Search results for: industrial systems integration
12765 Economic Growth and Transport Carbon Dioxide Emissions in New Zealand: A Co-Integration Analysis of the Environmental Kuznets Curve
Authors: Mingyue Sheng, Basil Sharp
Abstract:
Greenhouse gas (GHG) emissions from national transport account for the largest share of emissions from energy use in New Zealand. Whether the environmental Kuznets curve (EKC) relationship exists between environmental degradation indicators from the transport sector and economic growth in New Zealand remains unclear. This paper aims at exploring the causality relationship between CO₂ emissions from the transport sector, fossil fuel consumption, and the Gross Domestic Product (GDP) per capita in New Zealand, using annual data for the period 1977 to 2013. First, conventional unit root tests (Augmented Dickey–Fuller and Phillips–Perron tests), and a unit root test with the breakpoint (Zivot-Andrews test) are employed to examine the stationarity of the variables. Second, the autoregressive distributed lag (ARDL) bounds test for co-integration, followed by Granger causality investigated causality among the variables. Empirical results of the study reveal that, in the short run, there is a unidirectional causality between economic growth and transport CO₂ emissions with direction from economic growth to transport CO₂ emissions, as well as a bidirectional causality from transport CO₂ emissions to road energy consumption.Keywords: economic growth, transport carbon dioxide emissions, environmental Kuznets curve, causality
Procedia PDF Downloads 30012764 A Survey on Data-Centric and Data-Aware Techniques for Large Scale Infrastructures
Authors: Silvina Caíno-Lores, Jesús Carretero
Abstract:
Large scale computing infrastructures have been widely developed with the core objective of providing a suitable platform for high-performance and high-throughput computing. These systems are designed to support resource-intensive and complex applications, which can be found in many scientific and industrial areas. Currently, large scale data-intensive applications are hindered by the high latencies that result from the access to vastly distributed data. Recent works have suggested that improving data locality is key to move towards exascale infrastructures efficiently, as solutions to this problem aim to reduce the bandwidth consumed in data transfers, and the overheads that arise from them. There are several techniques that attempt to move computations closer to the data. In this survey we analyse the different mechanisms that have been proposed to provide data locality for large scale high-performance and high-throughput systems. This survey intends to assist scientific computing community in understanding the various technical aspects and strategies that have been reported in recent literature regarding data locality. As a result, we present an overview of locality-oriented techniques, which are grouped in four main categories: application development, task scheduling, in-memory computing and storage platforms. Finally, the authors include a discussion on future research lines and synergies among the former techniques.Keywords: data locality, data-centric computing, large scale infrastructures, cloud computing
Procedia PDF Downloads 25912763 Management Control Systems in Post-Incubation: An Investigation of Closed Down High-Technology Start-Ups
Authors: Jochen Edmund Kerschenbauer, Roman Salinger, Daniel Strametz
Abstract:
Insufficient informal communication systems can lead to the first crisis (‘Crisis of Leadership’) for start-ups. Management Control Systems (MCS) are one way for high-technology start-ups to successfully overcome these problems. So far the literature has investigated the incubation of a start-up, but focused less on the post-incubation stage. This paper focuses on the use of MCS in post-incubation and, if failed start-ups agree, on how MCS are used. We conducted 14 semi-structured interviews for this purpose, to obtain our results. The overall conclusion is that the majority of the companies were closed down due to a combination of strategic, operative and financial reasons.Keywords: closed down, high-technology, incubation, levers of control, management control systems, post-incubation, start-ups
Procedia PDF Downloads 109312762 The Impact of Direct and Indirect Pressure Measuring Systems on the Pressure Mapping for the Medical Compression Garments
Authors: Arash M. Shahidi, Tilak Dias, Gayani K. Nandasiri
Abstract:
While graduated compression is the foundation of treatment and management of many medical complications such as leg ulcer, varicose veins, and lymphedema, monitoring the interface pressure has been conducted using different sensors that operate based on diverse approaches. The variations existed from the pressure readings collected using different interface pressure measurement systems would cause difficulties in taking a decision regarding the compression therapy. It is crucial to acknowledge the differences existing between direct and indirect pressure measurement systems while considering the commercially available systems such as AMI, Picopress and OPM which are under direct measurements systems, and HATRA (BSI), HOSY (RAL-GZ) and FlexiForce which comes under the indirect measurement system. Furthermore, Piezo-resistive sensors (Flexiforce) can measure the changes in resistance corresponding to the applied force on the sensing area. Direct pressure measuring systems are capable of measuring interface pressure on the three-dimensional states, while the indirect pressure measuring systems stretch the fabric in the two-dimensional direction and extrapolate pressure from surface tension measured on the device and neglect the vital factor which is the radius of curvature. In this study, a leg mannequin of known dimensions is selected with a knitted class 3 compression stocking. It has been decided to evaluate the data collected from different available systems (AMI, PicoPress, FlexiForce, and HATRA) and compare the results. The results showed a discrepancy between Hatra, AMI, Picopress, and Flexiforce against the pressure standard used to generate class 3 compression stocking. As predicted a higher pressure value with direct interface measuring systems were monitored against HATRA due to the effect of the radius of curvature.Keywords: AMI, FlexiForce, graduated compression, HATRA, interface pressure, PicoPress
Procedia PDF Downloads 35212761 Optimising Urban Climate at Mesoscale: The Case of Floor-Area-Ratio Modelling and Energy Planning Integration
