Search results for: laser sintering process
14736 Impact of Process Parameters on Tensile Strength of Fused Deposition Modeling Printed Crisscross Poylactic Acid
Authors: Shilpesh R. Rajpurohit, Harshit K. Dave
Abstract:
Additive manufacturing gains the popularity in recent times, due to its capability to create prototype as well functional as end use product directly from CAD data without any specific requirement of tooling. Fused deposition modeling (FDM) is one of the widely used additive manufacturing techniques that are used to create functional end use part of polymer that is comparable with the injection-molded parts. FDM printed part has an application in various fields such as automobile, aerospace, medical, electronic, etc. However, application of FDM part is greatly affected by poor mechanical properties. Proper selection of the process parameter could enhance the mechanical performance of the printed part. In the present study, experimental investigation has been carried out to study the behavior of the mechanical performance of the printed part with respect to process variables. Three process variables viz. raster angle, raster width and layer height have been varied to understand its effect on tensile strength. Further, effect of process variables on fractured surface has been also investigated.Keywords: 3D Printing, fused deposition modeling, layer height, raster angle, raster width, tensile strength
Procedia PDF Downloads 19714735 Polarization Dependent Flexible GaN Film Nanogenerators and Electroluminescence Properties
Authors: Jeong Min Baik
Abstract:
We present that the electroluminescence (EL) properties and electrical output power of flexible N-face p-type GaN thin films can be tuned by strain-induced piezo-potential generated across the metal-semiconductor-metal structures. Under different staining conditions (convex and concave bending modes), the transport properties of the GaN films can be changed due to the spontaneous polarization of the films. The I-V characteristics with the bending modes show that the convex bending can increase the current across the films by the decrease in the barrier height at the metal-semiconductor contact, increasing the EL intensity of the P-N junction. At convex bending, it is also shown that the flexible p-type GaN films can generate an output voltage of up to 1.0 V, while at concave bending, 0.4 V. The change of the band bending with the crystal polarity of GaN films was investigated using high-resolution photoemission spectroscopy. This study has great significance on the practical applications of GaN in optoelectronic devices and nanogenerators under a working environment.Keywords: GaN, flexible, laser lift-off, nanogenerator
Procedia PDF Downloads 41914734 Mathematical Modeling of the Operating Process and a Method to Determine the Design Parameters in an Electromagnetic Hammer Using Solenoid Electromagnets
Authors: Song Hyok Choe
Abstract:
This study presented a method to determine the optimum design parameters based on a mathematical model of the operating process in a manual electromagnetic hammer using solenoid electromagnets. The operating process of the electromagnetic hammer depends on the circuit scheme of the power controller. Mathematical modeling of the operating process was carried out by considering the energy transfer process in the forward and reverse windings and the electromagnetic force acting on the impact and brake pistons. Using the developed mathematical model, the initial design data of a manual electromagnetic hammer proposed in this paper are encoded and analyzed in Matlab. On the other hand, a measuring experiment was carried out by using a measurement device to check the accuracy of the developed mathematical model. The relative errors of the analytical results for measured stroke distance of the impact piston, peak value of forward stroke current and peak value of reverse stroke current were −4.65%, 9.08% and 9.35%, respectively. Finally, it was shown that the mathematical model of the operating process of an electromagnetic hammer is relatively accurate, and it can be used to determine the design parameters of the electromagnetic hammer. Therefore, the design parameters that can provide the required impact energy in the manual electromagnetic hammer were determined using a mathematical model developed. The proposed method will be used for the further design and development of the various types of percussion rock drills.Keywords: solenoid electromagnet, electromagnetic hammer, stone processing, mathematical modeling
Procedia PDF Downloads 4514733 Six Sigma-Based Optimization of Shrinkage Accuracy in Injection Molding Processes
Authors: Sky Chou, Joseph C. Chen
Abstract:
This paper focuses on using six sigma methodologies to reach the desired shrinkage of a manufactured high-density polyurethane (HDPE) part produced by the injection molding machine. It presents a case study where the correct shrinkage is required to reduce or eliminate defects and to improve the process capability index Cp and Cpk for an injection molding process. To improve this process and keep the product within specifications, the six sigma methodology, design, measure, analyze, improve, and control (DMAIC) approach, was implemented in this study. The six sigma approach was paired with the Taguchi methodology to identify the optimized processing parameters that keep the shrinkage rate within the specifications by our customer. An L9 orthogonal array was applied in the Taguchi experimental design, with four controllable factors and one non-controllable/noise factor. The four controllable factors identified consist of the cooling time, melt temperature, holding time, and metering stroke. The noise factor is the difference between material brand 1 and material brand 2. After the confirmation run was completed, measurements verify that the new parameter settings are optimal. With the new settings, the process capability index has improved dramatically. The purpose of this study is to show that the six sigma and Taguchi methodology can be efficiently used to determine important factors that will improve the process capability index of the injection molding process.Keywords: injection molding, shrinkage, six sigma, Taguchi parameter design
Procedia PDF Downloads 17814732 Diagnosis of Logistics Processes: Bibliometric Review and Analysis
Authors: S. F. Bayona, J. Nunez, D. Paez
Abstract:
