Search results for: panel data regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26904

Search results for: panel data regression

25704 An Exploratory Study on 'Sub-Region Life Circle' in Chinese Big Cities Based on Human High-Probability Daily Activity: Characteristic and Formation Mechanism as a Case of Wuhan

Authors: Zhuoran Shan, Li Wan, Xianchun Zhang

Abstract:

With an increasing trend of regionalization and polycentricity in Chinese contemporary big cities, “sub-region life circle” turns to be an effective method on rational organization of urban function and spatial structure. By the method of questionnaire, network big data, route inversion on internet map, GIS spatial analysis and logistic regression, this article makes research on characteristic and formation mechanism of “sub-region life circle” based on human high-probability daily activity in Chinese big cities. Firstly, it shows that “sub-region life circle” has been a new general spatial sphere of residents' high-probability daily activity and mobility in China. Unlike the former analysis of the whole metropolitan or the micro community, “sub-region life circle” has its own characteristic on geographical sphere, functional element, spatial morphology and land distribution. Secondly, according to the analysis result with Binary Logistic Regression Model, the research also shows that seven factors including land-use mixed degree and bus station density impact the formation of “sub-region life circle” most, and then analyzes the index critical value of each factor. Finally, to establish a smarter “sub-region life circle”, this paper indicates that several strategies including jobs-housing fit, service cohesion and space reconstruction are the keys for its spatial organization optimization. This study expands the further understanding of cities' inner sub-region spatial structure based on human daily activity, and contributes to the theory of “life circle” in urban's meso-scale.

Keywords: sub-region life circle, characteristic, formation mechanism, human activity, spatial structure

Procedia PDF Downloads 300
25703 The Decision Making of Students to Study at Rajabhat University in Thailand

Authors: Pisit Potjanajaruwit

Abstract:

TThe research objective was to study the integrated marketing communication strategy that is affecting the student’s decision making to study at Rajabhat University in Thailand. This research is a quantitative research. The sampling for this study is the first year students of Rajabhat University for 400 sampling. The data collection is made by a questionnaire. The data analysis by the descriptive statistic include frequency, percentage, mean and standardization and influence statistic as the multiple regression. The results show that integrated marketing communication including the advertising, public relation, sale promotion is important and significant with the student’s making decision in terms of brand awareness and brand recognized. The university scholar and word of mouth have an impact on decision-making of the student. The direct marketing such as Facebook also relate to the student decision. In addition, we found that the marketing communication budget, university brand positioning and university mission have the direct effect on the marketing communication.

Keywords: decision making of higher education, integrated marketing communication, rajabhat university, social media

Procedia PDF Downloads 340
25702 Information Communication Technology (ICT) Using Management in Nursing College under the Praboromarajchanok Institute

Authors: Suphaphon Udomluck, Pannathorn Chachvarat

Abstract:

Information Communication Technology (ICT) using management is essential for effective decision making in organization. The Concerns Based Adoption Model (CBAM) was employed as the conceptual framework. The purposes of the study were to assess the situation of Information Communication Technology (ICT) using management in College of Nursing under the Praboromarajchanok Institute. The samples were multi – stage sampling of 10 colleges of nursing that participated include directors, vice directors, head of learning groups, teachers, system administrator and responsible for ICT. The total participants were 280; the instrument used were questionnaires that include 4 parts, general information, Information Communication Technology (ICT) using management, the Stage of concern Questionnaires (SoC), and the Levels of Use (LoU) ICT Questionnaires respectively. Reliability coefficients were tested; alpha coefficients were 0.967for Information Communication Technology (ICT) using management, 0.884 for SoC and 0.945 for LoU. The data were analyzed by frequency, percentage, mean, standard deviation, Pearson Product Moment Correlation and Multiple Regression. They were founded as follows: The high level overall score of Information Communication Technology (ICT) using management and issue were administration, hardware, software, and people. The overall score of the Stage of concern (SoC)ICTis at high level and the overall score of the Levels of Use (LoU) ICTis at moderate. The Information Communication Technology (ICT) using management had the positive relationship with the Stage of concern (SoC)ICTand the Levels of Use (LoU) ICT(p < .01). The results of Multiple Regression revealed that administration hardwear, software and people ware could predict SoC of ICT (18.5%) and LoU of ICT (20.8%).The factors that were significantly influenced by SoCs were people ware. The factors that were significantly influenced by LoU of ICT were administration hardware and people ware.

Keywords: information communication technology (ICT), management, the concerns-based adoption model (CBAM), stage of concern(SoC), the levels of use(LoU)

Procedia PDF Downloads 318
25701 Role of Vocational Education and Training in Economic Excellence and Social Inclusion

Authors: Muhammad Ali Asadullah, Zafarullah Amir

Abstract:

In recent years, Vocational Education and Training (VET) has been under discussion by the academic researchers and remained in focus in the political grounds. Due to potential contribution of VET, the World Bank and United Nations Educational, Scientific and Cultural Organization (UNESCO) support vocational education to reduce poverty, enhance economic growth and increase competitiveness. This paper examines the impact of Vocational Education and Training on the Economic Growth and Social Inclusion with direct and mediation effect of Social Inclusion. The basic purpose of this study is to assess economic pay-offs as a result of long term investments in VET. Based on the review of Anderson Nilsson, initially we explored the increasing or decreasing trend in investment on VET. Further, the study explores that the countries which invest more on VET, tend to get more economic growth and are socially more ‘inclusive’. It is a longitudinal / panel data study with 12 years of registered data which involves 24 OECD countries. The results of the study indicate the VET has positive association with Social Inclusion and Economic Growth. Further, there is also a positive association of VET and Economic Growth through mediation of Social Inclusion. The current study considers not only issue and challenges in developing VET systems but also contributes to develop the theoretical framework for considering how VET can directly and indirectly improve economic growth and social inclusion. A wider appreciation of how VET’s benefits operate may influence a country’s decisions to invest in it. If policy makers increase investment on VET, the result would be positive in Economic Growth and Social Inclusion. It is also recommended that the same OECD model may be implemented in developing countries like Pakistan.