Authors: Ali Cheshmehzangi, Ayotunde Dawodu
Abstract:
In urban planning, Floor Area Ratio (FAR) of the site plays a major role in the multiplicity of performances, from humane living environments to energy performance. When one considers the astounding volume of new housing that is going to be constructed across the globe during the next few decades due to growing urbanisation (e.g. particularly in developing world), it is imperative that we have an empirically grounded grasp of which building configurations are more energy efficient. As a common planning metric, it would be helpful to know exactly how managing FAR connects with energy efficiency. Hence, this study puts together a set of modelling of various FARs for a typical residential compound and address the considerations of energy planning integration in the practice of building configuration and urban planning. Such decision makings at the planning and design stage enable us to provide pathways of optimising urban climate at mesoscale of the built environment, i.e. the neighbourhood or community level. In this study, a comparative study is conducted using Eco-Tect Software, using a case study in the City of Ningbo, China. Findings of the study contribute to identifying scenarios of various FAR use and energy planning at mesoscale. The final results contribute to studies in urban climate, from the perspectives of urban planning, energy planning, and urban modelling.Keywords: China, energy planning, FAR, floor-area-ratio, mesoscale, urban climate, urban modelling
Procedia PDF Downloads 16412760 Investigating Teachers’ Perceptions about the Use of Technology in Second Language Learning at Universities in Pakistan
Authors: Nadir Ali Mugheri
Abstract:
This study has explored the perceptions of English language teachers (ELT) regarding use of technology in learning English as a second language (L2) at Universities in Pakistan. In this regard, 200 ELT teachers from 80 leading universities were selected through a judgmental sampling method. Results established that most of the teachers supported integration and incorporation of technology in the language classroom so as to teach L2 in an effective and efficient way. This study unearthed that the teachers termed the use of technology in learning English as a second language (ESL) as a positive step towards enhancing the learning capabilities and improving the personal traits of the students or learners. Findings suggest that the integration of technology in the language learning makes the learners within the classroom active and enthusiastic, and the teachers need to be equipped with the latest knowledge of mobile assisted language learning (MALL) and computer assisted language learning (CALL) so that they may ensure use of this innovative technology in their teaching practices. Results also indicated that the technology has proved itself a stimulus for improving language in the ELT milieu. The use of technology helps teachers develop themselves professionally. This study discovered that there are many determinants that make teaching and learning within the classroom efficacious, while the use of technology is one of them. Data was collected through qualitative design in order to get a complete depiction. Semi-structured interviews were conducted and analyzed through thematic analysis.Keywords: english language teaching, computer assisted language learning, use of technology, thematic analysis
Procedia PDF Downloads 6912759 Enhancing Plant Throughput in Mineral Processing Through Multimodal Artificial Intelligence
Authors: Muhammad Bilal Shaikh
Abstract:
Mineral processing plants play a pivotal role in extracting valuable minerals from raw ores, contributing significantly to various industries. However, the optimization of plant throughput remains a complex challenge, necessitating innovative approaches for increased efficiency and productivity. This research paper investigates the application of Multimodal Artificial Intelligence (MAI) techniques to address this challenge, aiming to improve overall plant throughput in mineral processing operations. The integration of multimodal AI leverages a combination of diverse data sources, including sensor data, images, and textual information, to provide a holistic understanding of the complex processes involved in mineral extraction. The paper explores the synergies between various AI modalities, such as machine learning, computer vision, and natural language processing, to create a comprehensive and adaptive system for optimizing mineral processing plants. The primary focus of the research is on developing advanced predictive models that can accurately forecast various parameters affecting plant throughput. Utilizing historical process data, machine learning algorithms are trained to identify patterns, correlations, and dependencies within the intricate network of mineral processing operations. This enables real-time decision-making and process optimization, ultimately leading to enhanced plant throughput. Incorporating computer vision into the multimodal AI framework allows for the analysis of visual data from sensors and cameras positioned throughout the plant. This visual input aids in monitoring equipment conditions, identifying anomalies, and optimizing the flow of raw materials. The combination of machine learning and computer vision enables the creation of predictive maintenance strategies, reducing downtime and improving the overall reliability of mineral processing plants. Furthermore, the integration of natural language processing facilitates the extraction of valuable insights from unstructured textual data, such as maintenance logs, research papers, and operator reports. By understanding and analyzing this textual information, the multimodal AI system can identify trends, potential bottlenecks, and areas for improvement in plant operations. This comprehensive approach enables a more nuanced understanding of the factors influencing throughput and allows for targeted interventions. The research also explores the challenges associated with implementing multimodal AI in mineral processing plants, including data integration, model interpretability, and scalability. Addressing these challenges is crucial for the successful deployment of AI solutions in real-world industrial settings. To validate the effectiveness of the proposed multimodal AI framework, the research conducts case studies in collaboration with mineral processing plants. The results demonstrate tangible improvements in plant throughput, efficiency, and cost-effectiveness. The paper concludes with insights into the broader implications of implementing multimodal AI in mineral processing and its potential to revolutionize the industry by providing a robust, adaptive, and data-driven approach to optimizing plant operations. In summary, this research contributes to the evolving field of mineral processing by showcasing the transformative potential of multimodal artificial intelligence in enhancing plant throughput. The proposed framework offers a holistic solution that integrates machine learning, computer vision, and natural language processing to address the intricacies of mineral extraction processes, paving the way for a more efficient and sustainable future in the mineral processing industry.Keywords: multimodal AI, computer vision, NLP, mineral processing, mining
