will identify efficiency or technology of a given process to be reached, through the effective use of energy, or energy management. Results have shown that the third scenario seem to be the efficient alternative scenario considered from the environmental and economic concerns for treating hardwood lumber. The energy conservation evaluation options could save an estimated 6,215.78 MMBtu/yr in each year, which represents 9.5% of the total annual energy usage. The total annual potential cost savings from all recommendations is $143,523/yr, which represents 30.1% of the total annual energy costs. Estimation have presented that energy cost savings are possible up to 43% (US$ 143,337.85), representing 18.6% of the total annual energy costs.

Keywords: alternative scenario improvements, cogeneration system, energy and emission flow analyze, energy balancing, green procedure, hardwood lumber manufacturing process

Procedia PDF Downloads 208
7395 ZigBee Wireless Sensor Nodes with Hybrid Energy Storage System Based on Li-Ion Battery and Solar Energy Supply

Authors: Chia-Chi Chang, Chuan-Bi Lin, Chia-Min Chan

Abstract:

Most ZigBee sensor networks to date make use of nodes with limited processing, communication, and energy capabilities. Energy consumption is of great importance in wireless sensor applications as their nodes are commonly battery-driven. Once ZigBee nodes are deployed outdoors, limited power may make a sensor network useless before its purpose is complete. At present, there are two strategies for long node and network lifetime. The first strategy is saving energy as much as possible. The energy consumption will be minimized through switching the node from active mode to sleep mode and routing protocol with ultra-low energy consumption. The second strategy is to evaluate the energy consumption of sensor applications as accurately as possible. Erroneous energy model may render a ZigBee sensor network useless before changing batteries. In this paper, we present a ZigBee wireless sensor node with four key modules: a processing and radio unit, an energy harvesting unit, an energy storage unit, and a sensor unit. The processing unit uses CC2530 for controlling the sensor, carrying out routing protocol, and performing wireless communication with other nodes. The harvesting unit uses a 2W solar panel to provide lasting energy for the node. The storage unit consists of a rechargeable 1200 mAh Li-ion battery and a battery charger using a constant-current/constant-voltage algorithm. Our solution to extend node lifetime is implemented. Finally, a long-term sensor network test is used to exhibit the functionality of the solar powered system.

Keywords: ZigBee, Li-ion battery, solar panel, CC2530

Procedia PDF Downloads 374
7394 Relation between Energy Absorption and Box Dimension of Rock Fragments under Impact Loading

Authors: Li Hung-Hui, Chen Chi-Chieh, Yang Zon-Yee

Abstract:

This study aims to explore the impact energy absorption in the fragmented processes of rock samples during the split-Hopkinson-pressure-bar tests. Three kinds of rock samples including granite, marble and sandstone were tested. The impact energy absorptions were calculated according to the incident, reflected and transmitted strain wave histories measured by a oscilloscope. The degree of fragment rocks after tests was quantified by the box dimension of the fractal theory. The box dimension of rock fragments was obtained from the particle size distribution curve by the sieve analysis. The results can be concluded that: (1) the degree of rock fragments after tests can be well described by the value of box dimension; (2) with the impact energy absorption increasing, the degrees of rock fragments are varied from the very large fragments to very small fragments, and the corresponding box dimension varies from 2.9 to 1.2.

Keywords: SHPB test, energy absorption, rock fragments, impact loading, box dimension

Procedia PDF Downloads 450
7393 Numerical Analysis on the Effect of Abrasive Parameters on Wall Shear Stress and Jet Exit Kinetic Energy

Authors: D. Deepak, N. Yagnesh Sharma

Abstract:

Abrasive Water Jet (AWJ) machining is a relatively new nontraditional machine tool used in machining of fiber reinforced composite. The quality of machined surface depends on jet exit kinetic energy which depends on various operating and material parameters. In the present work the effect abrasive parameters such as its size, concentration and type on jet kinetic energy is investigated using computational fluid dynamics (CFD). In addition, the effect of these parameters on wall shear stress developed inside the nozzle is also investigated. It is found that for the same operating parameters, increase in the abrasive volume fraction (concentration) results in significant decrease in the wall shear stress as well as the jet exit kinetic energy. Increase in the abrasive particle size results in marginal decrease in the jet exit kinetic energy. Numerical simulation also indicates that garnet abrasives produce better jet exit kinetic energy than aluminium oxide and silicon carbide.

Keywords: abrasive water jet machining, jet kinetic energy, operating pressure, wall shear stress, Garnet abrasive

Procedia PDF Downloads 377
7392 Optimized Cluster Head Selection Algorithm Based on LEACH Protocol for Wireless Sensor Networks

Authors: Wided Abidi, Tahar Ezzedine

Abstract:

Low-Energy Adaptive Clustering Hierarchy (LEACH) has been considered as one of the effective hierarchical routing algorithms that optimize energy and prolong the lifetime of network. Since the selection of Cluster Head (CH) in LEACH is carried out randomly, in this paper, we propose an approach of electing CH based on LEACH protocol. In other words, we present a formula for calculating the threshold responsible for CH election. In fact, we adopt three principle criteria: the remaining energy of node, the number of neighbors within cluster range and the distance between node and CH. Simulation results show that our proposed approach beats LEACH protocol in regards of prolonging the lifetime of network and saving residual energy.

