Search results for: central machine learning
10010 Using Geo-Statistical Techniques and Machine Learning Algorithms to Model the Spatiotemporal Heterogeneity of Land Surface Temperature and its Relationship with Land Use Land Cover
Authors: Javed Mallick
Abstract:
In metropolitan areas, rapid changes in land use and land cover (LULC) have ecological and environmental consequences. Saudi Arabia's cities have experienced tremendous urban growth since the 1990s, resulting in urban heat islands, groundwater depletion, air pollution, loss of ecosystem services, and so on. From 1990 to 2020, this study examines the variance and heterogeneity in land surface temperature (LST) caused by LULC changes in Abha-Khamis Mushyet, Saudi Arabia. LULC was mapped using the support vector machine (SVM). The mono-window algorithm was used to calculate the land surface temperature (LST). To identify LST clusters, the local indicator of spatial associations (LISA) model was applied to spatiotemporal LST maps. In addition, the parallel coordinate (PCP) method was used to investigate the relationship between LST clusters and urban biophysical variables as a proxy for LULC. According to LULC maps, urban areas increased by more than 330% between 1990 and 2018. Between 1990 and 2018, built-up areas had an 83.6% transitional probability. Furthermore, between 1990 and 2020, vegetation and agricultural land were converted into built-up areas at a rate of 17.9% and 21.8%, respectively. Uneven LULC changes in built-up areas result in more LST hotspots. LST hotspots were associated with high NDBI but not NDWI or NDVI. This study could assist policymakers in developing mitigation strategies for urban heat islandsKeywords: land use land cover mapping, land surface temperature, support vector machine, LISA model, parallel coordinate plot
Procedia PDF Downloads 7810009 Improving Listening Comprehension for EFL Pre-Intermediate Students through a Blended Learning Strategy
Authors: Heba Mustafa Abdullah
Abstract:
The research aimed at examining the effect of using a suggested blended learning (BL) strategy on developing EFL pre- intermediate students. The study adopted the quasi-experimental design. The sample of the research consisted of a group of 26 EFL pre- intermediate students. Tools of the study included a listening comprehension checklist and a pre-post listening comprehension test. Results were discussed in relation to several factors that affected the language learning process. Finally, the research provided beneficial contributions in relation to manipulating BL strategy with respect to language learning process in general and oral language learning in particular.Keywords: blended learning, english as a foreign language, listening comprehension, oral language instruction
Procedia PDF Downloads 56110008 Identifying E-Learning Components at North-West University, Mafikeng Campus
Authors: Sylvia Tumelo Nthutang, Nehemiah Mavetera
Abstract:
Educational institutions are under pressure from their competitors. Regulators and community groups need educational institutions to adopt appropriate business and organizational practices. Globally, educational institutions are now using e-learning as the best teaching and learning approach. E-learning is becoming the center of attention to the learning institutions, educational systems and software inventors. North-West University (NWU) is currently using eFundi, a Learning Management System (LMS). LMS are all information systems and procedures that adds value to students learning and support the learning material in text or any multimedia files. With various e-learning tools, students would be able to access all the materials related to the course in electronic copies. The study was tasked with identifying the e-learning components at the NWU, Mafikeng campus. Quantitative research methodology was considered in data collection and descriptive statistics for data analysis. The Activity Theory (AT) was used as a theory to guide the study. AT outlines the limitations amongst e-learning at the macro-organizational level (plan, guiding principle, campus-wide solutions) and micro-organization (daily functioning practice, collaborative transformation, specific adaptation). On a technological environment, AT gives people an opportunity to change from concentrating on computers as an area of concern but also understand that technology is part of human activities. The findings have identified the university’s current IT tools and knowledge on e-learning elements. It was recommended that university should consider buying computer resources that consumes less power and practice e-learning effectively.Keywords: e-learning, information and communication technology (ICT), teaching, virtual learning environment
Procedia PDF Downloads 27910007 A Survey of Response Generation of Dialogue Systems
Authors: Yifan Fan, Xudong Luo, Pingping Lin
Abstract:
An essential task in the field of artificial intelligence is to allow computers to interact with people through natural language. Therefore, researches such as virtual assistants and dialogue systems have received widespread attention from industry and academia. The response generation plays a crucial role in dialogue systems, so to push forward the research on this topic, this paper surveys various methods for response generation. We sort out these methods into three categories. First one includes finite state machine methods, framework methods, and instance methods. The second contains full-text indexing methods, ontology methods, vast knowledge base method, and some other methods. The third covers retrieval methods and generative methods. We also discuss some hybrid methods based knowledge and deep learning. We compare their disadvantages and advantages and point out in which ways these studies can be improved further. Our discussion covers some studies published in leading conferences such as IJCAI and AAAI in recent years.Keywords: deep learning, generative, knowledge, response generation, retrieval
Procedia PDF Downloads 13410006 Collaboration of Game Based Learning with Models Roaming the Stairs Using the Tajribi Method on the Eye PAI Lessons at the Ummul Mukminin Islamic Boarding School, Makassar South Sulawesi