Procedia PDF Downloads 6812758 Relation Between Traffic Mix and Traffic Accidents in a Mixed Industrial Urban Area
Authors: Michelle Eliane Hernández-García, Angélica Lozano
Abstract:
The traffic accidents study usually contemplates the relation between factors such as the type of vehicle, its operation, and the road infrastructure. Traffic accidents can be explained by different factors, which have a greater or lower relevance. Two zones are studied, a mixed industrial zone and the extended zone of it. The first zone has mainly residential (57%), and industrial (23%) land uses. Trucks are mainly on the roads where industries are located. Four sensors give information about traffic and speed on the main roads. The extended zone (which includes the first zone) has mainly residential (47%) and mixed residential (43%) land use, and just 3% of industrial use. The traffic mix is composed mainly of non-trucks. 39 traffic and speed sensors are located on main roads. The traffic mix in a mixed land use zone, could be related to traffic accidents. To understand this relation, it is required to identify the elements of the traffic mix which are linked to traffic accidents. Models that attempt to explain what factors are related to traffic accidents have faced multiple methodological problems for obtaining robust databases. Poisson regression models are used to explain the accidents. The objective of the Poisson analysis is to estimate a vector to provide an estimate of the natural logarithm of the mean number of accidents per period; this estimate is achieved by standard maximum likelihood procedures. For the estimation of the relation between traffic accidents and the traffic mix, the database is integrated of eight variables, with 17,520 observations and six vectors. In the model, the dependent variable is the occurrence or non-occurrence of accidents, and the vectors that seek to explain it, correspond to the vehicle classes: C1, C2, C3, C4, C5, and C6, respectively, standing for car, microbus, and van, bus, unitary trucks (2 to 6 axles), articulated trucks (3 to 6 axles) and bi-articulated trucks (5 to 9 axles); in addition, there is a vector for the average speed of the traffic mix. A Poisson model is applied, using a logarithmic link function and a Poisson family. For the first zone, the Poisson model shows a positive relation among traffic accidents and C6, average speed, C3, C2, and C1 (in a decreasing order). The analysis of the coefficient shows a high relation with bi-articulated truck and bus (C6 and the C3), indicating an important participation of freight trucks. For the expanded zone, the Poisson model shows a positive relation among traffic accidents and speed average, biarticulated truck (C6), and microbus and vans (C2). The coefficients obtained in both Poisson models shows a higher relation among freight trucks and traffic accidents in the first industrial zone than in the expanded zone.Keywords: freight transport, industrial zone, traffic accidents, traffic mix, trucks
Procedia PDF Downloads 12912757 Industrial and Technological Applications of Brewer’s Spent Malt
Authors: Francielo Vendruscolo
Abstract:
During industrial processing of raw materials of animal and vegetable origin, large amounts of solid, liquid and gaseous wastes are generated. Solid residues are usually materials rich in carbohydrates, protein, fiber and minerals. Brewer’s spent grain (BSG) is the main waste generated in the brewing industry, representing 85% of the waste generated in this industry. It is estimated that world’s BSG generation is approximately 38.6 x 106 t per year and represents 20-30% (w/w) of the initial mass of added malt, resulting in low commercial value by-product, however, does not have economic value, but it must be removed from the brewery, as its spontaneous fermentation can attract insects and rodents. For every 100 grams in dry basis, BSG has approximately 68 g total fiber, being divided into 3.5 g of soluble fiber and 64.3 g of insoluble fiber (cellulose, hemicellulose and lignin). In addition to dietary fibers, depending on the efficiency of the grinding process and mashing, BSG may also have starch, reducing sugars, lipids, phenolics and antioxidants, emphasizing that its composition will depend on the barley variety and cultivation conditions, malting and technology involved in the production of beer. BSG demands space for storage, but studies have proposed alternatives such as the use of drying, extrusion, pressing with superheated steam, and grinding to facilitate storage. Other important characteristics that enhance its applicability in bioremediation, effluent treatment and biotechnology, is the surface area (SBET) of 1.748 m2 g-1, total pore volume of 0.0053 cm3 g-1 and mean pore diameter of 121.784 Å, characterized as a macroporous and possess fewer adsorption properties but have great ability to trap suspended solids for separation from liquid solutions. It has low economic value; however, it has enormous potential for technological applications that can improve or add value to this agro-industrial waste. Due to its composition, this material has been used in several industrial applications such as in the production of food ingredients, fiber enrichment by its addition in foods such as breads and cookies in bioremediation processes, substrate for microorganism and production of biomolecules, bioenergy generation, and civil construction, among others. Therefore, the use of this waste or by-product becomes essential and aimed at reducing the amount of organic waste in different industrial processes, especially in breweries.Keywords: brewer’s spent malt, agro-industrial residue, lignocellulosic material, waste generation