The diagnostic processes have been consolidated as fundamental tools in the adequate knowledge of organizations and their processes. The diagnosis is related to the interpretation of the data, findings and the relevant information, to determine problems, causes, or the simple state and behavior of a process, without including a solution to the problems detected. The objective of this work is to identify the necessary stages to diagnose the logistic processes in a metalworking company, from the literary revision of different disciplines. A total of 62 articles were chosen to identify, through bibliometric analysis, the most cited articles, as well as the most frequent authors and journals. The results allowed to identify the two fundamental stages in the diagnostic process: a primary phase (general) based on the logical subjectivity of the knowledge of the person who evaluates, and the secondary phase (specific), related to the interpretation of the results, findings or data. Also, two phases were identified, one related to the definition of the scope of the actions to be developed and the other, as an initial description of what was observed in the process.Keywords: business, diagnostic, management, process
Procedia PDF Downloads 15614731 Magnetophotonics 3D MEMS/NEMS System for Quantitative Mitochondrial DNA Defect Profiling
Authors: Dar-Bin Shieh, Gwo-Bin Lee, Chen-Ming Chang, Chen Sheng Yeh, Chih-Chia Huang, Tsung-Ju Li
Abstract:
Mitochondrial defects have a significant impact in many human diseases and aging associated phenotypes. The pathogenic mitochondrial DNA (mtDNA) mutations are diverse and usually present as heteroplasmic. mtDNA 4977bps deletion is one of the common mtDNA defects, and the ratio of mutated versus normal copy is significantly associated with clinical symptoms thus their quantitative detection has become an important unmet needs for advanced disease diagnosis and therapeutic guidelines. This study revealed a Micro-electro-mechanical-system (MEMS) enabled automatic microfluidic chip that only required minimal sample. The system integrated multiple laboratory operation steps into a Lab-on-a-Chip for high-sensitive and prompt measurement. The entire process including magnetic nanoparticle based mtDNA extraction in chip, mutation selective photonic DNA cleavage, and nanoparticle accelerated photonic quantitative polymerase chain reaction (qPCR). All subsystems were packed inside a miniature three-dimensional micro structured system and operated in an automatic manner. Integration of magnetic beads with microfluidic transportation could promptly extract and enrich the specific mtDNA. The near infrared responsive magnetic nanoparticles enabled micro-PCR to be operated by pulse-width-modulation controlled laser pulsing to amplify the desired mtDNA while quantified by fluorescence intensity captured by a complementary metal oxide system array detector. The proportions of pathogenic mtDNA in total DNA were thus obtained. Micro capillary electrophoresis module was used to analyze the amplicone products. In conclusion, this study demonstrated a new magnetophotonic based qPCR MEMS system that successfully detects and quantify specific disease related DNA mutations thus provides a promising future for rapid diagnosis of mitochondria diseases.Keywords: mitochondrial DNA, micro-electro-mechanical-system, magnetophotonics, PCR
Procedia PDF Downloads 21814730 Thermodynamic Analysis of Hydrogen Plasma Reduction of TiCl₄
Authors: Seok Hong Min, Tae Kwon Ha
Abstract:
With increasing demands for high performance materials, intensive interest on the Ti has been focused. Especially, low cost production process of Ti has been extremely necessitated from wide parts and various industries. Tetrachloride (TiCl₄) is produced by fluidized bed using high TiO₂ feedstock and used as an intermediate product for the production of metal titanium sponge. Reduction of TiCl₄ is usually conducted by Kroll process using magnesium as a reduction reagent, producing metallic Ti in the shape of sponge. The process is batch type and takes very long time including post processes treating sponge. As an alternative reduction reagent, hydrogen in the state of plasma has long been strongly recommended. Experimental confirmation has not been completely reported yet and more strict analysis is required. In the present study, hydrogen plasma reduction process has been thermodynamically analyzed focusing the effects of temperature, pressure and concentration. All thermodynamic calculations were performed using the FactSage® thermodynamical software.Keywords: TiCl₄, titanium, hydrogen, plasma, reduction, thermodynamic calculation
Procedia PDF Downloads 32614729 An E-Assessment Website to Implement Hierarchical Aggregate Assessment
Authors: M. Lesage, G. Raîche, M. Riopel, F. Fortin, D. Sebkhi
Abstract:
This paper describes a Web server implementation of the hierarchical aggregate assessment process in the field of education. This process describes itself as a field of teamwork assessment where teams can have multiple levels of hierarchy and supervision. This process is applied everywhere and is part of the management, education, assessment and computer science fields. The E-Assessment website named “Cluster” records in its database the students, the course material, the teams and the hierarchical relationships between the students. For the present research, the hierarchical relationships are team member, team leader and group administrator appointments. The group administrators have the responsibility to supervise team leaders. The experimentation of the application has been performed by high school students in geology courses and Canadian army cadets for navigation patrols in teams. This research extends the work of Nance that uses a hierarchical aggregation process similar as the one implemented in the “Cluster” application.Keywords: e-learning, e-assessment, teamwork assessment, hierarchical aggregate assessment
Procedia PDF Downloads 36914728 Designing Information Systems in Education as Prerequisite for Successful Management Results
Authors: Vladimir Simovic, Matija Varga, Tonco Marusic
Abstract:
This research paper shows matrix technology models and examples of information systems in education (in the Republic of Croatia and in the Germany) in support of business, education (when learning and teaching) and e-learning. Here we researched and described the aims and objectives of the main process in education and technology, with main matrix classes of data. In this paper, we have example of matrix technology with detailed description of processes related to specific data classes in the processes of education and an example module that is support for the process: ‘Filling in the directory and the diary of work’ and ‘evaluation’. Also, on the lower level of the processes, we researched and described all activities which take place within the lower process in education. We researched and described the characteristics and functioning of modules: ‘Fill the directory and the diary of work’ and ‘evaluation’. For the analysis of the affinity between the aforementioned processes and/or sub-process we used our application model created in Visual Basic, which was based on the algorithm for analyzing the affinity between the observed processes and/or sub-processes.Keywords: designing, education management, information systems, matrix technology, process affinity