Authors: Ratna Wulandari, Shahidin
Abstract:
This article aims to see how the Game Based Learning learning model with the Roaming The Stairs game makes a tajribi method can make PAI lessons active and interactive learning. This research uses a qualitative approach with a case study type of research. Data collection methods were carried out using interviews, observation, and documentation. Data analysis was carried out through the stages of data reduction, data display, and verification and drawing conclusions. The data validity test was carried out using the triangulation method. and drawing conclusions. The results of the research show that (1) children in grades 9A, 9B, and 9C like learning PAI using the Roaming The Stairs game (2) children in grades 9A, 9B, and 9C are active and can work in groups to solve problems in the Roaming The Stairs game (3) the class atmosphere becomes fun with learning method, namely learning while playing.Keywords: game based learning, Roaming The Stairs, Tajribi PAI
Procedia PDF Downloads 2210005 The Continuing Professional Development of the Assessment through Research-Based Learning in Higher Education of Thailand
Authors: P. Junpeng, A. Tungkasamit
Abstract:
Research-based learning is the key for the national research universities of Thailand. The indicator reflects the success of the study in assessing the learning outcomes of students. The development of the lecturers is the most important mechanism in driving. Nowadays the lecturers lack the knowledge and skills of assessment for learning. Therefore, this study aims to develop the knowledge and skills for lecturer’s assessment through research-based learning in higher education. The target group were lecturers who teach in higher education from Khon Kaen University of Thailand. This study was a research and development involved the concept of continuing professional development. Research was conducted in 3 phases: 1) to inspire one’s thought, to accomplish both knowledge and skill, 2) to focus on changes, and 3) to reflect the changes as well as suggest the guidelines for development. The results showed that the lecturers enhanced their knowledge and skill in assessment and emphasized on assessment for learning rather than assessment of learning.Keywords: research-based nexus, professional development, assessment for learning, higher education
Procedia PDF Downloads 36310004 Lectures in Higher Education Using Teaching Strategies and Digital Tools to Overcome Challenges Faced in South Africa by Implementing Blended Learning
Authors: Thaiurie Govender, Shannon Verne
Abstract:
The Fourth Industrial Revolution has ushered in an era where technology significantly impacts various aspects of life, including higher education. Blended learning, which combines synchronous and asynchronous learning, has gained popularity as a pedagogical approach. However, its effective implementation is a challenge, particularly in the context of the COVID-19 pandemic and technological obstacles faced in South Africa. This study focused on lecturers' teaching and learning practices to implement blended learning, aiming to understand the teaching and learning strategies used with the integration of digital tools to facilitate the blended learning approach within a private higher educational institution in South Africa. Using heutagogy and constructivism theoretical frameworks, the study aimed to uncover insights into the lecturer’s teaching and learning practices to overcome challenges in designing and facilitating blended learning modules. Through a qualitative analysis, the themes of student engagement, teaching and learning strategies, digital tools, and feedback emerged, highlighting the complexities and opportunities in a blended learning classroom. The findings emphasize the importance of tailoring methods to students' needs and subject matter, aligning with constructivist principles. Recommendations include promoting professional development opportunities, addressing infrastructure issues, and fostering a supportive learning environment.Keywords: blended learning, digital tools, higher education, teaching strategies
Procedia PDF Downloads 5310003 Sustainability Index for REDD-Plus Implementation in Central Kalimantan, Indonesia
Authors: Febrina Natalia, Noriyuki Tanaka, Mitsuru Osaki
Abstract:
Sustainability Index for REDD-plus implementation was constructed to evaluate the sustainability of different communities in 5 villages (Taruna Jaya, Tumbang Nusa, Marang, Terantang, and Seragam Jaya) in Central Kalimantan, Indonesia based on the main objectives of REDD-plus project (reducing emission from deforestation and forest degradation, increasing carbon stock, preserving biodiversity and sustaining forest management). This index was separately composed of 3 different components; (1) ecology, (2) economy, and (3) society. The index of sustainability was determined into four categories; 3,3-4,0 (excellent), 2,5-3,2 (good), 1,8-2,4 (fair), and 1,0-1,7 (poor). Overall, this technique aims to assist all stakeholders and local government in particular in providing information of villages’ sustainability index before implementing REDD-plus project that the assistance and benefits given to villages will be beneficial, effective and efficient.Keywords: central kalimantan, Indonesia, REDD-plus, sustainability index
Procedia PDF Downloads 44010002 Experiential Learning in an Earthquake Engineering Course Using Online Tools and Shake Table Exercises
Authors: Andres Winston Oreta
Abstract:
Experiential Learning (ELE) is a strategy for enhancing the teaching and learning of courses especially in civil engineering. This paper presents the adaption of the ELE framework in the delivery of various course requirements in an earthquake engineering course. Examples of how ELE is integrated using online tools and hands-on laboratory technology to address the course learning outcomes on earthquake engineering are presented. Student feedback shows that ELE using online tools and technology strengthens students’ understanding and intuition of seismic design and earthquake engineering concepts.Keywords: earthquake engineering, experiential learning, shake table, online, internet, civil engineering