Keywords: wireless sensors networks, LEACH protocol, cluster head election, energy efficiency

Procedia PDF Downloads 329
7391 Increasing the Efficiency of the Biomass Gasification Technology with Using the Organic Rankin Cycle

Authors: Jaroslav Frantík, Jan Najser

Abstract:

This article deals with increasing the energy efficiency of a plant in terms of optimizing the process. The European Union is striving to achieve the climate-energy package in the area increasing of energy efficiency. The goal of energy efficiency is to reduce primary energy consumption by 20% within the EU until 2020. The objective of saving energy consumption in the Czech Republic was set at 47.84 PJ (13.29 TWh). For reducing electricity consumption, it is possible to choose: a) mandatory increasing of energy efficiency, b) alternative scheme, c) combination of both actions. The Czech Republic has chosen for reducing electricity consumption using-alternative scheme. The presentation is focused on the proposal of a technological unit dealing with the gasification process of processing of biomass with an increase of power in the output. The synthesis gas after gasification of biomass is used as fuel in a cogeneration process of reciprocating internal combustion engine with the classic production of heat and electricity. Subsequently, there is an explanation of the ORC system dealing with the conversion of waste heat to electricity with the using closed cycle of the steam process with organic medium. The arising electricity is distributed to the power grid as a further energy source, or it is used for needs of the partial coverage of the technological unit. Furthermore, there is a presented schematic description of the technology with the identification of energy flows starting from the biomass treatment by drying, through its conversion to gaseous fuel, producing of electricity and utilize of thermal energy with minimizing losses. It has been found that using of ORC system increased the efficiency of the produced electricity by 7.5%.

Keywords: biomass, efficiency, gasification, ORC system

Procedia PDF Downloads 217
7390 Fluid-Structure Interaction Study of Fluid Flow past Marine Turbine Blade Designed by Using Blade Element Theory and Momentum Theory

Authors: Abu Afree Andalib, M. Mezbah Uddin, M. Rafiur Rahman, M. Abir Hossain, Rajia Sultana Kamol

Abstract:

This paper deals with the analysis of flow past the marine turbine blade which is designed by using the blade element theory and momentum theory for the purpose of using in the field of renewable energy. The designed blade is analyzed for various parameters using FSI module of Ansys. Computational Fluid Dynamics is used for the study of fluid flow past the blade and other fluidic phenomena such as lift, drag, pressure differentials, energy dissipation in water. Finite Element Analysis (FEA) module of Ansys was used to analyze the structural parameter such as stress and stress density, localization point, deflection, force propagation. Fine mesh is considered in every case for more accuracy in the result according to computational machine power. The relevance of design, search and optimization with respect to complex fluid flow and structural modeling is considered and analyzed. The relevancy of design and optimization with respect to complex fluid for minimum drag force using Ansys Adjoint Solver module is analyzed as well. The graphical comparison of the above-mentioned parameter using CFD and FEA and subsequently FSI technique is illustrated and found the significant conformity between both the results.

Keywords: blade element theory, computational fluid dynamics, finite element analysis, fluid-structure interaction, momentum theory

Procedia PDF Downloads 301
7389 Design and Synthesis of an Organic Material with High Open Circuit Voltage of 1.0 V

Authors: Javed Iqbal

Abstract:

The growing need for energy by the human society and depletion of conventional energy sources demands a renewable, safe, infinite, low-cost and omnipresent energy source. One of the most suitable ways to solve the foreseeable world’s energy crisis is to use the power of the sun. Photovoltaic devices are especially of wide interest as they can convert solar energy to electricity. Recently the best performing solar cells are silicon-based cells. However, silicon cells are expensive, rigid in structure and have a large timeline for the payback of cost and electricity. Organic photovoltaic cells are cheap, flexible and can be manufactured in a continuous process. Therefore, organic photovoltaic cells are an extremely favorable replacement. Organic photovoltaic cells utilize sunlight as energy and convert it into electricity through the use of conductive polymers/ small molecules to separate electrons and electron holes. A major challenge for these new organic photovoltaic cells is the efficiency, which is low compared with the traditional silicon solar cells. To overcome this challenge, usually two straightforward strategies have been considered: (1) reducing the band-gap of molecular donors to broaden the absorption range, which results in higher short circuit current density (JSC) of devices, and (2) lowering the highest occupied molecular orbital (HOMO) energy of molecular donors so as to increase the open-circuit voltage (VOC) of applications devices.8 Keeping in mind the cost of chemicals it is hard to try many materials on test basis. The best way is to find the suitable material in the bulk. For this purpose, we use computational approach to design molecules based on our organic chemistry knowledge and determine their physical and electronic properties. In this study, we did DFT calculations with different options to get high open circuit voltage and after getting suitable data from calculation we finally did synthesis of a novel D–π–A–π–D type low band-gap small molecular donor material (ZOPTAN-TPA). The Aarylene vinylene based bis(arylhalide) unit containing a cyanostilbene unit acts as a low-band- gap electron-accepting block, and is coupled with triphenylamine as electron-donating blocks groups. The motivation for choosing triphenylamine (TPA) as capped donor was attributed to its important role in stabilizing the separated hole from an exciton and thus improving the hole-transporting properties of the hole carrier.3 A π-bridge (thiophene) is inserted between the donor and acceptor unit to reduce the steric hindrance between the donor and acceptor units and to improve the planarity of the molecule. The ZOPTAN-TPA molecule features a low HOMO level of 5.2 eV and an optical energy gap of 2.1 eV. Champion OSCs based on a solution-processed and non-annealed active-material blend of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and ZOPTAN-TPA in a mass ratio of 2:1 exhibits a power conversion efficiency of 1.9 % and a high open-circuit voltage of over 1.0 V.