Procedia PDF Downloads 20812756 Mitigation of Cascading Power Outage Caused Power Swing Disturbance Using Real-time DLR Applications
Authors: Dejenie Birile Gemeda, Wilhelm Stork
Abstract:
The power system is one of the most important systems in modern society. The existing power system is approaching the critical operating limits as views of several power system operators. With the increase of load demand, high capacity and long transmission networks are widely used to meet the requirement. With the integration of renewable energies such as wind and solar, the uncertainty, intermittence bring bigger challenges to the operation of power systems. These dynamic uncertainties in the power system lead to power disturbances. The disturbances in a heavily stressed power system cause distance relays to mal-operation or false alarms during post fault power oscillations. This unintended operation of these relays may propagate and trigger cascaded trappings leading to total power system blackout. This is due to relays inability to take an appropriate tripping decision based on ensuing power swing. According to the N-1 criterion, electric power systems are generally designed to withstand a single failure without causing the violation of any operating limit. As a result, some overloaded components such as overhead transmission lines can still work for several hours under overload conditions. However, when a large power swing happens in the power system, the settings of the distance relay of zone 3 may trip the transmission line with a short time delay, and they will be acting so quickly that the system operator has no time to respond and stop the cascading. Misfiring of relays in absence of fault due to power swing may have a significant loss in economic performance, thus a loss in revenue for power companies. This research paper proposes a method to distinguish stable power swing from unstable using dynamic line rating (DLR) in response to power swing or disturbances. As opposed to static line rating (SLR), dynamic line rating support effective mitigation actions against propagating cascading outages in a power grid. Effective utilization of existing transmission lines capacity using machine learning DLR predictions will improve the operating point of distance relay protection, thus reducing unintended power outages due to power swing.Keywords: blackout, cascading outages, dynamic line rating, power swing, overhead transmission lines
Procedia PDF Downloads 14312755 The Human Resource Management Systems and Practices of Multinational Companies in Their Nigerian Subsidiaries
Authors: Suwaiba Sabiu Bako, Yaw Debrah
Abstract:
In spite of the extensive literature available on the human resource management (HRM) systems and practices of multinational companies (MNCs) from developed countries, there are gaps concerning emerging countries’ multinational companies’ (EMNCs) HRM systems and practices. This study examines the transfer of HRM practices in Nigerian subsidiaries of MNCs from South Africa. It reveals that South MNCs hybridise their recruitment and selection processes and localise their compensation and employee relations. It also proves that performance appraisal, talent management and code of conduct practices are largely transferred to subsidiaries with minimal adaptation.Keywords: EMNCs, HRM practices, HRM systems, Nigeria, South Africa
Procedia PDF Downloads 11312754 From Problem Space to Executional Architecture: The Development of a Simulator to Examine the Effect of Autonomy on Mainline Rail Capacity
Authors: Emily J. Morey, Kevin Galvin, Thomas Riley, R. Eddie Wilson
Abstract:
The key challenges faced by integrating autonomous rail operations into the existing mainline railway environment have been identified through the understanding and framing of the problem space and stakeholder analysis. This was achieved through the completion of the first four steps of Soft Systems Methodology, where the problem space has been expressed via conceptual models. Having identified these challenges, we investigated one of them, namely capacity, via the use of models and simulation. This paper examines the approach used to move from the conceptual models to a simulation which can determine whether the integration of autonomous trains can plausibly increase capacity. Within this approach, we developed an architecture and converted logical models into physical resource models and associated design features which were used to build a simulator. From this simulator, we are able to analyse mixtures of legacy-autonomous operations and produce fundamental diagrams and trajectory plots to describe the dynamic behaviour of mixed mainline railway operations.Keywords: autonomy, executable architecture, modelling and simulation, railway capacity
Procedia PDF Downloads 8312753 Optimal Capacitor Placement in Distribution Systems
Authors: Sana Ansari, Sirus Mohammadi
Abstract:
In distribution systems, shunt capacitors are used to reduce power losses, to improve voltage profile, and to increase the maximum flow through cables and transformers. This paper presents a new method to determine the optimal locations and economical sizing of fixed and/or switched shunt capacitors with a view to power losses reduction and voltage stability enhancement. General Algebraic Modeling System (GAMS) has been used to solve the maximization modules using the MINOS optimization software with Linear Programming (LP). The proposed method is tested on 33 node distribution system and the results show that the algorithm suitable for practical implementation on real systems with any size.Keywords: power losses, voltage stability, radial distribution systems, capacitor
Procedia PDF Downloads 64612752 Green Hydrogen: Exploring Economic Viability and Alluring Business Scenarios
Authors: S. Sakthivel
Abstract:
Currently, the global economy is based on the hydrocarbon economy, which is referencing the global hydrocarbon industry. Problems of using these fossil fuels (like oil, NG, coal) are emitting greenhouse gases (GHGs) and price fluctuation, supply/distribution, etc. These challenges can be overcome by using clean energy as hydrogen. The hydrogen economy is the use of hydrogen as a low carbon fuel, particularly for hydrogen vehicles, alternative industrial feedstock, power generation, and energy storage, etc. Engineering consulting firms have a significant role in this ambition and green hydrogen value chain (i.e., integration of renewables, production, storage, and distribution to end-users). Typically, the cost of green hydrogen is a function of the price of electricity needed, the cost of the electrolyser, and the operating cost to run the system. This article focuses on economic viability and explores the alluring business scenarios globally. Break-even analysis was carried out for green hydrogen production and in order to evaluate and compare the impact of the electricity price on the production costs of green hydrogen and relate it to fossil fuel-based brown/grey/blue hydrogen costs. It indicates that the cost of green hydrogen production will fall drastically due to the declining costs of renewable electricity prices and along with the improvement and scaling up of electrolyser manufacturing. For instance, in a scenario where electricity prices are below US$ 40/MWh, green hydrogen cost is expected to reach cost competitiveness.Keywords: green hydrogen, cost analysis, break-even analysis, renewables, electrolyzer
Procedia PDF Downloads 14312751 Groundwater Utilization and Sustainability: A Case Study of Pydibheemavaram Industrial Area, India
Authors: G. Venkata Rao, R. Srinivasa Rao, B. Neelima Sri Priya
Abstract:
The over extraction of groundwater from the coastal aquifers, result in reduction of groundwater resource and lowering of water level. In general, the depletion of groundwater level enhances the landward migration of saltwater wedge. Now a days the ground water extraction increases by year to year because increased population and industrialization. The ground water is the only source of irrigation, domestic and Industrial purposes at Pydibhimavaram industrial area, which is located in the coastal belt of Srikakulam district, India of Latitudes 18.145N 83.627E and Longitudes 18.099N 83.674E. The present study has been attempted to calculate amount of water getting recharged into this aquifer, status of rainfall pattern for the past two decades and the runoff is calculated by using Khosla’s formula with available rainfall and temperature in the study area. A decision support model has been developed on the basis of Monthly Extractions of the water from the ground through bore wells and the Net Recharge of the aquifer. It is concluded that the amount of extractions is exceeding the amount of recharge from May to October in a given year which will in turn damage the water balance in the subsurface layers.Keywords: aquifer, decision support model, groundwater extraction, run off estimation and rainfall
Procedia PDF Downloads 29912750 The Competence of Solving Mathematical Problems in the Formation of Ethical Values
Authors: Veronica Diaz Quezada
Abstract:
A study and its preliminary results are presented. The research is descriptive and exploratory and it is still in process. Its objective is to develop an assessment method in the field of fostering values using competence mathematics problem solving. This is part of a more extensive research that aims at contributing to educational integration in Latin America, particularly to the development of proposals to link education for citizenship and the mathematics lessons. This is being carried out by research teams of University of Barcelona-España; University Nacional of Costa Rica; University Autónoma of Querétaro-México; Pontificia University Católica of Perú, University Nacional of Villa María- Argentina and University of Los Lagos-Chile, in the context of Andrés Bello Chair for the Association of Latin American Universities. This research was developed and implemented in Chile in 2016, using mixed research methods. It included interviews and a problem-solving math test with ethical values that was administered to students of the secondary education of the regions of Los Ríos and of the Lakes of Chile. The results show the lack of integration between the teaching of values and science discipline.Keywords: citizenchip, ethical values, mathematics, secondary school, solving problem
Procedia PDF Downloads 18612749 Membrane Bioreactor versus Activated Sludge Process for Aerobic Wastewater Treatment and Recycling
Authors: Sarra Kitanou
Abstract:
Membrane bioreactor (MBR) systems are one of the most widely used wastewater treatment processes for various municipal and industrial waste streams. It is based on complex interactions between biological processes, filtration process and rheological properties of the liquid to be treated. Its complexity makes understanding system operation and optimization more difficult, and traditional methods based on experimental analysis are costly and time consuming. The present study was based on an external membrane bioreactor pilot scale with ceramic membranes compared to conventional activated sludge process (ASP) plant. Both systems received their influent from a domestic wastewater. The membrane bioreactor (MBR) produced an effluent with much better quality than ASP in terms of total suspended solids (TSS), organic matter such as biological oxygen demand (BOD) and chemical oxygen demand (COD), total Phosphorus and total Nitrogen. Other effluent quality parameters also indicate substantial differences between ASP and MBR. This study leads to conclude that in the case domestic wastewater, MBR treatment has excellent effluent quality. Hence, the replacement of the ASP by the MBRs may be justified on the basis of their improved removal of solids, nutrients, and micropollutants. Furthermore, in terms of reuse the great quality of the treated water allows it to be reused for irrigation.Keywords: aerobic wastewater treatment, conventional activated sludge process, membrane bioreactor, reuse for irrigation
Procedia PDF Downloads 7812748 A Machine Learning Decision Support Framework for Industrial Engineering Purposes
Authors: Anli Du Preez, James Bekker
Abstract:
Data is currently one of the most critical and influential emerging technologies. However, the true potential of data is yet to be exploited since, currently, about 1% of generated data are ever actually analyzed for value creation. There is a data gap where data is not explored due to the lack of data analytics infrastructure and the required data analytics skills. This study developed a decision support framework for data analytics by following Jabareen’s framework development methodology. The study focused on machine learning algorithms, which is a subset of data analytics. The developed framework is designed to assist data analysts with little experience, in choosing the appropriate machine learning algorithm given the purpose of their application.Keywords: Data analytics, Industrial engineering, Machine learning, Value creation