Procedia PDF Downloads 43814727 The Influences of Accountants’ Potential Performance on Their Working Process: Government Savings Bank, Northeast, Thailand
Authors: Prateep Wajeetongratana
Abstract:
The purpose of this research was to study the influence of accountants’ potential performance on their working process, a case study of Government Savings Banks in the northeast of Thailand. The independent variables included accounting knowledge, accounting skill, accounting value, accounting ethics, and accounting attitude, while the dependent variable included the success of the working process. A total of 155 accountants working for Government Savings Banks were selected by random sampling. A questionnaire was used as a tool for collecting data. Descriptive statistics in this research included percentage, mean, and multiple regression analyses. The findings revealed that the majority of accountants were female with an age between 35-40 years old. Most of the respondents had an undergraduate degree with ten years of experience. Moreover, the factors of accounting knowledge, accounting skill, accounting a value and accounting ethics and accounting attitude were rated at a high level. The findings from regression analysis of observation data revealed a causal relationship in that the observation data could explain at least 51 percent of the success in the accountants’ working process.Keywords: influence, potential performance, success, working process
Procedia PDF Downloads 22714726 The Simple Two-Step Polydimethylsiloxane (PDMS) Transferring Process for High Aspect Ratio Microstructures
Authors: Shaoxi Wang, Pouya Rezai
Abstract:
High aspect ratio is the necessary parts of complex microstructures. Some methods available to achieve high aspect ratio requires expensive materials or complex process; others is difficult to research simple high aspect ratio structures. The paper presents a simple and cheap two-step Polydimethylsioxane (PDMS) transferring process to get high aspect ratio single pillars, which only requires covering the PDMS mold with Brij@52 surface solution. The experimental results demonstrate the method efficiency and effective.Keywords: high aspect ratio, microstructure, PDMS, Brij
Procedia PDF Downloads 26414725 Ultrathin NaA Zeolite Membrane in Solvent Recovery: Preparation and Application
Authors: Eng Toon Saw, Kun Liang Ang, Wei He, Xuecheng Dong, Seeram Ramakrishna
Abstract:
Solvent recovery process is receiving utmost attention in recent year due to the scarcity of natural resource and consciousness of circular economy in chemical and pharmaceutical manufacturing process. Solvent dehydration process is one of the important process to recover and to purify the solvent for reuse. Due to the complexity of solvent waste or wastewater effluent produced in pharmaceutical industry resulting the wastewater treatment process become complicated, thus an alternative solution is to recover the valuable solvent in solvent waste. To treat solvent waste and to upgrade solvent purity, membrane pervaporation process is shown to be a promising technology due to the energy intensive and low footprint advantages. Ceramic membrane is adopted as solvent dehydration membrane owing to the chemical and thermal stability properties as compared to polymeric membrane. NaA zeolite membrane is generally used as solvent dehydration process because of its narrow and distinct pore size and high hydrophilicity. NaA zeolite membrane has been mainly applied in alcohol dehydration in fermentation process. At this stage, the membrane performance exhibits high separation factor with low flux using tubular ceramic membrane. Thus, defect free and ultrathin NaA membrane should be developed to increase water flux. Herein, we report a simple preparation protocol to prepare ultrathin NaA zeolite membrane supported on tubular ceramic membrane by controlling the seed size synthesis, seeding methods and conditions, ceramic substrate surface pore size selection and secondary growth conditions. The microstructure and morphology of NaA zeolite membrane will be examined and reported. Moreover, the membrane separation performance and stability will also be reported in isopropanol dehydration, ketone dehydration and ester dehydration particularly for the application in pharmaceutical industry.Keywords: ceramic membrane, NaA zeolite, pharmaceutical industry, solvent recovery
Procedia PDF Downloads 24514724 Electrophoretic Light Scattering Based on Total Internal Reflection as a Promising Diagnostic Method
Authors: Ekaterina A. Savchenko, Elena N. Velichko, Evgenii T. Aksenov
Abstract:
The development of pathological processes, such as cardiovascular and oncological diseases, are accompanied by changes in molecular parameters in cells, tissues, and serum. The study of the behavior of protein molecules in solutions is of primarily importance for diagnosis of such diseases. Various physical and chemical methods are used to study molecular systems. With the advent of the laser and advances in electronics, optical methods, such as scanning electron microscopy, sedimentation analysis, nephelometry, static and dynamic light scattering, have become the most universal, informative and accurate tools for estimating the parameters of nanoscale objects. The electrophoretic light scattering is the most effective technique. It has a high potential in the study of biological solutions and their properties. This technique allows one to investigate the processes of aggregation and dissociation of different macromolecules and obtain information on their shapes, sizes and molecular weights. Electrophoretic light scattering is an analytical method for registration of the motion of microscopic particles under the influence of an electric field by means of quasi-elastic light scattering in a homogeneous solution with a subsequent registration of the spectral or correlation characteristics of the light scattered from a moving object. We modified the technique by using the regime of total internal reflection with the aim of increasing its sensitivity and reducing the volume of the sample to be investigated, which opens the prospects of automating simultaneous multiparameter measurements. In addition, the method of total internal reflection allows one to study biological fluids on the level of single molecules, which also makes it possible to increase the sensitivity and the informativeness of the results because the data obtained from an individual molecule is not averaged over an ensemble, which is important in the study of bimolecular fluids. To our best knowledge the study of electrophoretic light scattering in the regime of total internal reflection is proposed for the first time, latex microspheres 