Keywords: high open circuit voltage, donor, triphenylamine, organic solar cells

Procedia PDF Downloads 240
7388 Integrated Decision Support for Energy/Water Planning in Zayandeh Rud River Basin in Iran

Authors: Safieh Javadinejad

Abstract:

In order to make well-informed decisions respecting long-term system planning, resource managers and policy creators necessitate to comprehend the interconnections among energy and water utilization and manufacture—and also the energy-water nexus. Planning and assessment issues contain the enhancement of strategies for declining the water and energy system’s vulnerabilities to climate alteration with also emissions of decreasing greenhouse gas. In order to deliver beneficial decision support for climate adjustment policy and planning, understanding the regionally-specific features of the energy-water nexus, and the history-future of the water and energy source systems serving is essential. It will be helpful for decision makers understand the nature of current water-energy system conditions and capacity for adaptation plans for future. This research shows an integrated hydrology/energy modeling platform which is able to extend water-energy examines based on a detailed illustration of local circumstances. The modeling links the Water Evaluation and Planning (WEAP) and the Long Range Energy Alternatives Planning (LEAP) system to create full picture of water-energy processes. This will allow water managers and policy-decision makers to simply understand links between energy system improvements and hydrological processing and realize how future climate change will effect on water-energy systems. The Zayandeh Rud river basin in Iran is selected as a case study to show the results and application of the analysis. This region is known as an area with large integration of both the electric power and water sectors. The linkages between water, energy and climate change and possible adaptation strategies are described along with early insights from applications of the integration modeling system.

Keywords: climate impacts, hydrology, water systems, adaptation planning, electricity, integrated modeling

Procedia PDF Downloads 292
7387 Investigation on Solar Thermoelectric Generator Using D-Mannitol/Multi-Walled Carbon Nanotubes Composite Phase Change Materials

Authors: Zihua Wu, Yueming He, Xiaoxiao Yu, Yuanyuan Wang, Huaqing Xie

Abstract:

The match of Solar thermoelectric generator (STEG) and phase change materials (PCM) can enhance the solar energy storage and reduce environmental impact from the day-and-night transformation and weather changes. This work utilizes D-mannitol (DM) matrix as the suitable PCM for coupling with thermoelectric generator to achieve the middle-temperature solar energy storage performance at 165℃-167℃. DM/MWCNT composite phase change materials prepared by ball milling not only can keep a high phase change enthalpy of DM material but also have great photo-thermal conversion efficiency of 82%. Based on the self-made storage device container, the effect of PCM thickness on the solar energy storage performance is further discussed and analyzed. The experimental results prove that PCM-STEG coupling system can output more electric energy than pure STEG system because PCM can decline the heat transfer and storage thermal energy to further generate the electric energy through thermal-to-electric conversion when the light is removed. The increase of PCM thickness can reduce the heat transfer and enhance thermal storage, and then the power generation performance of PCM-STEG coupling system can be improved. As the increase of light intensity, the output electric energy of the coupling system rises accordingly, and the maximum amount of electrical energy can reach by 113.85 J at 1.6 W/cm2. The study of the PCM-STEG coupling system has certain reference for the development of solar energy storage and application.

Keywords: solar energy, solar thermoelectric generator, phase change materials, solar-to-electric energy, DM/MWCNT

Procedia PDF Downloads 72
7386 Recent Progress in Wave Rotor Combustion

Authors: Mohamed Razi Nalim, Shahrzad Ghadiri

Abstract:

With current concerns regarding global warming, demand for a society with greater environmental awareness significantly increases. With gradual development in hybrid and electric vehicles and the availability of renewable energy resources, increasing efficiency in fossil fuel and combustion engines seems a faster solution toward sustainability and reducing greenhouse gas emissions. This paper aims to provide a comprehensive review of recent progress in wave rotor combustor, one of the combustion concepts with considerable potential to improve power output and emission standards. A wave rotor is an oscillatory flow device that uses the unsteady gas dynamic concept to transfer energy by generating pressure waves. From a thermodynamic point of view, unlike conventional positive-displacement piston engines which follow the Brayton cycle, wave rotors offer higher cycle efficiency due to pressure gain during the combustion process based on the Humphrey cycle. First, the paper covers all recent and ongoing computational and experimental studies around the world with a quick look at the milestones in the history of wave rotor development. Second, the main similarity and differences in the ignition system of the wave rotor with piston engines are considered. Also, the comparison is made with another pressure gain device, rotating detonation engines. Next, the main challenges and research needs for wave rotor combustor commercialization are discussed.