Procedia PDF Downloads 16812747 Solution of the Nonrelativistic Radial Wave Equation of Hydrogen Atom Using the Green's Function Approach
Authors: F. U. Rahman, R. Q. Zhang
Abstract:
This work aims to develop a systematic numerical technique which can be easily extended to many-body problem. The Lippmann Schwinger equation (integral form of the Schrodinger wave equation) is solved for the nonrelativistic radial wave of hydrogen atom using iterative integration scheme. As the unknown wave function appears on both sides of the Lippmann Schwinger equation, therefore an approximate wave function is used in order to solve the equation. The Green’s function is obtained by the method of Laplace transform for the radial wave equation with excluded potential term. Using the Lippmann Schwinger equation, the product of approximate wave function, the Green’s function and the potential term is integrated iteratively. Finally, the wave function is normalized and plotted against the standard radial wave for comparison. The outcome wave function converges to the standard wave function with the increasing number of iteration. Results are verified for the first fifteen states of hydrogen atom. The method is efficient and consistent and can be applied to complex systems in future.Keywords: Green’s function, hydrogen atom, Lippmann Schwinger equation, radial wave
Procedia PDF Downloads 39412746 Adsoption Tests of Two Industrial Dyes by Hydroxyds of Metals
Authors: R. Berrached, H. Ait Mahamed, A. Iddou
Abstract:
Water pollution is nowadays a serious problem, due to the increasing scarcity of water and thus to the impact induced by such pollution on the human health. Various techniques are made use of to deal with water pollution. Among the most used ones, some can be enumerated: the bacterian bed, the activated sludge, lagoons as biological processes and coagulation-flocculation as a physic-chemical process. These processes are very expensive and a decreasing in efficiency treatment with the increase of the initial pollutants concentration. This is the reason why research has been reoriented towards the use of adsorption process as an alternative solution instead of the other traditional processes. In our study, we have tempted to explore the characteristics of hydroxides of Al and Fe to purify contaminated water by two industrial dyes SBL blue and SRL-150 orange. Results have shown the efficiency of the two materials on the blue SBL dye.Keywords: metallic hydroxydes, dyes, purification, adsorption
Procedia PDF Downloads 33612745 Fuzzy Inference System for Risk Assessment Evaluation of Wheat Flour Product Manufacturing Systems
Authors: Yas Barzegaar, Atrin Barzegar
Abstract:
The aim of this research is to develop an intelligent system to analyze the risk level of wheat flour product manufacturing system. The model consists of five Fuzzy Inference Systems in two different layers to analyse the risk of a wheat flour product manufacturing system. The first layer of the model consists of four Fuzzy Inference Systems with three criteria. The output of each one of the Physical, Chemical, Biological and Environmental Failures will be the input of the final manufacturing systems. The proposed model based on Mamdani Fuzzy Inference Systems gives a performance ranking of wheat flour products manufacturing systems. The first step is obtaining data to identify the failure modes from expert’s opinions. The second step is the fuzzification process to convert crisp input to a fuzzy set., then the IF-then fuzzy rule applied through inference engine, and in the final step, the defuzzification process is applied to convert the fuzzy output into real numbers.Keywords: failure modes, fuzzy rules, fuzzy inference system, risk assessment
Procedia PDF Downloads 10212744 Transmission Network Expansion Planning in Deregulated Power Systems to Facilitate Competition under Uncertainties
Authors: Hooshang Mohammad Alikhani, Javad Nikoukar
Abstract:
Restructuring and deregulation of power industry have changed the objectives of transmission expansion planning and increased the uncertainties. Due to these changes, new approaches and criteria are needed for transmission planning in deregulated power systems. The objective of this research work is to present a new approach for transmission expansion planning with considering new objectives and uncertainties in deregulated power systems. The approach must take into account the desires of all stakeholders in transmission expansion planning. Market based criteria must be defined to achieve the new objectives. Combination of market based criteria, technical criteria and economical criteria must be used for measuring the goodness of expansion plans to achieve market requirements, technical requirements, and economical requirements altogether.Keywords: deregulated power systems, transmission network, stakeholder, energy systems
Procedia PDF Downloads 65312743 Neuro-Fuzzy Approach to Improve Reliability in Auxiliary Power Supply System for Nuclear Power Plant
Authors: John K. Avor, Choong-Koo Chang
Abstract:
The transfer of electrical loads at power generation stations from Standby Auxiliary Transformer (SAT) to Unit Auxiliary Transformer (UAT) and vice versa is through a fast bus transfer scheme. Fast bus transfer is a time-critical application where the transfer process depends on various parameters, thus transfer schemes apply advance algorithms to ensure power supply reliability and continuity. In a nuclear power generation station, supply continuity is essential, especially for critical class 1E electrical loads. Bus transfers must, therefore, be executed accurately within 4 to 10 cycles in order to achieve safety system requirements. However, the main problem is that there are instances where transfer schemes scrambled due to inaccurate interpretation of key parameters; and consequently, have failed to transfer several critical loads from UAT to the SAT during main generator trip event. Although several techniques have been adopted to develop robust transfer schemes, a combination of Artificial Neural Network and Fuzzy Systems (Neuro-Fuzzy) has not been extensively used. In this paper, we apply the concept of Neuro-Fuzzy to determine plant operating mode and dynamic prediction of the appropriate bus transfer algorithm to be selected based on the first cycle of voltage information. The performance of Sequential Fast Transfer and Residual Bus Transfer schemes was evaluated through simulation and integration of the Neuro-Fuzzy system. The objective for adopting Neuro-Fuzzy approach in the bus transfer scheme is to utilize the signal validation capabilities of artificial neural network, specifically the back-propagation algorithm which is very accurate in learning completely new systems. This research presents a combined effect of artificial neural network and fuzzy systems to accurately interpret key bus transfer parameters such as magnitude of the residual voltage, decay time, and the associated phase angle of the residual voltage in order to determine the possibility of high speed bus transfer for a particular bus and the corresponding transfer algorithm. This demonstrates potential for general applicability to improve reliability of the auxiliary power distribution system. The performance of the scheme is implemented on APR1400 nuclear power plant auxiliary system.Keywords: auxiliary power system, bus transfer scheme, fuzzy logic, neural networks, reliability