Keywords: Vocational Education and Training (VET), Social Inclusion, Economic Growth, OECD countries

Procedia PDF Downloads 310
25700 A Regression Model for Predicting Sugar Crystal Size in a Fed-Batch Vacuum Evaporative Crystallizer

Authors: Sunday B. Alabi, Edikan P. Felix, Aniediong M. Umo

Abstract:

Crystal size distribution is of great importance in the sugar factories. It determines the market value of granulated sugar and also influences the cost of production of sugar crystals. Typically, sugar is produced using fed-batch vacuum evaporative crystallizer. The crystallization quality is examined by crystal size distribution at the end of the process which is quantified by two parameters: the average crystal size of the distribution in the mean aperture (MA) and the width of the distribution of the coefficient of variation (CV). Lack of real-time measurement of the sugar crystal size hinders its feedback control and eventual optimisation of the crystallization process. An attractive alternative is to use a soft sensor (model-based method) for online estimation of the sugar crystal size. Unfortunately, the available models for sugar crystallization process are not suitable as they do not contain variables that can be measured easily online. The main contribution of this paper is the development of a regression model for estimating the sugar crystal size as a function of input variables which are easy to measure online. This has the potential to provide real-time estimates of crystal size for its effective feedback control. Using 7 input variables namely: initial crystal size (Lo), temperature (T), vacuum pressure (P), feed flowrate (Ff), steam flowrate (Fs), initial super-saturation (S0) and crystallization time (t), preliminary studies were carried out using Minitab 14 statistical software. Based on the existing sugar crystallizer models, and the typical ranges of these 7 input variables, 128 datasets were obtained from a 2-level factorial experimental design. These datasets were used to obtain a simple but online-implementable 6-input crystal size model. It seems the initial crystal size (Lₒ) does not play a significant role. The goodness of the resulting regression model was evaluated. The coefficient of determination, R² was obtained as 0.994, and the maximum absolute relative error (MARE) was obtained as 4.6%. The high R² (~1.0) and the reasonably low MARE values are an indication that the model is able to predict sugar crystal size accurately as a function of the 6 easy-to-measure online variables. Thus, the model can be used as a soft sensor to provide real-time estimates of sugar crystal size during sugar crystallization process in a fed-batch vacuum evaporative crystallizer.

Keywords: crystal size, regression model, soft sensor, sugar, vacuum evaporative crystallizer

Procedia PDF Downloads 208
25699 Teachers’ Role and Principal’s Administrative Functions as Correlates of Effective Academic Performance of Public Secondary School Students in Imo State, Nigeria

Authors: Caroline Nnokwe, Iheanyi Eneremadu

Abstract:

Teachers and principals are vital and integral parts of the educational system. For educational objectives to be met, the role of teachers and the functions of the principals are not to be overlooked. However, the inability of teachers and principals to carry out their roles effectively has impacted the outcome of the students’ performance. The study, therefore, examined teachers’ roles and principal’s administrative functions as correlates of effective academic performance of public secondary school students in Imo state, Nigeria. Four research questions and two hypotheses guided the study. The study adopted a correlation research design. The sample size was 5,438 respondents via the Yaro-Yamane technique, which consists of 175 teachers, 13 principals and 5,250 students using the proportional stratified random sampling technique. The instruments for data collection were a researcher-made questionnaire titled Teachers’ Role/Principals’ Administrative Functions Questionnaire (TRPAFQ) with a Cronbach Alpha coefficient of .82 and student's internal results obtained from the school authorities. Data collected were analyzed using the Pearson product-moment correlation coefficient and simple linear regression. Research questions were answered using Pearson Product Moment Correlation statistics, while the hypotheses were tested at 0.05 level of significance using regression analysis. The findings of the study showed that the educational qualification of teachers, organizing, and planning correlated student’s academic performance to a great extent, while availability and proper use of instructional materials by teachers correlated the academic performance of students to a very high extent. The findings also revealed that there is a significant relationship between teachers’ role, principals’ administrative functions and student’s academic performance of public secondary schools in Imo State, The study recommended among others that there is the need for government, through the ministry of education, and education authorities to adequately staff their supervisory department in order to carry out proper supervision of secondary school teachers, and also provide adequate instructional materials to ensure greater academic performance among secondary school students of Imo state, Nigeria.

Keywords: instructional materials, principals’ administrative functions, students’ academic performance, teacher role

Procedia PDF Downloads 86
25698 Implementation of an IoT Sensor Data Collection and Analysis Library

Authors: Jihyun Song, Kyeongjoo Kim, Minsoo Lee

Abstract:

Due to the development of information technology and wireless Internet technology, various data are being generated in various fields. These data are advantageous in that they provide real-time information to the users themselves. However, when the data are accumulated and analyzed, more various information can be extracted. In addition, development and dissemination of boards such as Arduino and Raspberry Pie have made it possible to easily test various sensors, and it is possible to collect sensor data directly by using database application tools such as MySQL. These directly collected data can be used for various research and can be useful as data for data mining. However, there are many difficulties in using the board to collect data, and there are many difficulties in using it when the user is not a computer programmer, or when using it for the first time. Even if data are collected, lack of expert knowledge or experience may cause difficulties in data analysis and visualization. In this paper, we aim to construct a library for sensor data collection and analysis to overcome these problems.