Keywords: wave rotor combustor, unsteady gas dynamic, pre-chamber jet ignition, pressure gain combustion, constant-volume combustion

Procedia PDF Downloads 84
7385 Study of Energy Dissipation in Shape Memory Alloys: A Comparison between Austenite and Martensite Phase of SMAs

Authors: Amirmozafar Benshams, Khatere Kashmari, Farzad Hatami, Mesbah Saybani

Abstract:

Shape memory alloys with high capability of energy dissipation and large deformation bearing with return ability to their original shape without too much hysteresis strain have opened their place among the other damping systems as smart materials. Ninitol which is the most well-known and most used alloy material from the shape memory alloys family, has high resistance and fatigue and is coverage for large deformations. Shape memory effect and super-elasticity by shape alloys like Nitinol, are the reasons of the high power of these materials in energy depreciation. Thus, these materials are suitable for use in reciprocating dynamic loading conditions. The experiments results showed that Nitinol wires with small diameter have greater energy dissipation capability and by increase of diameter and thickness the damping capability and energy dissipation increase.

Keywords: shape memory alloys, shape memory effect, super elastic effect, nitinol, energy dissipation

Procedia PDF Downloads 512
7384 A Memetic Algorithm for an Energy-Costs-Aware Flexible Job-Shop Scheduling Problem

Authors: Christian Böning, Henrik Prinzhorn, Eric C. Hund, Malte Stonis

Abstract:

In this article, the flexible job-shop scheduling problem is extended by consideration of energy costs which arise owing to the power peak, and further decision variables such as work in process and throughput time are incorporated into the objective function. This enables a production plan to be simultaneously optimized in respect of the real arising energy and logistics costs. The energy-costs-aware flexible job-shop scheduling problem (EFJSP) which arises is described mathematically, and a memetic algorithm (MA) is presented as a solution. In the MA, the evolutionary process is supplemented with a local search. Furthermore, repair procedures are used in order to rectify any infeasible solutions that have arisen in the evolutionary process. The potential for lowering the real arising costs of a production plan through consideration of energy consumption levels is highlighted.

Keywords: energy costs, flexible job-shop scheduling, memetic algorithm, power peak

Procedia PDF Downloads 345
7383 Efficient Energy Extraction Circuit for Impact Harvesting from High Impedance Sources

Authors: Sherif Keddis, Mohamed Azzam, Norbert Schwesinger

Abstract:

Harvesting mechanical energy from footsteps or other impacts is a possibility to enable wireless autonomous sensor nodes. These can be used for a highly efficient control of connected devices such as lights, security systems, air conditioning systems or other smart home applications. They can also be used for accurate location or occupancy monitoring. Converting the mechanical energy into useful electrical energy can be achieved using the piezoelectric effect offering simple harvesting setups and low deflections. The challenge facing piezoelectric transducers is the achievable amount of energy per impact in the lower mJ range and the management of such low energies. Simple setups for energy extraction such as a full wave bridge connected directly to a capacitor are problematic due to the mismatch between high impedance sources and low impedance storage elements. Efficient energy circuits for piezoelectric harvesters are commonly designed for vibration harvesters and require periodic input energies with predictable frequencies. Due to the sporadic nature of impact harvesters, such circuits are not well suited. This paper presents a self-powered circuit that avoids the impedance mismatch during energy extraction by disconnecting the load until the source reaches its charge peak. The switch is implemented with passive components and works independent from the input frequency. Therefore, this circuit is suited for impact harvesting and sporadic inputs. For the same input energy, this circuit stores 150% of the energy in comparison to a directly connected capacitor to a bridge rectifier. The total efficiency, defined as the ratio of stored energy on a capacitor to available energy measured across a matched resistive load, is 63%. Although the resulting energy is already sufficient to power certain autonomous applications, further optimization of the circuit are still under investigation in order to improve the overall efficiency.

Keywords: autonomous sensors, circuit design, energy harvesting, energy management, impact harvester, piezoelectricity

Procedia PDF Downloads 154
7382 Optimizing Energy Efficiency: Leveraging Big Data Analytics and AWS Services for Buildings and Industries

Authors: Gaurav Kumar Sinha

Abstract:

In an era marked by increasing concerns about energy sustainability, this research endeavors to address the pressing challenge of energy consumption in buildings and industries. This study delves into the transformative potential of AWS services in optimizing energy efficiency. The research is founded on the recognition that effective management of energy consumption is imperative for both environmental conservation and economic viability. Buildings and industries account for a substantial portion of global energy use, making it crucial to develop advanced techniques for analysis and reduction. This study sets out to explore the integration of AWS services with big data analytics to provide innovative solutions for energy consumption analysis. Leveraging AWS's cloud computing capabilities, scalable infrastructure, and data analytics tools, the research aims to develop efficient methods for collecting, processing, and analyzing energy data from diverse sources. The core focus is on creating predictive models and real-time monitoring systems that enable proactive energy management. By harnessing AWS's machine learning and data analytics capabilities, the research seeks to identify patterns, anomalies, and optimization opportunities within energy consumption data. Furthermore, this study aims to propose actionable recommendations for reducing energy consumption in buildings and industries. By combining AWS services with metrics-driven insights, the research strives to facilitate the implementation of energy-efficient practices, ultimately leading to reduced carbon emissions and cost savings. The integration of AWS services not only enhances the analytical capabilities but also offers scalable solutions that can be customized for different building and industrial contexts. The research also recognizes the potential for AWS-powered solutions to promote sustainable practices and support environmental stewardship.