Procedia PDF Downloads 17112742 An Empirical Study of Gender, Expectations and Actual Experiences from Industrial Work Experience of Undergraduate Accounting Students in Selected Nigerian Universities
Authors: Obiamaka Nwobu, Samuel Faboyede, O. Oluseyi
Abstract:
This study investigated the influence of gender on expectations and actual experiences from Industrial Work Experience, which is an aspect of the curriculum of undergraduate accounting students in selected Nigerian Universities. A survey research design was employed. Copies of a research questionnaire were made and administered to eighty (80) accounting students in selected Nigerian Universities who embarked on Students’ Industrial Work Experience Scheme (SIWES). Their expectations were juxtaposed with their actual experiences gleaned from the Industrial Work Experience. The data for the purpose of this study was analyzed using independent sample t-test. A total of fifteen (15) male and forty four (44) female students responded to the survey. This resulted in a response rate of 73.8 per cent. The results of this study indicated that there was no significant difference in the expectation of male and female undergraduate accounting students that the internship experience will be able to prepare them for an accounting career in the future, impart relevant knowledge, relate theories to work environment, enhance knowledge in financial accounting, cost accounting, accounting software, and general practice of accounting; prepare financial statements, interpret financial statements, develop problem solving skills, communication skills, and interpersonal skills; improve personal confidence and self-esteem, increase exposure to latest technology in the workplace, build rapport and networks, provide earnings, job experience, provide information and experience to choose career path. Furthermore, findings from the survey showed that there were differences in the expectations of students and their actual experiences with respect to their ability to relate theories to work environment, enhance knowledge in financial accounting, cost accounting, accounting software and exposure to latest technology in the workplace. The study only examined the perceptions of students from two Universities in South-West Nigeria. The research instrument used in this study can be administered to undergraduate accounting students in other universities in Nigeria. The Industrial Work Experience Scheme for undergraduate accounting students should be highly encouraged by tertiary institutions in Nigeria. This will ultimately make the students well prepared for a career in accounting.Keywords: gender, expectations, actual experiences, industrial work experience
Procedia PDF Downloads 25912741 Continuous Improvement as an Organizational Capability in the Industry 4.0 Era
Authors: Lodgaard Eirin, Myklebust Odd, Eleftheriadis Ragnhild
Abstract:
Continuous improvement is becoming increasingly a prerequisite for manufacturing companies to remain competitive in a global market. In addition, future survival and success will depend on the ability to manage the forthcoming digitalization transformation in the industry 4.0 era. Industry 4.0 promises substantially increased operational effectiveness, were all equipment are equipped with integrated processing and communication capabilities. Subsequently, the interplay of human and technology will evolve and influence the range of worker tasks and demands. Taking into account these changes, the concept of continuous improvement must evolve accordingly. Based on a case study from manufacturing industry, the purpose of this paper is to point out what the concept of continuous improvement will meet and has to take into considering when entering the 4th industrial revolution. In the past, continuous improvement has the focus on a culture of sustained improvement targeting the elimination of waste in all systems and processes of an organization by involving everyone. Today, it has to be evolved into the forthcoming digital transformation and the increased interplay of human and digital communication system to reach its full potential. One main findings of this study, is how digital communication systems will act as an enabler to strengthen the continuous improvement process, by moving from collaboration within individual teams to interconnection of teams along the product value chain. For academics and practitioners, it will help them to identify and prioritize their steps towards an industry 4.0 implementation integrated with focus on continuous improvement.Keywords: continuous improvement, digital communication system, human-machine-interaction, industry 4.0, team perfomance
Procedia PDF Downloads 20412740 [Keynote Talk]: Swiss Scientific Society for Developing Countries: A Concept of Relationship
Authors: Jawad Alzeer
Abstract:
Cultural setup is varied from country to country and nation to nation, but the ability to adapt successfully to the new cultural setup may pave the way toward the development of cultural intelligence. Overcoming differences may require to build up our personality with the ability to learn, exchange thoughts, and have a constructive dream. Adaptation processes can be accelerated if we effectively utilize our cultural diversity. This can be done through a unified body or society; people with common goals can collectively work to satisfy their values. Narrowing the gap between developed and developing countries is of prime importance. Many international organizations are trying to resolve these issues by rational and peaceful means. Failing to understand the cultural differences, mentalities, strengths and weaknesses of developed and developing countries led to the collapse of many partnerships. Establishment of a neutral body influenced by developed countries intellectuality and developing countries personality may offer a better understanding and reasonable solutions, suggestions, advice that may assist in narrowing gaps and promote-strengthening relationship between developed and developing countries. The key issues, goals, and potential concepts associated with initiating Swiss scientific society for developing countries as a model to facilitate integration of highly skilled scientists are discussed.Keywords: cultural diversity, developing countries, integration, Switzerland