Keywords: clustering, data mining, DBSCAN, k-means, k-medoids, sensor data

Procedia PDF Downloads 378
25697 Good Governance Complementary to Corruption Abatement: A Cross-Country Analysis

Authors: Kamal Ray, Tapati Bhattacharya

Abstract:

Private use of public office for private gain could be a tentative definition of corruption and most distasteful event of corruption is that it is not there, nor that it is pervasive, but it is socially acknowledged in the global economy, especially in the developing nations. We attempted to assess the interrelationship between the Corruption perception index (CPI) and the principal components of governance indicators as per World Bank like Control of Corruption (CC), rule of law (RL), regulatory quality (RQ) and government effectiveness (GE). Our empirical investigation concentrates upon the degree of reflection of governance indicators upon the CPI in order to single out the most powerful corruption-generating indicator in the selected countries. We have collected time series data on above governance indicators such as CC, RL, RQ and GE of the selected eleven countries from the year of 1996 to 2012 from World Bank data set. The countries are USA, UK, France, Germany, Greece, China, India, Japan, Thailand, Brazil, and South Africa. Corruption Perception Index (CPI) of the countries mentioned above for the period of 1996 to 2012is also collected. Graphical method of simple line diagram against the time series data on CPI is applied for quick view for the relative positions of different trend lines of different nations. The correlation coefficient is enough to assess primarily the degree and direction of association between the variables as we get the numerical data on governance indicators of the selected countries. The tool of Granger Causality Test (1969) is taken into account for investigating causal relationships between the variables, cause and effect to speak of. We do not need to verify stationary test as length of time series is short. Linear regression is taken as a tool for quantification of a change in explained variables due to change in explanatory variable in respect of governance vis a vis corruption. A bilateral positive causal link between CPI and CC is noticed in UK, index-value of CC increases by 1.59 units as CPI increases by one unit and CPI rises by 0.39 units as CC rises by one unit, and hence it has a multiplier effect so far as reduction in corruption is concerned in UK. GE causes strongly to the reduction of corruption in UK. In France, RQ is observed to be a most powerful indicator in reducing corruption whereas it is second most powerful indicator after GE in reducing of corruption in Japan. Governance-indicator like GE plays an important role to push down the corruption in Japan. In China and India, GE is proactive as well as influencing indicator to curb corruption. The inverse relationship between RL and CPI in Thailand indicates that ongoing machineries related to RL is not complementary to the reduction of corruption. The state machineries of CC in S. Africa are highly relevant to reduce the volume of corruption. In Greece, the variations of CPI positively influence the variations of CC and the indicator like GE is effective in controlling corruption as reflected by CPI. All the governance-indicators selected so far have failed to arrest their state level corruptions in USA, Germany and Brazil.

Keywords: corruption perception index, governance indicators, granger causality test, regression

Procedia PDF Downloads 304
25696 Emerging VC Industry and the Important Role of Marketing Expectations in Project Selection: Evidence on Russian Data

Authors: I. Rodionov, A. Semenov, E. Gosteva, O. Sokolova

Abstract:

Currently, the venture capital becomes more and more advanced and effective source of the innovation project financing, connected with a high-risk level. In the developed countries, it plays a key role in transforming innovation projects into successful businesses and creating prosperity of the modern economy. Actually, in Russia there are many necessary preconditions for creation of the effective venture investment system: the network of the public institutes for innovation financing operates; there is a significant number of the small and medium-sized enterprises, capable to sell production with good market potential. However, the current system does not confirm the necessary level of efficiency in practice that can be substantially explained by the absence of the accurate plan of action to form the national venture model and by the lack of experience of successful venture deals with profitable exits in Russian economy. This paper studies the influence of various factors on the venture industry development by the example of the IT-sector in Russia. The choice of the sector is based on the fact, that this segment is the main driver of the venture capital market growth in Russia, and the necessary set of data exists. The size of investment of the second round is used as the dependent variable. To analyse the influence of the previous round such determinant as the volume of the previous (first) round investments is used. There is also used a dummy variable in regression to examine that the participation of an investor with high reputation and experience in the previous round can influence the size of the next investment round. The regression analysis of short-term interrelations between studied variables reveals prevailing influence of the volume of the first round investments on the venture investments volume of the second round. Because of the research, the participation of investors with first-class reputation has a small impact on an indicator of the value of investment of the second round. The expected positive dependence of the second round investments on the forecasted market growth rate now of the deal is also rejected. So, the most important determinant of the value of the second-round investment is the value of first–round investment, so it means that the most competitive on the Russian market are the start-up teams which can attract more money on the start, and the target market growth is not the factor of crucial importance.

Keywords: venture industry, venture investment, determinants of the venture sector development, IT-sector

Procedia PDF Downloads 353
25695 Government (Big) Data Ecosystem: Definition, Classification of Actors, and Their Roles

Authors: Syed Iftikhar Hussain Shah, Vasilis Peristeras, Ioannis Magnisalis

Abstract:

Organizations, including governments, generate (big) data that are high in volume, velocity, veracity, and come from a variety of sources. Public Administrations are using (big) data, implementing base registries, and enforcing data sharing within the entire government to deliver (big) data related integrated services, provision of insights to users, and for good governance. Government (Big) data ecosystem actors represent distinct entities that provide data, consume data, manipulate data to offer paid services, and extend data services like data storage, hosting services to other actors. In this research work, we perform a systematic literature review. The key objectives of this paper are to propose a robust definition of government (big) data ecosystem and a classification of government (big) data ecosystem actors and their roles. We showcase a graphical view of actors, roles, and their relationship in the government (big) data ecosystem. We also discuss our research findings. We did not find too much published research articles about the government (big) data ecosystem, including its definition and classification of actors and their roles. Therefore, we lent ideas for the government (big) data ecosystem from numerous areas that include scientific research data, humanitarian data, open government data, industry data, in the literature.

Keywords: big data, big data ecosystem, classification of big data actors, big data actors roles, definition of government (big) data ecosystem, data-driven government, eGovernment, gaps in data ecosystems, government (big) data, public administration, systematic literature review

Procedia PDF Downloads 162
25694 Foreign Tourists’ Attitude toward Service Marketing Mix and Intention to Revisit in Boutique Hotel

Authors: Nattapong Techarattanased

Abstract:

This survey research aimed to study the influence of attitude in services, product, and marketing mix affected intention to revisit in boutique hotel of foreign travelers in Bangkok, Thailand. The total 400 sets of closed-ended questionnaires were utilized for conducting data from foreign tourists who come to boutique hotel and can communicate in English. The descriptive statistics and multiple regression analysis were used to analyze data. The research found that tourists’ attitude towards the service of check in and check out process, food and beverage, guest room and other facilities affected in opportunity of revisiting, recommending to others and possibility of revisiting in the future at 0.05 statistically significant levels. Tourists’ attitude towards service and marketing mix in term of people, physical evidence, price, process and channel of distribution could forecast intention to revisit in term of recommending to others and intention to revisit in the future at 0.05 statistically significant levels.