Keywords: energy consumption analysis, big data analytics, AWS services, energy efficiency

Procedia PDF Downloads 64
7381 Anaerobic Co-digestion in Two-Phase TPAD System of Sewage Sludge and Fish Waste

Authors: Rocio López, Miriam Tena, Montserrat Pérez, Rosario Solera

Abstract:

Biotransformation of organic waste into biogas is considered an interesting alternative for the production of clean energy from renewable sources by reducing the volume and organic content of waste Anaerobic digestion is considered one of the most efficient technologies to transform waste into fertilizer and biogas in order to obtain electrical energy or biofuel within the concept of the circular economy. Currently, three types of anaerobic processes have been developed on a commercial scale: (1) single-stage process where sludge bioconversion is completed in a single chamber, (2) two-stage process where the acidogenic and methanogenic stages are separated into two chambers and, finally, (3) temperature-phase sequencing (TPAD) process that combines a thermophilic pretreatment unit prior to mesophilic anaerobic digestion. Two-stage processes can provide hydrogen and methane with easier control of the first and second stage conditions producing higher total energy recovery and substrate degradation than single-stage processes. On the other hand, co-digestion is the simultaneous anaerobic digestion of a mixture of two or more substrates. The technology is similar to anaerobic digestion but is a more attractive option as it produces increased methane yields due to the positive synergism of the mixtures in the digestion medium thus increasing the economic viability of biogas plants. The present study focuses on the energy recovery by anaerobic co-digestion of sewage sludge and waste from the aquaculture-fishing sector. The valorization is approached through the application of a temperature sequential phase process or TPAD technology (Temperature - Phased Anaerobic Digestion). Moreover, two-phase of microorganisms is considered. Thus, the selected process allows the development of a thermophilic acidogenic phase followed by a mesophilic methanogenic phase to obtain hydrogen (H₂) in the first stage and methane (CH₄) in the second stage. The combination of these technologies makes it possible to unify all the advantages of these anaerobic digestion processes individually. To achieve these objectives, a sequential study has been carried out in which the biochemical potential of hydrogen (BHP) is tested followed by a BMP test, which will allow checking the feasibility of the two-stage process. The best results obtained were high total and soluble COD yields (59.8% and 82.67%, respectively) as well as H₂ production rates of 12LH₂/kg SVadded and methane of 28.76 L CH₄/kg SVadded for TPAD.

Keywords: anaerobic co-digestion, TPAD, two-phase, BHP, BMP, sewage sludge, fish waste

Procedia PDF Downloads 156
7380 Improvement of Energy Consumption toward Sustainable Ceramic Industry in Indonesia

Authors: Sawarni Hasibuan, Rudi Effendi Listyanto

Abstract:

The industrial sector is the largest consumer of energy consumption in Indonesia. The ceramics industry includes one of seven industries categorized as an energy-intensive industry. Energy costs on the ceramic floor production process reached 40 percent of the total production cost. The kiln is one of the machines in the ceramic industry that consumes the most gas energy reach 51 percent of gas consumption in ceramic production. The purpose of this research is to make improvement of energy consumption in kiln machine part with the innovation of burner tube to support the sustainability of Indonesian ceramics industry. The tube burner is technically designed to be able to raise the temperature and stabilize the air pressure in the burner so as to facilitate the combustion process in the kiln machine which implies the efficiency of gas consumption required. The innovation of the burner tube also has an impact on the decrease of the combustion chamber pressure in the kiln and managed to keep the pressure of the combustion chamber according to the operational standard of the kiln; consequently, the smoke fan motor power can be lowered and the kiln electric energy consumption is also more efficient. The innovation of burner tube succeeded in saving consume of gas and electricity respectively by 0.0654 GJ and 1,693 x 10-3 GJ for every ton of ceramics produced. Improvement of this energy consumption not only implies the cost savings of production but also supports the sustainability of the Indonesian ceramics industry.

Keywords: sustainable ceramic industry, burner tube, kiln, energy efficiency

Procedia PDF Downloads 324
7379 A Photovoltaic Micro-Storage System for Residential Applications

Authors: Alia Al Nuaimi, Ayesha Al Aberi, Faiza Al Marzouqi, Shaikha Salem Ali Al Yahyaee, Ala Hussein

Abstract:

In this paper, a PV micro-storage system for residential applications is proposed. The term micro refers to the size of the PV storage system, which is in the range of few kilo-watts, compared to the grid size (~GWs). Usually, in a typical load profile of a residential unit, two peak demand periods exist: one at morning and the other at evening time. The morning peak can be partly covered by the PV energy directly, while the evening peak cannot be covered by the PV alone. Therefore, an energy storage system that stores solar energy during daytime and use this stored energy when the sun is absent is a must. A complete design procedure including theoretical analysis followed by simulation verification and economic feasibility evaluation is addressed in this paper.