Procedia PDF Downloads 2410001 Intelligent Process and Model Applied for E-Learning Systems
Authors: Mafawez Alharbi, Mahdi Jemmali
Abstract:
E-learning is a developing area especially in education. E-learning can provide several benefits to learners. An intelligent system to collect all components satisfying user preferences is so important. This research presents an approach that it capable to personalize e-information and give the user their needs following their preferences. This proposal can make some knowledge after more evaluations made by the user. In addition, it can learn from the habit from the user. Finally, we show a walk-through to prove how intelligent process work.Keywords: artificial intelligence, architecture, e-learning, software engineering, processing
Procedia PDF Downloads 19110000 Developing Creative and Critically Reflective Digital Learning Communities
Authors: W. S. Barber, S. L. King
Abstract:
This paper is a qualitative case study analysis of the development of a fully online learning community of graduate students through arts-based community building activities. With increasing numbers and types of online learning spaces, it is incumbent upon educators to continue to push the edge of what best practices look like in digital learning environments. In digital learning spaces, instructors can no longer be seen as purveyors of content knowledge to be examined at the end of a set course by a final test or exam. The rapid and fluid dissemination of information via Web 3.0 demands that we reshape our approach to teaching and learning, from one that is content-focused to one that is process-driven. Rather than having instructors as formal leaders, today’s digital learning environments require us to share expertise, as it is the collective experiences and knowledge of all students together with the instructors that help to create a very different kind of learning community. This paper focuses on innovations pursued in a 36 hour 12 week graduate course in higher education entitled “Critical and Reflective Practice”. The authors chronicle their journey to developing a fully online learning community (FOLC) by emphasizing the elements of social, cognitive, emotional and digital spaces that form a moving interplay through the community. In this way, students embrace anywhere anytime learning and often take the learning, as well as the relationships they build and skills they acquire, beyond the digital class into real world situations. We argue that in order to increase student online engagement, pedagogical approaches need to stem from two primary elements, both creativity and critical reflection, that are essential pillars upon which instructors can co-design learning environments with students. The theoretical framework for the paper is based on the interaction and interdependence of Creativity, Intuition, Critical Reflection, Social Constructivism and FOLCs. By leveraging students’ embedded familiarity with a wide variety of technologies, this case study of a graduate level course on critical reflection in education, examines how relationships, quality of work produced, and student engagement can improve by using creative and imaginative pedagogical strategies. The authors examine their professional pedagogical strategies through the lens that the teacher acts as facilitator, guide and co-designer. In a world where students can easily search for and organize information as self-directed processes, creativity and connection can at times be lost in the digitized course environment. The paper concludes by posing further questions as to how institutions of higher education may be challenged to restructure their credit granting courses into more flexible modules, and how students need to be considered an important part of assessment and evaluation strategies. By introducing creativity and critical reflection as central features of the digital learning spaces, notions of best practices in digital teaching and learning emerge.Keywords: online, pedagogy, learning, communities
Procedia PDF Downloads 4059999 A Laser Instrument Rapid-E+ for Real-Time Measurements of Airborne Bioaerosols Such as Bacteria, Fungi, and Pollen
Authors: Minghui Zhang, Sirine Fkaier, Sabri Fernana, Svetlana Kiseleva, Denis Kiselev
Abstract:
The real-time identification of bacteria and fungi is difficult because they emit much weaker signals than pollen. In 2020, Plair developed Rapid-E+, which extends abilities of Rapid-E to detect smaller bioaerosols such as bacteria and fungal spores with diameters down to 0.3 µm, while keeping the similar or even better capability for measurements of large bioaerosols like pollen. Rapid-E+ enables simultaneous measurements of (1) time-resolved, polarization and angle dependent Mie scattering patterns, (2) fluorescence spectra resolved in 16 channels, and (3) fluorescence lifetime of individual particles. Moreover, (4) it provides 2D Mie scattering images which give the full information on particle morphology. The parameters of every single bioaerosol aspired into the instrument are subsequently analysed by machine learning. Firstly, pure species of microbes, e.g., Bacillus subtilis (a species of bacteria), and Penicillium chrysogenum (a species of fungal spores), were aerosolized in a bioaerosol chamber for Rapid-E+ training. Afterwards, we tested microbes under different concentrations. We used several steps of data analysis to classify and identify microbes. All single particles were analysed by the parameters of light scattering and fluorescence in the following steps. (1) They were treated with a smart filter block to get rid of non-microbes. (2) By classification algorithm, we verified the filtered particles were microbes based on the calibration data. (3) The probability threshold (defined by the user) step provides the probability of being microbes ranging from 0 to 100%. We demonstrate how Rapid-E+ identified simultaneously microbes based on the results of