Keywords: boutique hotel, foreign tourists, intention to revisit, service marketing mix

Procedia PDF Downloads 247
25693 Environmental Impact Assessment in Mining Regions with Remote Sensing

Authors: Carla Palencia-Aguilar

Abstract:

Calculations of Net Carbon Balance can be obtained by means of Net Biome Productivity (NBP), Net Ecosystem Productivity (NEP), and Net Primary Production (NPP). The latter is an important component of the biosphere carbon cycle and is easily obtained data from MODIS MOD17A3HGF; however, the results are only available yearly. To overcome data availability, bands 33 to 36 from MODIS MYD021KM (obtained on a daily basis) were analyzed and compared with NPP data from the years 2000 to 2021 in 7 sites where surface mining takes place in the Colombian territory. Coal, Gold, Iron, and Limestone were the minerals of interest. Scales and Units as well as thermal anomalies, were considered for net carbon balance per location. The NPP time series from the satellite images were filtered by using two Matlab filters: First order and Discrete Transfer. After filtering the NPP time series, comparing the graph results from the satellite’s image value, and running a linear regression, the results showed R2 from 0,72 to 0,85. To establish comparable units among NPP and bands 33 to 36, the Greenhouse Gas Equivalencies Calculator by EPA was used. The comparison was established in two ways: one by the sum of all the data per point per year and the other by the average of 46 weeks and finding the percentage that the value represented with respect to NPP. The former underestimated the total CO2 emissions. The results also showed that coal and gold mining in the last 22 years had less CO2 emissions than limestone, with an average per year of 143 kton CO2 eq for gold, 152 kton CO2 eq for coal, and 287 kton CO2 eq for iron. Limestone emissions varied from 206 to 441 kton CO2 eq. The maximum emission values from unfiltered data correspond to 165 kton CO2 eq. for gold, 188 kton CO2 eq. for coal, and 310 kton CO2 eq. for iron and limestone, varying from 231 to 490 kton CO2 eq. If the most pollutant limestone site improves its production technology, limestone could count with a maximum of 318 kton CO2 eq emissions per year, a value very similar respect to iron. The importance of gathering data is to establish benchmarks in order to attain 2050’s zero emissions goal.

Keywords: carbon dioxide, NPP, MODIS, MINING

Procedia PDF Downloads 105
25692 Comparative Study between Herzberg’s and Maslow’s Theories in Maritime Transport Education

Authors: Nermin Mahmoud Gohar, Aisha Tarek Noour

Abstract:

Learner satisfaction has been a vital field of interest in the literature. Accordingly, the paper will explore the reasons behind individual differences in motivation and satisfaction. This study examines the effect of both; Herzberg’s and Maslow’s theories on learners satisfaction. A self-administered questionnaire was used to collect data from learners who were geographically widely spread around the College of Maritime Transport and Technology (CMTT) at the Arab Academy for Science, Technology and Maritime Transport (AAST&MT) in Egypt. One hundred and fifty undergraduates responded to a questionnaire survey. Respondents were drawn from two branches in Alexandria and Port Said. The data analysis used was SPSS 22 and AMOS 18. Factor analysis technique was used to find out the dimensions under study verified by Herzberg’s and Maslow’s theories. In addition, regression analysis and structural equation modeling were applied to find the effect of the above-mentioned theories on maritime transport learners’ satisfaction. Concerning the limitation of this study, it used the available number of learners in the CMTT due to the relatively low population in this field.

Keywords: motivation, satisfaction, needs, education, Herzberg’s and Maslow’s theories

Procedia PDF Downloads 436
25691 Pattern Synthesis of Nonuniform Linear Arrays Including Mutual Coupling Effects Based on Gaussian Process Regression and Genetic Algorithm

Authors: Ming Su, Ziqiang Mu

Abstract:

This paper proposes a synthesis method for nonuniform linear antenna arrays that combine Gaussian process regression (GPR) and genetic algorithm (GA). In this method, the GPR model can be used to calculate the array radiation pattern in the presence of mutual coupling effects, and then the GA is used to optimize the excitations and locations of the elements so as to generate the desired radiation pattern. In this paper, taking a 9-element nonuniform linear array as an example and the desired radiation pattern corresponding to a Chebyshev distribution as the optimization objective, optimize the excitations and locations of the elements. Finally, the optimization results are verified by electromagnetic simulation software CST, which shows that the method is effective.

Keywords: nonuniform linear antenna arrays, GPR, GA, mutual coupling effects, active element pattern

Procedia PDF Downloads 110
25690 Students’ Willingness to Use Public Computing Facilities at a Library

Authors: Norbayah Mohd Suki, Norazah Mohd Suki

Abstract:

This study aims to examine relationships between attitude, self-efficacy, and subjective norm with students’ behavioural intention to use public computing facilities at a library. Data was collected from 200 undergraduate students enrolled at a higher learning institution in the Federal Territory of Labuan, Malaysia via a structured questionnaire comprising closed-ended questions. Data was analyzed using multiple regression analysis. The results show that students’ behavioural intention to use public computing facilities at the library is widely affected by subjective norm factor i.e. influence of the support of family members, friends and neighbours. The findings of this study provide a better understanding of factors likely to influence students’ behavioural intention to use public computing facilities at a library. It also offers valuable insights into factors which university librarians need to focus on to improve students’ behavioural intention to actively use public computing facilities at a library for quality information retrieval. Direction for future research is also presented.