Keywords: battery, energy storage, photovoltaic, peak shaving, smart grid

Procedia PDF Downloads 321
7378 Energy Efficient Building Design in Nigeria: An Assessment of the Effect of the Sun on Energy Consumption in Residential Buildings

Authors: Ekele T. Ochedi, Ahmad H. Taki, Birgit Painter

Abstract:

The effect of the sun and its path on thermal comfort and energy consumption in residential buildings in tropical climates constitute a serious concern for designers, building owners, and users. Passive design approaches based on the sun and its path have been identified as a means of reducing energy consumption as well as enhancing thermal comfort in buildings worldwide. Hence, a thorough understanding regarding the sun path is key to achieving this. This is necessary due to energy need, poor energy supply, and distribution, energy poverty, and over-dependence on electric generators for power supply in Nigeria. These challenges call for a change in the approach to energy-related issues, especially in terms of buildings. The aim of this study is to explore the influence of building orientation, glazing and the use of shading devices on residential buildings in Nigeria. This is intended to provide data that will guide designers in the design of energy-efficient residential buildings. The paper used EnergyPlus to analyze a typical semi-detached residential building in Lokoja, Nigeria using hourly weather data for a period of 10 years. Building performance was studied as well as possible improvement regarding different orientations, glazing types and shading devices. The simulation results show some reductions in energy consumption in response to changes in building orientation, types of glazing and the use of shading devices. The results indicate 29.45% reduction in solar gains and 1.90% in annual operative temperature using natural ventilation only. This shows a huge potential to reduce energy consumption and improve people’s well-being through the use of proper building orientation, glazing and appropriate shading devices on building envelope. The study concludes that for a significant reduction in total energy consumption by residential buildings, the design should focus on multiple design options rather than concentrating on one or few building elements. Moreover, the investigation confirms that energy performance modeling can be used by building designers to take advantage of the sun and to evaluate various design options.

Keywords: energy consumption, energy-efficient buildings, glazing, thermal comfort, shading devices, solar gains

Procedia PDF Downloads 212
7377 Energy Consumption and GHG Production in Railway and Road Passenger Regional Transport

Authors: Martin Kendra, Tomas Skrucany, Jozef Gnap, Jan Ponicky

Abstract:

Paper deals with the modeling and simulation of energy consumption and GHG production of two different modes of regional passenger transport – road and railway. These two transport modes use the same type of fuel – diesel. Modeling and simulation of the energy consumption in transport is often used due to calculation satisfactory accuracy and cost efficiency. Paper deals with the calculation based on EN standards and information collected from technical information from vehicle producers and characteristics of tracks. Calculation included maximal theoretical capacity of bus and train and real passenger’s measurement from operation. Final energy consumption and GHG production is calculated by using software simulation. In evaluation of the simulation is used system ‘well to wheel’.

Keywords: bus, consumption energy, GHG, production, simulation, train

Procedia PDF Downloads 443
7376 Challenges of Cryogenic Fluid Metering by Coriolis Flowmeter

Authors: Evgeniia Shavrina, Yan Zeng, Boo Cheong Khoo, Vinh-Tan Nguyen

Abstract:

The present paper is aimed at providing a review of error sources in cryogenic metering by Coriolis flowmeters (CFMs). Whereas these flowmeters allow accurate water metering, high uncertainty and low repeatability are commonly observed at cryogenic fluid metering, which is often necessary for effective renewable energy production and storage. The sources of these issues might be classified as general and cryogenic specific challenges. A conducted analysis of experimental and theoretical studies shows that material behaviour at cryogenic temperatures, composition variety, and multiphase presence are the most significant cryogenic challenges. At the same time, pipeline diameter limitation, ambient vibration impact, and drawbacks of the installation may be highlighted as the most important general challenges of cryogenic metering by CFM. Finally, the techniques, which mitigate the impact of these challenges are reviewed, and future development direction is indicated.

Keywords: Coriolis flowmeter, cryogenic, multicomponent flow, multiphase flow

Procedia PDF Downloads 152
7375 Joint Modeling of Bottle Use, Daily Milk Intake from Bottles, and Daily Energy Intake in Toddlers

Authors: Yungtai Lo

Abstract:

The current study follows an educational intervention on bottle-weaning to simultaneously evaluate the effect of the bottle-weaning intervention on reducing bottle use, daily milk intake from bottles, and daily energy intake in toddlers aged 11 to 13 months. A shared parameter model and a random effects model are used to jointly model bottle use, daily milk intake from bottles, and daily energy intake. We show in the two joint models that the bottle-weaning intervention promotes bottleweaning, and reduces daily milk intake from bottles in toddlers not off bottles and daily energy intake. We also show that the odds of drinking from a bottle were positively associated with the amount of milk intake from bottles and increased daily milk intake from bottles was associated with increased daily energy intake. The effect of bottle use on daily energy intake is through its effect on increasing daily milk intake from bottles that in turn increases daily energy intake.

Keywords: two-part model, semi-continuous variable, joint model, gamma regression, shared parameter model, random effects model

Procedia PDF Downloads 287
7374 Calculating All Dark Energy and Dark Matter Effects Through Dynamic Gravity Theory

Authors: Sean Kinney

Abstract:

In 1666, Newton created the Law of Universal Gravitation. And in 1915, Einstein improved it to incorporate factors such as time dilation and gravitational lensing. But currently, there is a problem with this “universal” law. The math doesn’t work outside the confines of our solar system. And something is missing; any evidence of what gravity actually is and how it manifest. This paper explores the notion that gravity must obey the law of conservation of energy as all other forces in this universe have been shown to do. Explaining exactly what gravity is and how it manifests itself. And looking at many different implications that would be created are explained. And finally, using the math of Dynamic Gravity to calculate Dark Energy and Dark Matter effects to explain all observations without the need of exotic measures.