Bacillus subtilis (bacteria) and Penicillium chrysogenum (fungal spores). By using machine learning, Rapid-E+ achieved identification precision of 99% against the background. The further classification suggests the precision of 87% and 89% for Bacillus subtilis and Penicillium chrysogenum, respectively. The developed algorithm was subsequently used to evaluate the performance of microbe classification and quantification in real-time. The bacteria and fungi were aerosolized again in the chamber with different concentrations. Rapid-E+ can classify different types of microbes and then quantify them in real-time. Rapid-E+ enables classifying different types of microbes and quantifying them in real-time. Rapid-E+ can identify pollen down to species with similar or even better performance than the previous version (Rapid-E). Therefore, Rapid-E+ is an all-in-one instrument which classifies and quantifies not only pollen, but also bacteria and fungi. Based on the machine learning platform, the user can further develop proprietary algorithms for specific microbes (e.g., virus aerosols) and other aerosols (e.g., combustion-related particles that contain polycyclic aromatic hydrocarbons).Keywords: bioaerosols, laser-induced fluorescence, Mie-scattering, microorganisms
Procedia PDF Downloads 909998 Business Skills Laboratory in Action: Combining a Practice Enterprise Model and an ERP-Simulation to a Comprehensive Business Learning Environment
Authors: Karoliina Nisula, Samuli Pekkola
Abstract:
Business education has been criticized for being too theoretical and distant from business life. Different types of experiential learning environments ranging from manual role-play to computer simulations and enterprise resource planning (ERP) systems have been used to introduce the realistic and practical experience into business learning. Each of these learning environments approaches business learning from a different perspective. The implementations tend to be individual exercises supplementing the traditional courses. We suggest combining them into a business skills laboratory resembling an actual workplace. In this paper, we present a concrete implementation of an ERP-supported business learning environment that is used throughout the first year undergraduate business curriculum. We validate the implementation by evaluating the learning outcomes through the different domains of Bloom’s taxonomy. We use the role-play oriented practice enterprise model as a comparison group. Our findings indicate that using the ERP simulation improves the poor and average students’ lower-level cognitive learning. On the affective domain, the ERP-simulation appears to enhance motivation to learn as well as perceived acquisition of practical hands-on skills.Keywords: business simulations, experiential learning, ERP systems, learning environments
Procedia PDF Downloads 2599997 Undergraduates Learning Preferences: A Comparison of Science, Technology and Social Science Academic Disciplines in Relations to Teaching Designs and Strategies
Authors: Salina Budin, Shaira Ismail
Abstract:
Students learn effectively in a learning environment with a suitable teaching approach that matches their learning preferences. The main objective of the study is to examine the learning preferences amongst the students in the Science and Technology (S&T), and Social Science (SS) fields of study at the Universiti Teknologi Mara (UiTM), Pulau Pinang. The measurement instrument is based on the Dunn and Dunn Learning Styles which measure five elements of learning styles; environmental, sociological, emotional, physiological and psychological. Questionnaires are distributed amongst undergraduates in the Faculty of Mechanical Engineering and Faculty of Business Management. The respondents comprise of 131 diploma students of the Faculty of Mechanical Engineering and 111 degree students of the Faculty of Business Management. The results indicate that, both S&T and SS students share a similar learning preferences on the environmental aspect, emotional preferences, motivational level, learning responsibility, persistent level in learning and learning structure. Most of the S&T students are concluded as analytical learners and the majority of SS students are global learners. Both S&T and SS students are concluded as visual learners, preferred to be in an active mobility in a relaxing and enjoying mode with some light of refreshments during the learning process and exhibited reflective characteristics in learning. Obviously, the S&T students are considered as left brain dominant, whereas the SS students are right brain dominant. The findings highlighted that both categories of students exhibited similar learning preferences except on psychological preferences.Keywords: learning preferences, Dunn and Dunn learning style, teaching approach, science and technology, social science
Procedia PDF Downloads 2459996 Machine Vision System for Measuring the Quality of Bulk Sun-dried Organic Raisins
Authors: Navab Karimi, Tohid Alizadeh
Abstract:
An intelligent vision-based system was designed to measure the quality and purity of raisins. A machine vision setup was utilized to capture the images of bulk raisins in ranges of 5-50% mixed pure-impure berries. The textural features of bulk raisins were extracted using Grey-level Histograms, Co-occurrence Matrix, and Local Binary Pattern (a total of 108 features). Genetic Algorithm and neural network regression were used for selecting and ranking the best features (21 features). As a result, the GLCM features set was found to have the highest accuracy (92.4%) among the other sets. Followingly, multiple feature combinations of the previous stage were fed into the second regression (linear regression) to increase accuracy, wherein a combination of 16 features was found to be the optimum. Finally, a Support Vector Machine (SVM) classifier was used to differentiate the mixtures, producing the best efficiency and accuracy of 96.2% and 97.35%, respectively.Keywords: sun-dried organic raisin, genetic algorithm, feature extraction, ann regression, linear regression, support vector machine, south azerbaijan.