1 μm in size were used as test objects. In this study, the total internal reflection regime was realized on a quartz prism where the free electrophoresis regime was set. A semiconductor laser with a wavelength of 655 nm was used as a radiation source, and the light scattering signal was registered by a pin-diode. Then the signal from a photodetector was transmitted to a digital oscilloscope and to a computer. The autocorrelation functions and the fast Fourier transform in the regime of Brownian motion and under the action of the field were calculated to obtain the parameters of the object investigated. The main result of the study was the dependence of the autocorrelation function on the concentration of microspheres and the applied field magnitude. The effect of heating became more pronounced with increasing sample concentrations and electric field. The results obtained in our study demonstrated the applicability of the method for the examination of liquid solutions, including biological fluids.Keywords: light scattering, electrophoretic light scattering, electrophoresis, total internal reflection
Procedia PDF Downloads 21414723 A Simple Autonomous Hovering and Operating Control of Multicopter Using Only Web Camera
Authors: Kazuya Sato, Toru Kasahara, Junji Kuroda
Abstract:
In this paper, an autonomous hovering control method of multicopter using only Web camera is proposed. Recently, various control method of an autonomous flight for multicopter are proposed. But, in the previously proposed methods, a motion capture system (i.e., OptiTrack) and laser range finder are often used to measure the position and posture of multicopter. To achieve an autonomous flight control of multicopter with simple equipment, we propose an autonomous flight control method using AR marker and Web camera. AR marker can measure the position of multicopter with Cartesian coordinate in three dimensional, then its position connects with aileron, elevator, and accelerator throttle operation. A simple PID control method is applied to the each operation and adjust the controller gains. Experimental result are given to show the effectiveness of our proposed method. Moreover, another simple operation method for autonomous flight control multicopter is also proposed.Keywords: autonomous hovering control, multicopter, Web camera, operation
Procedia PDF Downloads 56214722 Detection of Abnormal Process Behavior in Copper Solvent Extraction by Principal Component Analysis
Authors: Kirill Filianin, Satu-Pia Reinikainen, Tuomo Sainio
Abstract:
Frequent measurements of product steam quality create a data overload that becomes more and more difficult to handle. In the current study, plant history data with multiple variables was successfully treated by principal component analysis to detect abnormal process behavior, particularly, in copper solvent extraction. The multivariate model is based on the concentration levels of main process metals recorded by the industrial on-stream x-ray fluorescence analyzer. After mean-centering and normalization of concentration data set, two-dimensional multivariate model under principal component analysis algorithm was constructed. Normal operating conditions were defined through control limits that were assigned to squared score values on x-axis and to residual values on y-axis. 80 percent of the data set were taken as the training set and the multivariate model was tested with the remaining 20 percent of data. Model testing showed successful application of control limits to detect abnormal behavior of copper solvent extraction process as early warnings. Compared to the conventional techniques of analyzing one variable at a time, the proposed model allows to detect on-line a process failure using information from all process variables simultaneously. Complex industrial equipment combined with advanced mathematical tools may be used for on-line monitoring both of process streams’ composition and final product quality. Defining normal operating conditions of the process supports reliable decision making in a process control room. Thus, industrial x-ray fluorescence analyzers equipped with integrated data processing toolbox allows more flexibility in copper plant operation. The additional multivariate process control and monitoring procedures are recommended to apply separately for the major components and for the impurities. Principal component analysis may be utilized not only in control of major elements’ content in process streams, but also for continuous monitoring of plant feed. The proposed approach has a potential in on-line instrumentation providing fast, robust and cheap application with automation abilities.Keywords: abnormal process behavior, failure detection, principal component analysis, solvent extraction
Procedia PDF Downloads 30914721 Vertically Grown P–Type ZnO Nanorod on Ag Thin Film
Authors: Jihyun Park, Tae Il Lee, Jae-Min Myoung
Abstract:
A Silver (Ag) thin film is introduced as a template and doping source for vertically aligned p–type ZnO nanorods. ZnO nanorods were grown using a ammonium hydroxide based hydrothermal process. During the hydrothermal process, the Ag thin film was dissolved to generate Ag ions in the solution. The Ag ions can contribute to doping in the wurzite structure of ZnO and the (111) grain of Ag thin film can be the epitaxial temporal template for the (0001) plane of ZnO. Hence, Ag–doped p–type ZnO nanorods were successfully grown on the substrate, which can be an electrode or semiconductor for the device application. To demonstrate the potentials of this idea, p–n diode was fabricated and its electrical characteristics were demonstrated.Keywords: hydrothermal process, Ag–doped ZnO nanorods, p–type ZnO
Procedia PDF Downloads 46414720 High Titer Cellulosic Ethanol Production Achieved by Fed-Batch Prehydrolysis Simultaneous Enzymatic Saccharification and Fermentation of Sulfite Pretreated Softwood
Authors: Chengyu Dong, Shao-Yuan Leu
Abstract:
Cellulosic ethanol production from lignocellulosic biomass can reduce our reliance on fossil fuel, mitigate climate change, and stimulate rural economic development. The relative low ethanol production (60 g/L) limits the economic viable of lignocellulose-based biorefinery. The ethanol production can be increased up to 80 g/L by removing nearly all the non-cellulosic materials, while the capital of the pretreatment process increased significantly. In this study, a fed-batch prehydrolysis simultaneously saccharification and fermentation process (PSSF) was designed to converse the sulfite pretreated softwood (~30% residual lignin) to high concentrations of ethanol (80 g/L). The liquefaction time of hydrolysis process was shortened down to 24 h by employing the fed-batch strategy. Washing out the spent liquor with water could eliminate the inhibition of the pretreatment spent liquor. However, the ethanol yield of lignocellulose was reduced as the fermentable sugars were also lost during the process. Fed-batch prehydrolyzing the while slurry (i.e. liquid plus solid fraction) pretreated softwood for 24 h followed by simultaneously saccharification and fermentation process at 28 °C can generate 80 g/L ethanol production. Fed-batch strategy is very effectively to eliminate the “solid effect” of the high gravity saccharification, so concentrating the cellulose to nearly 90% by the pretreatment process is not a necessary step to get high ethanol production. Detoxification of the pretreatment spent liquor caused the loss of sugar and reduced the ethanol yield consequently. The tolerance of yeast to inhibitors was better at 28 °C, therefore, reducing the temperature of the following fermentation process is a simple and valid method to produce high ethanol production.Keywords: cellulosic ethanol, sulfite pretreatment, Fed batch PSSF, temperature
Procedia PDF Downloads 36714719 QR Technology to Automate Health Condition Detection in Payment System: A Case Study in the Kingdom of Saudi Arabia’s Schools
Authors: Amjad Alsulami, Farah Albishri, Kholod Alzubidi, Lama Almehemadi, Salma Elhag
Abstract:
Food allergy is a common and rising problem among children. Many students have their first allergic reaction at school, one of these is anaphylaxis, which can be fatal. This study discovered that several schools' processes lacked safety regulations and information on how to handle allergy issues and chronic diseases like diabetes where students were not supervised or monitored during the cafeteria purchasing process. There is no obvious prevention or effort in academic institutions when purchasing food containing allergens or negatively impacting the health status of students who suffer from chronic diseases. Students must always be stable to reflect positively on their educational development process. To address this issue, this paper uses a business reengineering process to propose the automation of the whole food-purchasing process, which will aid in detecting and avoiding allergic occurrences and preventing any side effects from eating foods that are conflicting with students' health. This may be achieved by designing a smart card with an embedded QR code that reveals which foods cause an allergic reaction in a student. A survey was distributed to determine and examine how the cafeteria will handle allergic children and whether any management or policy is applied in the school. Also, the survey findings indicate that the integration of QR technology into the food purchasing process would improve health condition detection. The suggested system would be beneficial to all parties, the family agreed, as they would ensure that their children didn't eat foods that were bad for their health. Moreover, by analyzing and simulating the as-is process and the suggested process the results demonstrate that there is an improvement in quality and time.Keywords: QR code, smart card, food allergies, business process reengineering, health condition detection
Procedia PDF Downloads 7514718 Bioethanol Synthesis Using Cellulose Recovered from Biowaste
Authors: Ghazi Faisal Najmuldeen, Noridah Abdullah, Mimi Sakinah
Abstract:
Bioethanol is an alcohol made by fermentation, mostly from carbohydrates, Cellulosic biomass, derived from non-food sources, such as castor shell waste, is also being developed as a feedstock for ethanol production Cellulose extracted from biomass sources is considered the future feedstock for many products due to the availability and eco-friendly nature of cellulose. In this study, castor shell (CS) biowaste resulted from the extraction of Castor oil from castor seeds was evaluated as a potential source of cellulose. The cellulose was extracted after pretreatment process was done on the CS. The pretreatment process began with the removal of other extractives from CS, then an alkaline treatment, bleaching process with hydrogen peroxide, and followed by a mixture of acetic and nitric acids. CS cellulose was analysed by infrared absorption spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The result showed that the overall process was adequate to produce cellulose with high purity and crystallinity from CS waste. The cellulose was then hydrolyzed to produce glucose and then fermented to bioethanol.Keywords: bioethanol, castor shell, cellulose, biowaste
Procedia PDF Downloads 23314717 A Stochastic Diffusion Process Based on the Two-Parameters Weibull Density Function
Authors: Meriem Bahij, Ahmed Nafidi, Boujemâa Achchab, Sílvio M. A. Gama, José A. O. Matos
Abstract:
Stochastic modeling concerns the use of probability to model real-world situations in which uncertainty is present. Therefore, the purpose of stochastic modeling is to estimate the probability of outcomes within a forecast, i.e. to be able to predict what conditions or decisions might happen under different situations. In the present study, we present a model of a stochastic diffusion process based on the bi-Weibull distribution function (its trend is proportional to the bi-Weibull probability density function). In general, the Weibull distribution has the ability to assume the characteristics of many different types of distributions. This has made it very popular among engineers and quality practitioners, who have considered it the most commonly used distribution for studying problems such as modeling reliability data, accelerated life testing, and maintainability modeling and analysis. In this work, we start by obtaining the probabilistic characteristics of this model, as the explicit expression of the process, its trends, and its distribution by transforming the diffusion process in a Wiener process as shown in the Ricciaardi theorem. Then, we develop the statistical inference of this model using the maximum likelihood methodology. Finally, we analyse with simulated data the computational problems associated with the parameters, an issue of great importance in its application to real data with the use of the convergence analysis methods. Overall, the use of a stochastic model reflects only a pragmatic decision on the part of the modeler. According to the data that is available and the universe of models known to the modeler, this model represents the best currently available description of the phenomenon under consideration.Keywords: diffusion process, discrete sampling, likelihood estimation method, simulation, stochastic diffusion process, trends functions, bi-parameters weibull density function
Procedia PDF Downloads 30714716 Stability of Ochratoxin a During Bread Making Process
Authors: Sara Heidari, Jafar Mohammadzadeh Milani, Elmira Pouladi Borj
Abstract:
In this research, stability of Ochratoxin A (OTA) during bread making process including fermentation with yeasts (Saccharomyces cerevisiae) and Sourdough (Lactobacillus casei, Lactobacillus rhamnosus, Lactobacillus acidophilus and Lactobacillus fermentum) and baking at 200°C were examined. Bread was prepared on a pilot-plant scale by using wheat flour spiked with standard solution of OTA. During this process, mycotoxin levels were determined after fermentation of the dough with sourdough and three types of yeast including active dry yeast, instant dry yeast and compressed yeast after further baking 200°C by high performance liquid chromatography (HPLC) with fluorescence detector after extraction and clean-up on an immunoaffinity column. According to the results, the highest stability of was observed in the first fermentation (first proof), while the lowest stability was observed in the baking stage in comparison to contaminated flour. In addition, compressed yeast showed the maximum impact on stability of OTA during bread making process.Keywords: Ochratoxin A, bread, dough, yeast, sourdough
Procedia PDF Downloads 57614715 Importance of Risk Assessment in Managers´ Decision-Making Process
Authors: Mária Hudáková, Vladimír Míka, Katarína Hollá
Abstract:
Making decisions is the core of management and a result of conscious activities which is under way in a particular environment and concrete conditions. The managers decide about the goals, procedures and about the methods how to respond to the changes and to the problems which developed. Their decisions affect the effectiveness, quality, economy and the overall successfulness in every organisation. In spite of this fact, they do not pay sufficient attention to the individual steps of the decision-making process. They emphasise more how to cope with the individual methods and techniques of making decisions and forget about the way how to cope with analysing the problem or assessing the individual solution variants. In many cases, the underestimating of the analytical phase can lead to an incorrect assessment of the problem and this can then negatively influence its further solution. Based on our analysis of the theoretical solutions by individual authors who are dealing with this area and the realised research in Slovakia and also abroad we can recognise an insufficient interest of the managers to assess the risks in the decision-making process. The goal of this paper is to assess the risks in the managers´ decision-making process relating to the conditions of the environment, to the subject’s activity (the manager’s personality), to the insufficient assessment of individual variants for solving the problems but also to situations when the arisen problem is not solved. The benefit of this paper is the effort to increase the need of the managers to deal with the risks during the decision-making process. It is important for every manager to assess the risks in his/her decision-making process and to make efforts to take such decisions which reflect the basic conditions, states and development of the environment in the best way and especially for the managers´ decisions to contribute to achieving the determined goals of the organisation as effectively as possible.Keywords: risk, decision-making, manager, process, analysis, source of risk
Procedia PDF Downloads 26414714 Associations between Parental Divorce Process Variables and Parent-Child Relationships Quality in Young Adulthood
Authors: Klara Smith-Etxeberria
Abstract:
main goal of this study was to analyze the predictive ability of some variables associated with the parental divorce process alongside attachment history with parents on both, mother-child and father-child relationship quality. Our sample consisted of 173 undergraduate and vocational school students from the Autonomous Community of the Basque Country. All of them belonged to a divorced family. Results showed that adequate maternal strategies during the divorce process (e.g.: stable, continuous and positive role as a mother) was the variable with greater predictive ability on mother-child relationships quality. In addition, secure attachment history with mother also predicted positive mother-child relationships. On the other hand, father-child relationship quality was predicted by adequate paternal strategies during the divorce process, such as his stable, continuous and positive role as a father, along with not badmouthing the mother and promoting good mother-child relationships. Furthermore, paternal negative emotional state due to divorce was positively associated with father-child relationships quality, and both, history of attachment with mother and with father predicted father-child relationships quality. In conclusion, our data indicate that both, paternal and maternal strategies for children´s adequate adjustment during the divorce process influence on mother-child and father-child relationships quality. However, these results suggest that paternal strategies during the divorce process have a greater predictive ability on father-child relationships quality, whereas maternal positive strategies during divorce determine positive mother-child relationships among young adults.Keywords: father-child relationships quality, mother-child relationships quality, parental divorce process, young adulthood
Procedia PDF Downloads 25814713 Increased Circularity in Metals Production Using the Ausmelt TSL Process
Authors: Jacob Wood, David Wilson, Stephen Hughes
Abstract:
The Ausmelt Top Submerged Lance (TSL) Process has been widely applied for the processing of both primary and secondary copper, nickel, lead, tin, and zinc-bearing feed materials. Continual development and evolution of the technology over more than 30 years has resulted in a more intense smelting process with higher energy efficiency, improved metal recoveries, lower operating costs, and reduced fossil fuel consumption. This paper covers a number of recent advances to the technology, highlighting their positive impacts on smelter operating costs, environmental performance, and contribution towards increased circularity in metals production.Keywords: ausmelt TSL, smelting, circular economy, energy efficiency
Procedia PDF Downloads 24414712 The Impact of External Technology Acquisition and Exploitation on Firms' Process Innovation Performance
Authors: Thammanoon Charmjuree, Yuosre F. Badir, Umar Safdar
Abstract:
There is a consensus among innovation scholars that knowledge is a vital antecedent for firm’s innovation; e.g., process innovation. Recently, there has been an increasing amount of attention to more open approaches to innovation. This open model emphasizes the use of purposive flows of knowledge across the organization boundaries. Firms adopt open innovation strategy to improve their innovation performance by bringing knowledge into the organization (inbound open innovation) to accelerate internal innovation or transferring knowledge outside (outbound open innovation) to expand the markets for external use of innovation. Reviewing open innovation research reveals the following. First, the majority of existing studies have focused on inbound open innovation and less on outbound open innovation. Second, limited research has considered the possible interaction between both and how this interaction may impact the firm’s innovation performance. Third, scholars have focused mainly on the impact of open innovation strategy on product innovation and less on process innovation. Therefore, our knowledge of the relationship between firms’ inbound and outbound open innovation and how these two impact process innovation is still limited. This study focuses on the firm’s external technology acquisition (ETA) and external technology exploitation (ETE) and the firm’s process innovation performance. The ETA represents inbound openness in which firms rely on the acquisition and absorption of external technologies to complement their technology portfolios. The ETE, on the other hand, refers to commercializing technology assets exclusively or in addition to their internal application. This study hypothesized that both ETA and ETE have a positive relationship with process innovation performance and that ETE fully mediates the relationship between ETA and process innovation performance, i.e., ETA has a positive impact on ETE, and turn, ETE has a positive impact on process innovation performance. This study empirically explored these hypotheses in software development firms in Thailand. These firms were randomly selected from a list of Software firms registered with the Department of Business Development, Ministry of Commerce of Thailand. The questionnaires were sent to 1689 firms. After follow-ups and periodic reminders, we obtained 329 (19.48%) completed usable questionnaires. The structure question modeling (SEM) has been used to analyze the data. An analysis of the outcome of 329 firms provides support for our three hypotheses: First, the firm’s ETA has a positive impact on its process innovation performance. Second, the firm’s ETA has a positive impact its ETE. Third, the firm’s ETE fully mediates the relationship between the firm’s ETA and its process innovation performance. This study fills up the gap in open innovation literature by examining the relationship between inbound (ETA) and outbound (ETE) open innovation and suggest that in order to benefits from the promises of openness, firms must engage in both. The study went one step further by explaining the mechanism through which ETA influence process innovation performance.Keywords: process innovation performance, external technology acquisition, external technology exploitation, open innovation
Procedia PDF Downloads 20214711 Applying Failure Modes and Effect Analysis Concept in a Global Software Development Process
Authors: Camilo Souza, Lidia Melo, Fernanda Terra, Francisco Caio, Marcelo Reis
Abstract:
SIDIA is a research and development (R&D) institute that belongs to Samsung’s global software development process. The SIDIA’s Model Team (MT) is a part of Samsung’s Mobile Division Area, which is responsible for the development of Android releases embedded in Samsung mobile devices. Basically, in this software development process, the kickoff occurs in some strategic countries (e.g., South Korea) where some software requirements are applied and the initial software tests are performed. When the software achieves a more mature level, a new branch is derived, and the development continues in subsidiaries from other strategic countries (e.g., SIDIA-Brazil). However, even in the newly created branches, there are several interactions between developers from different nationalities in order to fix bugs reported during test activities, apply some specific requirements from partners and develop new features as well. Despite the GSD strategy contributes to improving software development, some challenges are also introduced as well. In this paper, we share the initial results about the application of the failure modes and effect analysis (FMEA) concept in the software development process followed by the SIDIA’s model team. The main goal was to identify and mitigate the process potential failures through the application of recommended actions. The initial results show that the application of the FMEA concept allows us to identify the potential failures in our GSD process as well as to propose corrective actions to mitigate them. Finally, FMEA encouraged members of different teams to take actions that contribute to improving our GSD process.Keywords: global software development, potential failures, FMEA, recommended actions
Procedia PDF Downloads 22714710 RPM-Synchronous Non-Circular Grinding: An Approach to Enhance Efficiency in Grinding of Non-Circular Workpieces
Authors: Matthias Steffan, Franz Haas
Abstract:
The production process grinding is one of the latest steps in a value-added manufacturing chain. Within this step, workpiece geometry and surface roughness are determined. Up to this process stage, considerable costs and energy have already been spent on components. According to the current state of the art, therefore, large safety reserves are calculated in order to guarantee a process capability. Especially for non-circular grinding, this fact leads to considerable losses of process efficiency. With present technology, various non-circular geometries on a workpiece must be grinded subsequently in an oscillating process where X- and Q-axis of the machine are coupled. With the approach of RPM-Synchronous Noncircular Grinding, such workpieces can be machined in an ordinary plung grinding process. Therefore, the workpieces and the grinding wheels revolutionary rate are in a fixed ratio. A non-circular grinding wheel is used to transfer its geometry onto the workpiece. The authors use a worldwide unique machine tool that was especially designed for this technology. Highest revolution rates on the workpiece spindle (up to 4500 rpm) are mandatory for the success of this grinding process. This grinding approach is performed in a two-step process. For roughing, a highly porous vitrified bonded grinding wheel with medium grain size is used. It ensures high specific material removal rates for efficiently producing the non-circular geometry on the workpiece. This process step is adapted by a force control algorithm, which uses acquired data from a three-component force sensor located in the dead centre of the tailstock. For finishing, a grinding wheel with a fine grain size is used. Roughing and finishing are performed consecutively among the same clamping of the workpiece with two locally separated grinding spindles. The approach of RPM-Synchronous Noncircular Grinding shows great efficiency enhancement in non-circular grinding. For the first time, three-dimensional non-circular shapes can be grinded that opens up various fields of application. Especially automotive industries show big interest in the emerging trend in finishing machining.Keywords: efficiency enhancement, finishing machining, non-circular grinding, rpm-synchronous grinding