Keywords: gravity, dynamic gravity, dark matter, dark energy

Procedia PDF Downloads 105
7373 Correlation between Fuel Consumption and Voyage Related Ship Operational Energy Efficiency Measures: An Analysis from Noon Data

Authors: E. Bal Beşikçi, O. Arslan

Abstract:

Fuel saving has become one of the most important issue for shipping in terms of fuel economy and environmental impact. Lowering fuel consumption is possible for both new ships and existing ships through enhanced energy efficiency measures, technical and operational respectively. The limitations of applying technical measures due to the long payback duration raise the potential of operational changes for energy efficient ship operations. This study identifies operational energy efficiency measures related voyage performance management. We use ‘noon’ data to examine the correlation between fuel consumption and operational parameters- revolutions per minute (RPM), draft, trim, (beaufort number) BN and relative wind direction, which are used as measures of ship energy efficiency. The results of this study reveal that speed optimization is the most efficient method as fuel consumption depends heavily on RPM. In conclusion, this study will provide ship operators with the strategic approach for evaluating the priority of the operational energy efficiency measures against high fuel prices and carbon emissions.

Keywords: ship, voyage related operational energy Efficiency measures, fuel consumption, pearson's correlation coefficient

Procedia PDF Downloads 616
7372 Study of Heat Transfer through the Ground and its Accumulation Properties to Increase the Energy Efficiency of Underground Buildings

Authors: Sandeep Bandarwadkar, Tadas Zdankus

Abstract:

To maintain a comfortable indoor temperature for its residents in the colder season, heating a building is necessary. Due to the expansion in the construction sectors, the consumption of heating energy is increasing. According to Eurostat data, in the European Union, the share of energy consumption of heating energy for space and cooling in residential buildings was around 63% in 2019. These figures indicate that heating energy still accounts for a significant portion of total energy consumption in Europe. Innovation is crucial to reduce energy consumption in buildings and achieve greater energy efficiency and sustainability. It can bring about new solutions that are smarter and more natural energy generation to reduce greenhouse gas emissions. The ground can serve as an effective and sustainable heat accumulator for heating and cooling. The temperature of the ground is higher than that of the ambient air in the colder period and lower in the warmer period. The building deep in the soil could use less thermal energy compared to the above-ground buildings that provide the same amount of thermal comfort. The temperature difference between the soil and the air inside the building decreases as the temperature of the soil increases. In progress, this process generates the condition that acts against heat loss. However, heat dissipates further to the consecutive layers and reaches thermal equilibrium. The charging of the ground by heat and its dissipation through the adjacent soil layers was investigated experimentally. The results of this research showed that 9% of the energy savings in partially underground buildings and 44.4% in completely underground buildings were derived from heating the space. Heat loss to the ground is treated as a charge of the soil by thermal energy. The dependence of the intensity of the charge on time was analysed and presented.

Keywords: heat transfer, accumulation of heat, underground building, soil charge

Procedia PDF Downloads 71
7371 Optimized Techniques for Reducing the Reactive Power Generation in Offshore Wind Farms in India

Authors: Pardhasaradhi Gudla, Imanual A.

Abstract:

The generated electrical power in offshore needs to be transmitted to grid which is located in onshore by using subsea cables. Long subsea cables produce reactive power, which should be compensated in order to limit transmission losses, to optimize the transmission capacity, and to keep the grid voltage within the safe operational limits. Installation cost of wind farm includes the structure design cost and electrical system cost. India has targeted to achieve 175GW of renewable energy capacity by 2022 including offshore wind power generation. Due to sea depth is more in India, the installation cost will be further high when compared to European countries where offshore wind energy is already generating successfully. So innovations are required to reduce the offshore wind power project cost. This paper presents the optimized techniques to reduce the installation cost of offshore wind firm with respect to electrical transmission systems. This technical paper provides the techniques for increasing the current carrying capacity of subsea cable by decreasing the reactive power generation (capacitance effect) of the subsea cable. There are many methods for reactive power compensation in wind power plants so far in execution. The main reason for the need of reactive power compensation is capacitance effect of subsea cable. So if we diminish the cable capacitance of cable then the requirement of the reactive power compensation will be reduced or optimized by avoiding the intermediate substation at midpoint of the transmission network.

Keywords: offshore wind power, optimized techniques, power system, sub sea cable

Procedia PDF Downloads 193
7370 Sensitivity of the Estimated Output Energy of the Induction Motor to both the Asymmetry Supply Voltage and the Machine Parameters

Authors: Eyhab El-Kharashi, Maher El-Dessouki

Abstract:

The paper is dedicated to precise assessment of the induction motor output energy during the unbalanced operation. Since many years ago and until now the voltage complex unbalance factor (CVUF) is used only to assess the output energy of the induction motor while this output energy for asymmetry supply voltage does not depend on the value of unbalanced voltage only but also on the machine parameters. The paper illustrates the variation of the two unbalance factors, complex voltage unbalance factor (CVUF) and impedance unbalance factor (IUF), with positive sequence voltage component, reveals that degree and manner of unbalance in supply voltage. From this point of view the paper delineates the current unbalance factor (CUF) to exactly reflect the output energy during unbalanced operation. The paper proceeds to illustrate the importance of using this factor in the multi-machine system to precise prediction of the output energy during the unbalanced operation. The use of the proposed unbalance factor (CUF) avoids the accumulation of the error due to more than one machine in the system which is expected if only the complex voltage unbalance factor (CVUF) is used.