Keywords: attitude, self-efficacy, subjective norm, behavioural intention

Procedia PDF Downloads 446
25689 Knowledge Attitude and Practices of COVID-19 among Tamil Nadu Residence

Authors: Shivanand Pawar

Abstract:

In India, a collective range of measurements had been adopted to control the massive spread of the COVID-19 pandemic, but World Health Organization (2022) revealed 525 930 fatalities and 43,847,065 confirmed cases. There are currently 30,857 cases per million people. Lack of knowledge, attitude and practices are the main causes thought to be increased COVID-19. The present study aims to assess the knowledge, attitude, and practice among Tamil Nadu residents. The participants (N=332) were aged 20 to 50 (mean=42.78, & SD=13.98) and were selected using purposive sampling, and data were collected online using knowledge, attitude and practice scale. Data were analyzed using person correlation and multiple regression analysis. The result found that 31.30% had satisfactory knowledge, 68.70% had non-satisfactory knowledge, followed by 45.20% had a positive attitude, 54.80% had a negative attitude, and 34.30% had a good practice, and 65.70% had poor practice towards COVID-19. Correlation results revealed that age has a negative and significant relationship with Knowledge and Practice towards COVID-19. The current study results contribute to the existing literature on knowledge, attitude and practice of COVID-19 to reduce the COVID-19 cases by managing unhealthy knowledge, attitude and practice to control the massive spread of COVID-19.

Keywords: COVID-19, knowledge, practice, attitude, Fisherman community

Procedia PDF Downloads 114
25688 Determining Optimal Number of Trees in Random Forests

Authors: Songul Cinaroglu

Abstract:

Background: Random Forest is an efficient, multi-class machine learning method using for classification, regression and other tasks. This method is operating by constructing each tree using different bootstrap sample of the data. Determining the number of trees in random forests is an open question in the literature for studies about improving classification performance of random forests. Aim: The aim of this study is to analyze whether there is an optimal number of trees in Random Forests and how performance of Random Forests differ according to increase in number of trees using sample health data sets in R programme. Method: In this study we analyzed the performance of Random Forests as the number of trees grows and doubling the number of trees at every iteration using “random forest” package in R programme. For determining minimum and optimal number of trees we performed Mc Nemar test and Area Under ROC Curve respectively. Results: At the end of the analysis it was found that as the number of trees grows, it does not always means that the performance of the forest is better than forests which have fever trees. In other words larger number of trees only increases computational costs but not increases performance results. Conclusion: Despite general practice in using random forests is to generate large number of trees for having high performance results, this study shows that increasing number of trees doesn’t always improves performance. Future studies can compare different kinds of data sets and different performance measures to test whether Random Forest performance results change as number of trees increase or not.

Keywords: classification methods, decision trees, number of trees, random forest

Procedia PDF Downloads 395
25687 The Effects of Wealth on Eco-Centric and Anthropocentric Environmentalism: A Statistical Approach Using the World Values Survey

Authors: Rubi Alvarez-Rodriguez

Abstract:

Traditionally, eco-centric and anthropocentric forms of environmentalism have been seen as mutually exclusive. While eco-centrism focuses on global environmental issues, anthropocentrism is concerned with local ones. The objective of this paper is to characterize the relationship between eco-centric and anthropocentric attitudes across 43 countries. This study analysed secondary data from the 2005 World Values Survey, using a standard linear regression approach. It is shown that eco-centric and anthropocentric attitudes are not mutually exclusive and that the predominance of one over the other is best predicted by a country’s level of wealth.

Keywords: anthropocentrism, eco-centrism, pro-environmental attitudes, wealth

Procedia PDF Downloads 360
25686 Perceived Stigma, Perception of Burden and Psychological Distress among Parents of Intellectually Disable Children: Role of Perceived Social Support

Authors: Saima Shafiq, Najma Iqbal Malik

Abstract:

This study was aimed to explore the relationship of perceived stigma, perception of burden and psychological distress among parents of intellectually disabled children. The study also aimed to explore the moderating role of perceived social support on all the variables of the study. The sample of the study comprised of (N = 250) parents of intellectually disabled children. The present study utilized the co-relational research design. It consists of two phases. Phase-I consisted of two steps which contained the translation of two scales that were used in the present study and tried out on the sample of parents (N = 70). The Affiliated Stigma Scale and Care Giver Burden Inventory were translated into Urdu for the present study. Phase-1 revealed that translated scaled entailed satisfactory psychometric properties. Phase -II of the study was carried out in order to test the hypothesis. Correlation, linear regression analysis, and t-test were computed for hypothesis testing. Hierarchical regression analysis was applied to study the moderating effect of perceived social support. Findings revealed that there was a positive relationship between perceived stigma and psychological distress, perception of burden and psychological distress. Linear regression analysis showed that perceived stigma and perception of burden were positive predictors of psychological distress. The study did not show the moderating role of perceived social support among variables of the present study. The major limitation of the study is the sample size and the major implication is awareness regarding problems of parents of intellectually disabled children.

Keywords: perceived stigma, perception of burden, psychological distress, perceived social support

Procedia PDF Downloads 213
25685 Investigation of the Effect of Lecturers' Attributes on Students' Interest in Learning Statistic Ghanaian Tertiary Institutions

Authors: Samuel Asiedu-Addo, Jonathan Annan, Yarhands Dissou Arthur

Abstract:

The study aims to explore the relational effect of lecturers’ personal attribute on student’s interest in statistics. In this study personal attributes of lecturers’ such as lecturer’s dynamism, communication strategies and rapport in the classroom as well as applied knowledge during lecture were examined. Here, exploratory research design was used to establish the effect of lecturer’s personal attributes on student’s interest. Data were analyzed by means of confirmatory factor analysis and structural equation modeling (SEM) using the SmartPLS 3 program. The study recruited 376 students from the faculty of technical and vocational education of the University of Education Winneba Kumasi campus, and Ghana Technology University College as well as Kwame Nkrumah University of science and Technology. The results revealed that personal attributes of an effective lecturer were lecturer’s dynamism, rapport, communication and applied knowledge contribute (52.9%) in explaining students interest in statistics. Our regression analysis and structural equation modeling confirm that lecturers personal attribute contribute effectively by predicting student’s interest of 52.9% and 53.7% respectively. The paper concludes that the total effect of a lecturer’s attribute on student’s interest is moderate and significant. While a lecturer’s communication and dynamism were found to contribute positively to students’ interest, they were insignificant in predicting students’ interest. We further showed that a lecturer’s personal attributes such as applied knowledge and rapport have positive and significant effect on tertiary student’s interest in statistic, whilst lecturers’ communication and dynamism do not significantly affect student interest in statistics; though positively related.