Procedia PDF Downloads 739995 Lexical Based Method for Opinion Detection on Tripadvisor Collection
Authors: Faiza Belbachir, Thibault Schienhinski
Abstract:
The massive development of online social networks allows users to post and share their opinions on various topics. With this huge volume of opinion, it is interesting to extract and interpret these information for different domains, e.g., product and service benchmarking, politic, system of recommendation. This is why opinion detection is one of the most important research tasks. It consists on differentiating between opinion data and factual data. The difficulty of this task is to determine an approach which returns opinionated document. Generally, there are two approaches used for opinion detection i.e. Lexical based approaches and Machine Learning based approaches. In Lexical based approaches, a dictionary of sentimental words is used, words are associated with weights. The opinion score of document is derived by the occurrence of words from this dictionary. In Machine learning approaches, usually a classifier is trained using a set of annotated document containing sentiment, and features such as n-grams of words, part-of-speech tags, and logical forms. Majority of these works are based on documents text to determine opinion score but dont take into account if these texts are really correct. Thus, it is interesting to exploit other information to improve opinion detection. In our work, we will develop a new way to consider the opinion score. We introduce the notion of trust score. We determine opinionated documents but also if these opinions are really trustable information in relation with topics. For that we use lexical SentiWordNet to calculate opinion and trust scores, we compute different features about users like (numbers of their comments, numbers of their useful comments, Average useful review). After that, we combine opinion score and trust score to obtain a final score. We applied our method to detect trust opinions in TRIPADVISOR collection. Our experimental results report that the combination between opinion score and trust score improves opinion detection.Keywords: Tripadvisor, opinion detection, SentiWordNet, trust score
Procedia PDF Downloads 1999994 The Design and Construction of the PV-Wind Autonomous System for Greenhouse Plantations in Central Thailand
Authors: Napat Watjanatepin, Wikorn Wong-Satiean
Abstract:
The objective of this research is to design and construct the PV-Wind hybrid autonomous system for the greenhouse plantation, and analyze the technical performance of the PV-Wind energy system. This design depends on the water consumption in the greenhouse by using 24 of the fogging mist each with the capability of 24 liter/min. The operating time is 4 times per day, each round for 15 min. The fogging system is being driven by water pump with AC motor rating 0.5 hp. The load energy consumed is around 1.125 kWh/d. The designing results of the PV-Wind hybrid energy system is that sufficient energy could be generated by this system. The results of this study can be applied as a technical data reference for other areas in the central part of Thailand.Keywords: PV-Wind hybrid autonomous system, greenhouse plantation, fogging system, central part of Thailand
Procedia PDF Downloads 3149993 Rating Agreement: Machine Learning for Environmental, Social, and Governance Disclosure
Authors: Nico Rosamilia
Abstract:
The study evaluates the importance of non-financial disclosure practices for regulators, investors, businesses, and markets. It aims to create a sector-specific set of indicators for environmental, social, and governance (ESG) performances alternative to the ratings of the agencies. The existing literature extensively studies the implementation of ESG rating systems. Conversely, this study has a twofold outcome. Firstly, it should generalize incentive systems and governance policies for ESG and sustainable principles. Therefore, it should contribute to the EU Sustainable Finance Disclosure Regulation. Secondly, it concerns the market and the investors by highlighting successful sustainable investing. Indeed, the study contemplates the effect of ESG adoption practices on corporate value. The research explores the asset pricing angle in order to shed light on the fragmented argument on the finance of ESG. Investors may be misguided about the positive or negative effects of ESG on performances. The paper proposes a different method to evaluate ESG performances. By comparing the results of a traditional econometric approach (Lasso) with a machine learning algorithm (Random Forest), the study establishes a set of indicators for ESG performance. Therefore, the research also empirically contributes to the theoretical strands of literature regarding model selection and variable importance in a finance framework. The algorithms will spit out sector-specific indicators. This set of indicators defines an alternative to the compounded scores of ESG rating agencies and avoids the possible offsetting effect of scores. With this approach, the paper defines a sector-specific set of indicators to standardize ESG disclosure. Additionally, it tries to shed light on the absence of a clear understanding of the direction of the ESG effect on corporate value (the problem of endogeneity).Keywords: ESG ratings, non-financial information, value of firms, sustainable finance
Procedia PDF Downloads 839992 Navigating the Case-Based Learning Multimodal Learning Environment: A Qualitative Study Across the First-Year Medical Students
Authors: Bhavani Veasuvalingam
Abstract:
Case-based learning (CBL) is a popular instructional method aimed to bridge theory to clinical practice. This study aims to explore CBL mixed modality curriculum in influencing students’ learning styles and strategies that support learning. An explanatory sequential mixed method study was employed with initial phase, 44-itemed Felderman’s Index of Learning Style (ILS) questionnaire employed across year one medical students (n=142) using convenience sampling to describe the preferred learning styles. The qualitative phase utilised three focus group discussions (FGD) to explore in depth on the multimodal learning style exhibited by the students. Most students preferred combination of learning stylesthat is reflective, sensing, visual and sequential i.e.: RSVISeq style (24.64%) from the ILS analysis. The frequency of learning preference from processing to understanding were well balanced, with sequential-global domain (66.2%); sensing-intuitive (59.86%), active- reflective (57%), and visual-verbal (51.41%). The qualitative data reported three major themes, namely Theme 1: CBL mixed modalities navigates learners’ learning style; Theme 2: Multimodal learners active learning strategies supports learning. Theme 3: CBL modalities facilitating theory into clinical knowledge. Both quantitative and qualitative study strongly reports the multimodal learning style of the year one medical students. Medical students utilise multimodal learning styles to attain the clinical knowledge when learning with CBL mixed modalities. Educators’ awareness of the multimodal learning style is crucial in delivering the CBL mixed modalities effectively, considering strategic pedagogical support students to engage and learn CBL in bridging the theoretical knowledge into clinical practice.Keywords: case-based learning, learnign style, medical students, learning
Procedia PDF Downloads 959991 The Effectiveness of Summative Assessment in Practice Learning
Authors: Abdool Qaiyum Mohabuth, Syed Munir Ahmad
Abstract:
Assessment enables students to focus on their learning, assessment. It engages them to work hard and motivates them in devoting time to their studies. Student learning is directly influenced by the type of assessment involved in the programme. Summative Assessment aims at providing measurement of student understanding. In fact, it is argued that summative assessment is used for reporting and reviewing, besides providing an overall judgement of achievement. While summative assessment is a well defined process for learning that takes place in the classroom environment, its application within the practice environment is still being researched. This paper discusses findings from a mixed-method study for exploring the effectiveness of summative assessment in practice learning. A survey questionnaire was designed for exploring the perceptions of mentors and students about summative assessment in practice learning. The questionnaire was administered to the University of Mauritius students and mentors who supervised students for their Work-Based Learning (WBL) practice at the respective placement settings. Some students, having undertaken their WBL practice, were interviewed, for capturing their views and experiences about the application of summative assessment in practice learning. Semi-structured interviews were also conducted with three experienced mentors who have assessed students on practice learning. The findings reveal that though learning in the workplace is entirely different from learning at the University, most students had positive experiences about their summative assessments in practice learning. They felt comfortable and confident to be assessed by their mentors in their placement settings and wished that the effort and time that they devoted to their learning be recognised and valued. Mentors on their side confirmed that the summative assessment is valid and reliable, enabling them to better monitor and coach students to achieve the expected learning outcomes.Keywords: practice learning, judgement, summative assessment, knowledge, skills, workplace
Procedia PDF Downloads 3419990 Impact of Network Workload between Virtualization Solutions on a Testbed Environment for Cybersecurity Learning
Authors: Kevin Fernagut, Olivier Flauzac, Erick M. G. Robledo, Florent Nolot
Abstract:
The adoption of modern lightweight virtualization often comes with new threats and network vulnerabilities. This paper seeks to assess this with a different approach studying the behavior of a testbed built with tools such as Kernel-Based Virtual Machine (KVM), Linux Containers (LXC) and Docker, by performing stress tests within a platform where students experiment simultaneously with cyber-attacks, and thus observe the impact on the campus network and also find the best solution for cyber-security learning. Interesting outcomes can be found in the literature comparing these technologies. It is, however, difficult to find results of the effects on the global network where experiments are carried out. Our work shows that other physical hosts and the faculty network were impacted while performing these trials. The problems found are discussed, as well as security solutions and the adoption of new network policies.Keywords: containerization, containers, cybersecurity, cyberattacks, isolation, performance, virtualization, virtual machines
Procedia PDF Downloads 1509989 H-Infinity Controller Design for the Switched Reluctance Machine
Authors: Siwar Fadhel, Imen Bahri, Man Zhang
Abstract:
The switched reluctance machine (SRM) has undeniable qualities in terms of low cost and mechanical robustness. However, its highly nonlinear character and its uncertain parameters justify the development of complicated controls. In this paper, authors present the design of a robust H-infinity current controller for an 8/6 SRM with taking into account the nonlinearity of the SRM and with rejection of disturbances. The electromagnetic torque is indirectly regulated through the current controller. To show the performances of this control, a robustness analysis is performed by comparing the H-infinity and PI controller simulation results. This comparison demonstrates better performances for the presented controller. The effectiveness and robustness of the presented controller are also demonstrated by experimental tests.Keywords: current regulation, experimentation, robust H-infinity control, switched reluctance machine
Procedia PDF Downloads 3119988 Image Ranking to Assist Object Labeling for Training Detection Models
Authors: Tonislav Ivanov, Oleksii Nedashkivskyi, Denis Babeshko, Vadim Pinskiy, Matthew Putman
Abstract:
Training a machine learning model for object detection that generalizes well is known to benefit from a training dataset with diverse examples. However, training datasets usually contain many repeats of common examples of a class and lack rarely seen examples. This is due to the process commonly used during human annotation where a person would proceed sequentially through a list of images labeling a sufficiently high total number of examples. Instead, the method presented involves an active process where, after the initial labeling of several images is completed, the next subset of images for labeling is selected by an algorithm. This process of algorithmic image selection and manual labeling continues in an iterative fashion. The algorithm used for the image selection is a deep learning algorithm, based on the U-shaped architecture, which quantifies the presence of unseen data in each image in order to find images that contain the most novel examples. Moreover, the location of the unseen data in each image is highlighted, aiding the labeler in spotting these examples. Experiments performed using semiconductor wafer data show that labeling a subset of the data, curated by this algorithm, resulted in a model with a better performance than a model produced from sequentially labeling the same amount of data. Also, similar performance is achieved compared to a model trained on exhaustive labeling of the whole dataset. Overall, the proposed approach results in a dataset that has a diverse set of examples per class as well as more balanced classes, which proves beneficial when training a deep learning model.Keywords: computer vision, deep learning, object detection, semiconductor
Procedia PDF Downloads 1369987 An Improved Convolution Deep Learning Model for Predicting Trip Mode Scheduling
Authors: Amin Nezarat, Naeime Seifadini
Abstract:
Trip mode selection is a behavioral characteristic of passengers with immense importance for travel demand analysis, transportation planning, and traffic management. Identification of trip mode distribution will allow transportation authorities to adopt appropriate strategies to reduce travel time, traffic and air pollution. The majority of existing trip mode inference models operate based on human selected features and traditional machine learning algorithms. However, human selected features are sensitive to changes in traffic and environmental conditions and susceptible to personal biases, which can make them inefficient. One way to overcome these problems is to use neural networks capable of extracting high-level features from raw input. In this study, the convolutional neural network (CNN) architecture is used to predict the trip mode distribution based on raw GPS trajectory data. The key innovation of this paper is the design of the layout of the input layer of CNN as well as normalization operation, in a way that is not only compatible with the CNN architecture but can also represent the fundamental features of motion including speed, acceleration, jerk, and Bearing rate. The highest prediction accuracy achieved with the proposed configuration for the convolutional neural network with batch normalization is 85.26%.Keywords: predicting, deep learning, neural network, urban trip
Procedia PDF Downloads 1389986 Social Media as an Interactive Learning Tool Applied to Faculty of Tourism and Hotels, Fayoum University
Authors: Islam Elsayed Hussein
Abstract:
The aim of this paper is to discover the impact of students’ attitude towards social media and the skills required to adopt social media as a university e-learning (2.0) platform. In addition, it measures the effect of social media adoption on interactive learning effectiveness. The population of this study was students at Faculty of tourism and Hotels, Fayoum University. A questionnaire was used as a research instrument to collect data from respondents, which had been selected randomly. Data had been analyzed using quantitative data analysis method. Findings showed that the students have a positive attitude towards adopting social networking in the learning process and they have also good skills for effective use of social networking tools. In addition, adopting social media is effectively affecting the interactive learning environment.Keywords: attitude, skills, e-learning 2.0, interactive learning, Egypt
Procedia PDF Downloads 5259985 Functional Neural Network for Decision Processing: A Racing Network of Programmable Neurons Where the Operating Model Is the Network Itself
Authors: Frederic Jumelle, Kelvin So, Didan Deng
Abstract:
In this paper, we are introducing a model of artificial general intelligence (AGI), the functional neural network (FNN), for modeling human decision-making processes. The FNN is composed of multiple artificial mirror neurons (AMN) racing in the network. Each AMN has a similar structure programmed independently by the users and composed of an intention wheel, a motor core, and a sensory core racing at a specific velocity. The mathematics of the node’s formulation and the racing mechanism of multiple nodes in the network will be discussed, and the group decision process with fuzzy logic and the transformation of these conceptual methods into practical methods of simulation and in operations will be developed. Eventually, we will describe some possible future research directions in the fields of finance, education, and medicine, including the opportunity to design an intelligent learning agent with application in AGI. We believe that FNN has a promising potential to transform the way we can compute decision-making and lead to a new generation of AI chips for seamless human-machine interactions (HMI).Keywords: neural computing, human machine interation, artificial general intelligence, decision processing
Procedia PDF Downloads 1259984 End-to-End Spanish-English Sequence Learning Translation Model
Authors: Vidhu Mitha Goutham, Ruma Mukherjee
Abstract:
The low availability of well-trained, unlimited, dynamic-access models for specific languages makes it hard for corporate users to adopt quick translation techniques and incorporate them into product solutions. As translation tasks increasingly require a dynamic sequence learning curve; stable, cost-free opensource models are scarce. We survey and compare current translation techniques and propose a modified sequence to sequence model repurposed with attention techniques. Sequence learning using an encoder-decoder model is now paving the path for higher precision levels in translation. Using a Convolutional Neural Network (CNN) encoder and a Recurrent Neural Network (RNN) decoder background, we use Fairseq tools to produce an end-to-end bilingually trained Spanish-English machine translation model including source language detection. We acquire competitive results using a duo-lingo-corpus trained model to provide for prospective, ready-made plug-in use for compound sentences and document translations. Our model serves a decent system for large, organizational data translation needs. While acknowledging its shortcomings and future scope, it also identifies itself as a well-optimized deep neural network model and solution.Keywords: attention, encoder-decoder, Fairseq, Seq2Seq, Spanish, translation
Procedia PDF Downloads 1759983 Comparative Analysis of Predictive Models for Customer Churn Prediction in the Telecommunication Industry
Authors: Deepika Christopher, Garima Anand
Abstract:
To determine the best model for churn prediction in the telecom industry, this paper compares 11 machine learning algorithms, namely Logistic Regression, Support Vector Machine, Random Forest, Decision Tree, XGBoost, LightGBM, Cat Boost, AdaBoost, Extra Trees, Deep Neural Network, and Hybrid Model (MLPClassifier). It also aims to pinpoint the top three factors that lead to customer churn and conducts customer segmentation to identify vulnerable groups. According to the data, the Logistic Regression model performs the best, with an F1 score of 0.6215, 81.76% accuracy, 68.95% precision, and 56.57% recall. The top three attributes that cause churn are found to be tenure, Internet Service Fiber optic, and Internet Service DSL; conversely, the top three models in this article that perform the best are Logistic Regression, Deep Neural Network, and AdaBoost. The K means algorithm is applied to establish and analyze four different customer clusters. This study has effectively identified customers that are at risk of churn and may be utilized to develop and execute strategies that lower customer attrition.Keywords: attrition, retention, predictive modeling, customer segmentation, telecommunications
Procedia PDF Downloads 579982 Discriminant Analysis as a Function of Predictive Learning to Select Evolutionary Algorithms in Intelligent Transportation System
Authors: Jorge A. Ruiz-Vanoye, Ocotlán Díaz-Parra, Alejandro Fuentes-Penna, Daniel Vélez-Díaz, Edith Olaco García
Abstract:
In this paper, we present the use of the discriminant analysis to select evolutionary algorithms that better solve instances of the vehicle routing problem with time windows. We use indicators as independent variables to obtain the classification criteria, and the best algorithm from the generic genetic algorithm (GA), random search (RS), steady-state genetic algorithm (SSGA), and sexual genetic algorithm (SXGA) as the dependent variable for the classification. The discriminant classification was trained with classic instances of the vehicle routing problem with time windows obtained from the Solomon benchmark. We obtained a classification of the discriminant analysis of 66.7%.Keywords: Intelligent Transportation Systems, data-mining techniques, evolutionary algorithms, discriminant analysis, machine learning
Procedia PDF Downloads 4729981 Skills Development: The Active Learning Model of a French Computer Science Institute
Authors: N. Paparisteidi, D. Rodamitou
Abstract:
This article focuses on the skills development and path planning of students studying computer science in EPITECH: french private institute of Higher Education. The researchers examine students’ points of view and experience in a blended learning model based on a skills development curriculum. The study is based on the collection of four main categories of data: semi-participant observation, distribution of questionnaires, interviews, and analysis of internal school databases. The findings seem to indicate that a skills-based program on active learning enables students to develop their learning strategies as well as their personal skills and to actively engage in the creation of their career path and contribute to providing additional information to curricula planners and decision-makers about learning design in higher education.Keywords: active learning, blended learning, higher education, skills development
Procedia PDF Downloads 104