Procedia PDF Downloads 28314709 An Assessment of Existing Material Management Process in Building Construction Projects in Nepal
Authors: Uttam Neupane, Narendra Budha, Subash Kumar Bhattarai
Abstract:
Material management is an essential part in construction project management. There are a number of material management problems in the Nepalese construction industry, which contribute to an inefficient material management system. Ineffective material management can cause waste of time and money thus increasing the problem of time and cost overrun. An assessment of material management system with gap and solution was carried out on 20 construction projects implemented by the Federal Level Project Implementation Unit (FPIU); Kaski district of Nepal. To improve the material management process, the respondents have provided possible solutions to overcome the gaps seen in the current material management process. The possible solutions are preparation of material schedule in line with the construction schedule for material requirement planning, verifications of material and locating of source, purchasing of the required material in advance before commencement of work, classifying the materials, and managing the inventory based on their usage value and eliminating and reduction in wastages during the overall material management process.Keywords: material management, construction site, inventory, construction project
Procedia PDF Downloads 6814708 Modelling and Control of Milk Fermentation Process in Biochemical Reactor
Authors: Jožef Ritonja
Abstract:
The biochemical industry is one of the most important modern industries. Biochemical reactors are crucial devices of the biochemical industry. The essential bioprocess carried out in bioreactors is the fermentation process. A thorough insight into the fermentation process and the knowledge how to control it are essential for effective use of bioreactors to produce high quality and quantitatively enough products. The development of the control system starts with the determination of a mathematical model that describes the steady state and dynamic properties of the controlled plant satisfactorily, and is suitable for the development of the control system. The paper analyses the fermentation process in bioreactors thoroughly, using existing mathematical models. Most existing mathematical models do not allow the design of a control system for controlling the fermentation process in batch bioreactors. Due to this, a mathematical model was developed and presented that allows the development of a control system for batch bioreactors. Based on the developed mathematical model, a control system was designed to ensure optimal response of the biochemical quantities in the fermentation process. Due to the time-varying and non-linear nature of the controlled plant, the conventional control system with a proportional-integral-differential controller with constant parameters does not provide the desired transient response. The improved adaptive control system was proposed to improve the dynamics of the fermentation. The use of the adaptive control is suggested because the parameters’ variations of the fermentation process are very slow. The developed control system was tested to produce dairy products in the laboratory bioreactor. A carbon dioxide concentration was chosen as the controlled variable. The carbon dioxide concentration correlates well with the other, for the quality of the fermentation process in significant quantities. The level of the carbon dioxide concentration gives important information about the fermentation process. The obtained results showed that the designed control system provides minimum error between reference and actual values of carbon dioxide concentration during a transient response and in a steady state. The recommended control system makes reference signal tracking much more efficient than the currently used conventional control systems which are based on linear control theory. The proposed control system represents a very effective solution for the improvement of the milk fermentation process.Keywords: biochemical reactor, fermentation process, modelling, adaptive control
Procedia PDF Downloads 12914707 Synthesis of Microencapsulated Phase Change Material for Adhesives with Thermoregulating Properties
Authors: Christin Koch, Andreas Winkel, Martin Kahlmeyer, Stefan Böhm
Abstract:
Due to environmental regulations on greenhouse gas emissions and the depletion of fossil fuels, there is an increasing interest in electric vehicles.To maximize their driving range, batteries with high storage capacities are needed. In most electric cars, rechargeable lithium-ion batteries are used because of their high energy density. However, it has to be taken into account that these batteries generate a large amount of heat during the charge and discharge processes. This leads to a decrease in a lifetime and damage to the battery cells when the temperature exceeds the defined operating range. To ensure an efficient performance of the battery cells, reliable thermal management is required. Currently, the cooling is achieved by heat sinks (e.g., cooling plates) bonded to the battery cells with a thermally conductive adhesive (TCA) that directs the heat away from the components. Especially when large amounts of heat have to be dissipated spontaneously due to peak loads, the principle of heat conduction is not sufficient, so attention must be paid to the mechanism of heat storage. An efficient method to store thermal energy is the use of phase change materials (PCM). Through an isothermal phase change, PCM can briefly absorb or release thermal energy at a constant temperature. If the phase change takes place in the transition from solid to liquid, heat is stored during melting and is released to the ambient during the freezing process upon cooling. The presented work displays the great potential of thermally conductive adhesives filled with microencapsulated PCM to limit peak temperatures in battery systems. The encapsulation of the PCM avoids the effects of aging (e.g., migration) and chemical reactions between the PCM and the adhesive matrix components. In this study, microencapsulation has been carried out by in situ polymerization. The microencapsulated PCM was characterized by FT-IR spectroscopy, and the thermal properties were measured by DSC and laser flash method. The mechanical properties, electrical and thermal conductivity, and adhesive toughness of the TCA/PCM composite were also investigated.Keywords: phase change material, microencapsulation, adhesive bonding, thermal management
Procedia PDF Downloads 72