Procedia PDF Downloads 80812739 Modified Model-Based Systems Engineering Driven Approach for Defining Complex Energy Systems
Authors: Akshay S. Dalvi, Hazim El-Mounayri
Abstract:
The internal and the external interactions between the complex structural and behavioral characteristics of the complex energy system result in unpredictable emergent behaviors. These emergent behaviors are not well understood, especially when modeled using the traditional top-down systems engineering approach. The intrinsic nature of current complex energy systems has called for an elegant solution that provides an integrated framework in Model-Based Systems Engineering (MBSE). This paper mainly presents a MBSE driven approach to define and handle the complexity that arises due to emergent behaviors. The approach provides guidelines for developing system architecture that leverages in predicting the complexity index of the system at different levels of abstraction. A framework that integrates indefinite and definite modeling aspects is developed to determine the complexity that arises during the development phase of the system. This framework provides a workflow for modeling complex systems using Systems Modeling Language (SysML) that captures the system’s requirements, behavior, structure, and analytical aspects at both problem definition and solution levels. A system architecture for a district cooling plant is presented, which demonstrates the ability to predict the complexity index. The result suggests that complex energy systems like district cooling plant can be defined in an elegant manner using the unconventional modified MBSE driven approach that helps in estimating development time and cost.Keywords: district cooling plant, energy systems, framework, MBSE
Procedia PDF Downloads 13012738 Software Quality Assurance in Component Based Software Development – a Survey Analysis
Authors: Abeer Toheed Quadri, Maria Abubakar, Mehreen Sirshar
Abstract:
Component Based Software Development (CBSD) is a new trend in software development. Selection of quality components is not enough to ensure software quality in Component Based Software System (CBSS). A software product is considered to be a quality product if it satisfies its customer’s needs and has minimum defects. Authors’ survey different research papers and analyzes various techniques which ensure software quality in component based software development. This paper includes an investigation about how to improve the quality of a component based software system without effecting quality attributes. The reported information is identified from literature survey. The developments of component based systems are rising as they reduce the development time, effort and cost by means of reuse. After analysis, it has been explored that in order to achieve the quality in a CBSS we need to have the components that are certified through software measure because the predictability of software quality attributes of system depend on the quality attributes of the constituent components, integration process and the framework used.Keywords: CBSD (component based software development), CBSS (component based software system), quality components, SQA (software quality assurance)
Procedia PDF Downloads 41312737 Health Impacts of Size Segregated Particulate Matter and Black Carbon in Industrial Area of Firozabad
Authors: Kalpana Rajouriya, Ajay Taneja
Abstract:
Particulates are ubiquitous in the air environment and cause serious threats to human beings, such as lung cancer, Chronic obstructive pulmonary disease (COPD), and Asthma. Particulates mainly arise from industrial effluent, vehicular emission, and other anthropogenic activities. In the glass industrial city Firozabad, real-time monitoring (mass as well as a number) of size segregated Particulate Matter (PM) and black carbon was done by Aerosol Black Carbon Detector (ABCD) and GRIMM portable aerosol Spectrometer at two different sites in which one site is urban, and another is rural. The average mass concentration of size segregated PM during the study period (March & April 2022) was recorded as PM₁₀ (223.73 g/m-³), PM₅.₀ (44.955 g/m-³), PM₂.₅ (59.275 g/m-³), PM₁.₀ (33.02 g/m-³), PM₀.₅ (2.05 g/m-³), and PM₀.₂₅ (2.99 g/m- ³). In number mode, PM concentration was found as PM₁₀ (27.46g/m-³), PM₅.₀ (233.48g/m-³), PM₂.₅ (646.61g/m-³), PM₁.₀ (1134.94 g/m-³), PM₀.₅ (14056.04g/m-³), and PM₀.₂₅ (182906.4 g/m-³). The highest concentration of BC was found in Urban due to the emissions from diesel engines and wood burning while NO2 was highest at the rural sites. The concentrations of PM₁₀ and PM₂.₅ exceeded the NAAQS and WHO guidelines. The sensitive, exposed population may be at risk of developing health-related problems from exposure to size-segregated PM and BC.Keywords: particulate matter, black carbon, NO2, health risk
Procedia PDF Downloads 3612736 Investigating the Effect of VR, Time Study and Ergonomics on the Design of Industrial Workstations
Authors: Aydin Azizi, Poorya Ghafoorpoor Yazdi
Abstract:
This paper presents the review of the studies on the ergonomics, virtual reality, and work measurement (time study) at the industrial workstations because each of these three individual techniques can be used to improve the design of workstations and task position. The objective of this paper is to give an overall literature review that if there is any relation between these three different techniques. Therefore, it is so important to review the scientific studies to find a better and effective way for improving design of workstations. On the other hand, manufacturers found that instead of using one of the approaches, utilizing the combination of these individual techniques are more effective to reduce the cost and production time.Keywords: ergonomics, time study, virtual reality, workplace
Procedia PDF Downloads 119