Keywords: student interest, effective teacher, personal attributes, regression and SEM

Procedia PDF Downloads 359
25684 Risk of Androgen Deprivation Therapy-Induced Metabolic Syndrome-Related Complications for Prostate Cancer in Taiwan

Authors: Olivia Rachel Hwang, Yu-Hsuan Joni Shao

Abstract:

Androgen Deprivation Therapy (ADT) has been a primary treatment for patients with advanced prostate cancer. However, it is associated with numerous adverse effects related to Metabolic Syndrome (MetS), including hypertension, diabetes, hyperlipidaemia, heart diseases and ischemic strokes. However, complications associated with ADT for prostate cancer in Taiwan is not well documented. The purpose of this study is to utilize the data from NHIRD (National Health Insurance Research Database) to examine the trajectory changes of MetS-related complications in men receiving ADT. The risks of developing complications after the treatment were analyzed with multivariate Cox regression model. Covariates including in the model were the complications before the diagnosis of prostate cancer, the age, and the year at cancer diagnosis. A total number of 17268 patients from 1997-2013 were included in this study. The exclusion criteria were patients with any other types of cancer or with the existing MetS-related complications. Changes in MetS-related complications were observed among two treatment groups: 1) ADT (n=9042), and 2) non-ADT (n=8226). The ADT group appeared to have an increased risk in hypertension (hazard ratio 1.08, 95% confidence interval 1.03-1.13, P = 0.001) and hyperlipidemia (hazard ratio 1.09, 95% confidence interval 1.01-1.17, P = 0.02) when compared with non-ADT group in the multivariate Cox regression analyses. In the risk of diabetes, heart diseases, and ischemic strokes, ADT group appeared to have an increased but not significant hazard ratio. In conclusion, ADT was associated with an increased risk in hypertension and hyperlipidemia in prostate cancer patients in Taiwan. The risk of hypertension and hyperlipidemia should be considered while deciding on ADT, especially those with the known history of hypertension and hyperlipidemia.

Keywords: androgen deprivation therapy, ADT, complications, metabolic syndrome, MetS, prostate cancer

Procedia PDF Downloads 288
25683 Exploring Marine Bacteria in the Arabian Gulf Region for Antimicrobial Metabolites

Authors: Julie Connelly, Tanvi Toprani, Xin Xie, Dhinoth Kumar Bangarusamy, Kris C. Gunsalus

Abstract:

The overuse of antibiotics worldwide has contributed to the development of multi-drug resistant (MDR) pathogenic bacterial strains. There is an increasing urgency to discover antibiotics to combat MDR pathogens. The microbiome of the Arabian Gulf is a largely unexplored and potentially rich source of novel bioactive compounds. Microbes that inhabit the Abu Dhabi coastal regions adapt to extreme environments with high salinity, hot temperatures, large temperature fluctuations, and acute exposure to solar energy. The microbes native to this region may produce unique metabolites with therapeutic potential as antibiotics and antifungals. We have isolated 200 pure bacterial strains from mangrove sediments, cyanobacterial mats, and coral reefs of the Abu Dhabi region. In this project, we aim to screen the marine bacterial strains to identify antibiotics, in particular undocumented compounds that show activity against existing antibiotic-resistant strains. We have acquired the ESKAPE pathogen panel, which consists of six antibiotic-resistant gram-positive and gram-negative bacterial pathogens that collectively cause most clinical infections. Our initial efforts of the primary screen using colony-picking co-culture assay have identified several candidate marine strains producing potential antibiotic compounds. We will next apply different assays, including disk-diffusion and broth turbidity growth assay, to confirm the results. This will be followed by bioactivity-guided purification and characterization of target compounds from the scaled-up volume of candidate strains, including SPE fraction, HPLC fraction, LC-MS, and NMR. For antimicrobial compounds with unknown structures, our final goal is to investigate their mode of action by identifying the molecular target.

Keywords: marine bacteria, natural products, drug discovery, ESKAPE panel

Procedia PDF Downloads 75
25682 Asymmetric Information and Composition of Capital Inflows: Stock Market Microstructure Analysis of Asia Pacific Countries

Authors: Farid Habibi Tanha, Hawati Janor, Mojtaba Jahanbazi

Abstract:

The purpose of this study is to examine the effect of asymmetric information on the composition of capital inflows. This study uses the stock market microstructure to capture the asymmetric information. Such an approach allows one to capture the level and extent of the asymmetric information from a firm’s perspective. This study focuses on the two-dimensional measure of the market microstructure in capturing asymmetric information. The composition of capital inflows is measured by running six models simultaneously. By employing the panel data technique, the main finding of this research shows an increase in the asymmetric information of the stock market, in any of the two dimensions of width and depth. This leads to the reduction of foreign investments in both forms of foreign portfolio investment (FPI) and foreign direct investment (FDI), while the reduction in FPI is higher than that of the FDI. The significant effect of asymmetric information on capital inflows implicitly suggests for policymakers to control the changes of foreign capital inflows through transparency in the level of the market.

Keywords: capital flows composition, asymmetric information, stock market microstructure, foreign portfolio investment, foreign direct investment

Procedia PDF Downloads 365
25681 Response Surface Methodology for Optimum Hardness of TiN on Steel Substrate

Authors: R. Joseph Raviselvan, K. Ramanathan, P. Perumal, M. R. Thansekhar

Abstract:

Hard coatings are widely used in cutting and forming tool industries. Titanium Nitride (TiN) possesses good hardness, strength and corrosion resistant. The coating properties are influenced by many process parameters. The coatings were deposited on steel substrate by changing the process parameters such as substrate temperature, nitrogen flow rate and target power in a D.C planer magnetron sputtering. The structure of coatings were analysed using XRD. The hardness of coatings was found using Micro hardness tester. From the experimental data, a regression model was developed and the optimum response was determined using Response Surface Methodology (RSM).