Keywords: induction motor, electromagnetic torque, voltage unbalance, energy conversion

Procedia PDF Downloads 557
7369 Synthesis and Characterization of AFe₂O₄ (A=CA, Co, CU) Nano-Spinels: Application to Hydrogen Photochemical Production under Visible Light Irradiation

Authors: H. Medjadji, A. Boulahouache, N. Salhi, A. Boudjemaa, M. Trari

Abstract:

Hydrogen from renewable sources, such as solar, is referred to as green hydrogen. The splitting water process using semiconductors, such as photocatalysts, has attracted significant attention due to its potential application for solving the energy crisis and environmental pollution. Spinel ferrites of the MF₂O₄ type have shown broad interest in diverse energy conversion processes, including fuel cells and photo electrocatalytic water splitting. This work focuses on preparing nano-spinels based on iron AFe₂O₄ (A= Ca, Co, and Cu) as photocatalysts using the nitrate method. These materials were characterized both physically and optically and subsequently tested for hydrogen generation under visible light irradiation. Various techniques were used to investigate the properties of the materials, including TGA-DT, X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), UV-visible spectroscopy, Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-EDX) and X-ray Photoelectron Spectroscopy (XPS) was also undertaken. XRD analysis confirmed the formation of pure phases at 850°C, with crystalline sizes of 31 nm for CaFe₂O₄, 27 nm for CoFe₂O₄, and 40 nm for CuFe₂O₄. The energy gaps, calculated from recorded diffuse reflection data, are 1.85 eV for CaFe₂O₄, 1.27 eV for CoFe₂O₄, and 1.64 eV for CuFe₂O₄. SEM micrographs showed homogeneous grains with uniform shapes and medium porosity in all samples. EDX elemental analysis determined the absence of any contaminating elements, highlighting the high purity of the prepared materials via the nitrate route. XPS spectra revealed the presence of Fe3+ and O in all samples. Additionally, XPS analysis revealed the presence of Ca²⁺, Co²⁺, and Cu²⁺ on the surface of CaFe₂O₄ and CoFe₂O₄ spinels, respectively. The photocatalytic activity was successfully evaluated by measuring H₂ evolution through the water-splitting process. The best performance was achieved with CaFe₂O₄ in a neutral medium (pH ~ 7), yielding 189 µmol at an optimal temperature of ~50°C. The highest hydrogen production rates for CoFe₂O₄ and CuFe₂O₄ were obtained at pH ~ 12 with release rates of 65 and 85 µmol, respectively, under visible light irradiation at the same optimal temperature. Various conditions were investigated including the pH of the solution, the hole sensors utilization and recyclability.

Keywords: hydrogen, MFe₂O₄, nitrate route, spinel ferrite

Procedia PDF Downloads 38
7368 The Modified WBS Based on LEED Rating System in Decreasing Energy Consumption and Cost of Buildings

Authors: Mehrab Gholami Zangalani, Siavash Rajabpour

Abstract:

In compliance with the Statistical Centre of Iran (SCI)’s results, construction and housing section in Iran is consuming 40% of energy, which is 5 times more than the world average consumption. By considering the climate in Iran, the solutions in terms of design, construction and exploitation of the buildings by utilizing the LEED rating system (LRS) is presented, regarding to the reasons for the high levels of energy consumption during construction and housing in Iran. As a solution, innovative Work Break Structure (WBS) in accordance with LRS and Iranian construction’s methods is unveiled in this research. Also, by amending laws pertaining to the construction in Iran, the huge amount of energy and cost can be saved. Furthermore, with a scale-up of these results to the scale of big cities such as Tehran (one of the largest metropolitan areas in the middle east) in which the license to build more than two hundred and fifty units each day is issued, the amount of energy and cost that can be saved is estimated.

Keywords: costs reduction, energy statistics, leed rating system (LRS), work brake structure (WBS)

Procedia PDF Downloads 527
7367 Energy Management of Hybrid Energy Source Composed of a Fuel Cell and Supercapacitor for an Electric Vehicle

Authors: Mejri Achref

Abstract:

This paper proposes an energy management strategy for an electrical hybrid vehicle which is composed of a Proton Exchange Membrane (PEM) fuel cell and a supercapacitor storage device. In this paper, the mathematical model for the proposed power train, comprising the PEM Fuel Cell, supercapacitor, boost converter, inverter, and vehicular structure, was modeled in MATLAB/Simulink. The proposed algorithm is evaluated for the Highway Fuel Economy Test (HWFET) driving cycle. The obtained results demonstrate the effectiveness of the proposed energy management strategy in reduction of hydrogen consumption.

Keywords: proton exchange membrane fuel cell, hybrid vehicle, hydrogen consumption, energy management strategy

Procedia PDF Downloads 178