Keywords: hardness, RSM, sputtering, TiN XRD

Procedia PDF Downloads 321
25680 Implementation of Deep Neural Networks for Pavement Condition Index Prediction

Authors: M. Sirhan, S. Bekhor, A. Sidess

Abstract:

In-service pavements deteriorate with time due to traffic wheel loads, environment, and climate conditions. Pavement deterioration leads to a reduction in their serviceability and structural behavior. Consequently, proper maintenance and rehabilitation (M&R) are necessary actions to keep the in-service pavement network at the desired level of serviceability. Due to resource and financial constraints, the pavement management system (PMS) prioritizes roads most in need of maintenance and rehabilitation action. It recommends a suitable action for each pavement based on the performance and surface condition of each road in the network. The pavement performance and condition are usually quantified and evaluated by different types of roughness-based and stress-based indices. Examples of such indices are Pavement Serviceability Index (PSI), Pavement Serviceability Ratio (PSR), Mean Panel Rating (MPR), Pavement Condition Rating (PCR), Ride Number (RN), Profile Index (PI), International Roughness Index (IRI), and Pavement Condition Index (PCI). PCI is commonly used in PMS as an indicator of the extent of the distresses on the pavement surface. PCI values range between 0 and 100; where 0 and 100 represent a highly deteriorated pavement and a newly constructed pavement, respectively. The PCI value is a function of distress type, severity, and density (measured as a percentage of the total pavement area). PCI is usually calculated iteratively using the 'Paver' program developed by the US Army Corps. The use of soft computing techniques, especially Artificial Neural Network (ANN), has become increasingly popular in the modeling of engineering problems. ANN techniques have successfully modeled the performance of the in-service pavements, due to its efficiency in predicting and solving non-linear relationships and dealing with an uncertain large amount of data. Typical regression models, which require a pre-defined relationship, can be replaced by ANN, which was found to be an appropriate tool for predicting the different pavement performance indices versus different factors as well. Subsequently, the objective of the presented study is to develop and train an ANN model that predicts the PCI values. The model’s input consists of percentage areas of 11 different damage types; alligator cracking, swelling, rutting, block cracking, longitudinal/transverse cracking, edge cracking, shoving, raveling, potholes, patching, and lane drop off, at three severity levels (low, medium, high) for each. The developed model was trained using 536,000 samples and tested on 134,000 samples. The samples were collected and prepared by The National Transport Infrastructure Company. The predicted results yielded satisfactory compliance with field measurements. The proposed model predicted PCI values with relatively low standard deviations, suggesting that it could be incorporated into the PMS for PCI determination. It is worth mentioning that the most influencing variables for PCI prediction are damages related to alligator cracking, swelling, rutting, and potholes.

Keywords: artificial neural networks, computer programming, pavement condition index, pavement management, performance prediction

Procedia PDF Downloads 137
25679 Machine Learning Techniques in Bank Credit Analysis

Authors: Fernanda M. Assef, Maria Teresinha A. Steiner

Abstract:

The aim of this paper is to compare and discuss better classifier algorithm options for credit risk assessment by applying different Machine Learning techniques. Using records from a Brazilian financial institution, this study uses a database of 5,432 companies that are clients of the bank, where 2,600 clients are classified as non-defaulters, 1,551 are classified as defaulters and 1,281 are temporarily defaulters, meaning that the clients are overdue on their payments for up 180 days. For each case, a total of 15 attributes was considered for a one-against-all assessment using four different techniques: Artificial Neural Networks Multilayer Perceptron (ANN-MLP), Artificial Neural Networks Radial Basis Functions (ANN-RBF), Logistic Regression (LR) and finally Support Vector Machines (SVM). For each method, different parameters were analyzed in order to obtain different results when the best of each technique was compared. Initially the data were coded in thermometer code (numerical attributes) or dummy coding (for nominal attributes). The methods were then evaluated for each parameter and the best result of each technique was compared in terms of accuracy, false positives, false negatives, true positives and true negatives. This comparison showed that the best method, in terms of accuracy, was ANN-RBF (79.20% for non-defaulter classification, 97.74% for defaulters and 75.37% for the temporarily defaulter classification). However, the best accuracy does not always represent the best technique. For instance, on the classification of temporarily defaulters, this technique, in terms of false positives, was surpassed by SVM, which had the lowest rate (0.07%) of false positive classifications. All these intrinsic details are discussed considering the results found, and an overview of what was presented is shown in the conclusion of this study.

Keywords: artificial neural networks (ANNs), classifier algorithms, credit risk assessment, logistic regression, machine Learning, support vector machines

Procedia PDF Downloads 103
25678 Measuring Self-Regulation and Self-Direction in Flipped Classroom Learning

Authors: S. A. N. Danushka, T. A. Weerasinghe

Abstract:

The diverse necessities of instruction could be addressed effectively with the support of new dimensions of ICT integrated learning such as blended learning –which is a combination of face-to-face and online instruction which ensures greater flexibility in student learning and congruity of course delivery. As blended learning has been the ‘new normality' in education, many experimental and quasi-experimental research studies provide ample of evidence on its successful implementation in many fields of studies, but it is hard to justify whether blended learning could work similarly in the delivery of technology-teacher development programmes (TTDPs). The present study is bound with the particular research uncertainty, and having considered existing research approaches, the study methodology was set to decide the efficient instructional strategies for flipped classroom learning in TTDPs. In a quasi-experimental pre-test and post-test design with a mix-method research approach, the major study objective was tested with two heterogeneous samples (N=135) identified in a virtual learning environment in a Sri Lankan university. Non-randomized informal ‘before-and-after without control group’ design was employed, and two data collection methods, identical pre-test and post-test and Likert-scale questionnaires were used in the study. Selected two instructional strategies, self-directed learning (SDL) and self-regulated learning (SRL), were tested in an appropriate instructional framework with two heterogeneous samples (pre-service and in-service teachers). Data were statistically analyzed, and an efficient instructional strategy was decided via t-test, ANOVA, ANCOVA. The effectiveness of the two instructional strategy implementation models was decided via multiple linear regression analysis. ANOVA (p < 0.05) shows that age, prior-educational qualifications, gender, and work-experiences do not impact on learning achievements of the two diverse groups of learners through the instructional strategy is changed. ANCOVA (p < 0.05) analysis shows that SDL is efficient for two diverse groups of technology-teachers than SRL. Multiple linear regression (p < 0.05) analysis shows that the staged self-directed learning (SSDL) model and four-phased model of motivated self-regulated learning (COPES Model) are efficient in the delivery of course content in flipped classroom learning.

Keywords: COPES model, flipped classroom learning, self-directed learning, self-regulated learning, SSDL model

Procedia PDF Downloads 197
25677 Effects of Crisis-Induced Emotions on in-Crisis Protective Behavior and Post-Crisis Perception: An Analysis of Survey Data for the 2015 Middle East Respiratory Syndrome in South Korea

Authors: Myoungsoon You, Heejung Son

Abstract:

Background: In the current study, we investigated the effects of emotions induced by an infectious disease outbreak on the various protective behaviors taken during the crisis and on the perception after the crisis. The investigation was based on two psychological theories of appraisal tendency and action tendency. Methods: A total of 900 participants in South Korea who experienced the 2015 Middle East Respiratory Syndrome outbreak were sampled by a professional survey agency. To assess the influence of the emotions fear and anger, a regression approach was used. The effect of emotions on various protective behaviors and perceptions was observed using a hierarchical regression method. Results: Fear and anger induced by the infectious disease outbreak were both associated with increased protective behaviors during the crisis. However, the differences between the emotions were observed. While protective behaviors with avoidance tendency (adherence to recommendations, self-mitigation), were raised by both fear and anger, protective behaviors with approach tendency (information-seeking) were increased by anger, but not fear. Regarding the effect of emotion on the risk perception after the crisis, only fear was associated with a higher level of risk perception. Conclusions: This study confirmed the role of emotions in crisis protective behaviors and post-crisis perceptions regarding an infectious disease outbreak. These findings could enhance understanding of the public’s protective behaviors during infectious disease outbreaks and afterward risk perception corresponding to emotions. The results also suggested strategies for communicating with the public that takes into account emotions that are prominently induced by crises associated with disease outbreaks.

Keywords: crisis communication, emotion, infectious disease outbreak, protective behavior, risk perception

Procedia PDF Downloads 275
25676 Multiplying Vulnerability of Child Health Outcome and Food Diversity in India

Authors: Mukesh Ravi Raushan

Abstract:

Despite consideration of obesity as a deadly public health issue contributing 2.6 million deaths worldwide every year developing country like India is facing malnutrition and it is more common than in Sub-Saharan Africa. About one in every three malnourished children in the world lives in India. The paper assess the nutritional health among children using data from total number of 43737 infant and young children aged 0-59 months (µ = 29.54; SD = 17.21) of the selected households by National Family Health Survey, 2005-06. The wasting was measured by a Z-score of standardized weight-for-height according to the WHO child growth standards. The impact of education with place of residence was found to be significantly associated with the complementary food diversity score (CFDS) in India. The education of mother was positively associated with the CFDS but the degree of performance was lower in rural India than their counterpart from urban. The result of binary logistic regression on wasting with WHO seven types of recommended food for children in India suggest that child who consumed the milk product food (OR: 0.87, p<0.0001) were less likely to be malnourished than their counterparts who did not consume, whereas, in case of other food items as the child who consumed food product of seed (OR: 0.75, p<0.0001) were less likely to be malnourished than those who did not. The nutritional status among children were negatively associated with the protein containing complementary food given the child as those child who received pulse in last 24 hour were less likely to be wasted (OR: 0.87, p<0.00001) as compared to the reference categories. The frequency to feed the indexed child increases by 10 per cent the expected change in child health outcome in terms of wasting decreases by 2 per cent in India when place of residence, education, religion, and birth order were controlled. The index gets improved as the risk for malnutrition among children in India decreases.

Keywords: CFDS, food diversity index, India, logistic regression

Procedia PDF Downloads 261
25675 Evaluation of Machine Learning Algorithms and Ensemble Methods for Prediction of Students’ Graduation

Authors: Soha A. Bahanshal, Vaibhav Verdhan, Bayong Kim

Abstract:

Graduation rates at six-year colleges are becoming a more essential indicator for incoming fresh students and for university rankings. Predicting student graduation is extremely beneficial to schools and has a huge potential for targeted intervention. It is important for educational institutions since it enables the development of strategic plans that will assist or improve students' performance in achieving their degrees on time (GOT). A first step and a helping hand in extracting useful information from these data and gaining insights into the prediction of students' progress and performance is offered by machine learning techniques. Data analysis and visualization techniques are applied to understand and interpret the data. The data used for the analysis contains students who have graduated in 6 years in the academic year 2017-2018 for science majors. This analysis can be used to predict the graduation of students in the next academic year. Different Predictive modelings such as logistic regression, decision trees, support vector machines, Random Forest, Naïve Bayes, and KNeighborsClassifier are applied to predict whether a student will graduate. These classifiers were evaluated with k folds of 5. The performance of these classifiers was compared based on accuracy measurement. The results indicated that Ensemble Classifier achieves better accuracy, about 91.12%. This GOT prediction model would hopefully be useful to university administration and academics in developing measures for assisting and boosting students' academic performance and ensuring they graduate on time.

Keywords: prediction, decision trees, machine learning, support vector machine, ensemble model, student graduation, GOT graduate on time

Procedia PDF Downloads 73