Search results for: broiler production
6339 Globalization of Pesticide Technology and Sustainable Agriculture
Authors: Gagandeep Kaur
Abstract:
The pesticide industry is a big supplier of agricultural inputs. The uses of pesticides control weeds, fungal diseases, etc., which causes of yield losses in agricultural production. In agribusiness and agrichemical industry, Globalization of markets, competition and innovation are the dominant trends. By the tradition of increasing the productivity of agro-systems through generic, universally applicable technologies, innovation in the agrichemical industry is limited. The marketing of technology of agriculture needs to deal with some various trends such as locally-organized forces that envision regionalized sustainable agriculture in the future. Agricultural production has changed dramatically over the past century. Before World War second agricultural production was featured as a low input of money, high labor, mixed farming and low yields. Although mineral fertilizers were applied already in the second half of the 19th century, most f the crops were restricted by local climatic, geological and ecological conditions. After World War second, in the period of reconstruction, political and socioeconomic pressure changed the nature of agricultural production. For a growing population, food security at low prices and securing farmer income at acceptable levels became political priorities. Current agricultural policy the new European common agricultural policy is aimed to reduce overproduction, liberalization of world trade and the protection of landscape and natural habitats. Farmers have to increase the quality of their productivity and they have to control costs because of increased competition from the world market. Pesticides should be more effective at lower application doses, less toxic and not pose a threat to groundwater. There is a big debate taking place about how and whether to mitigate the intensive use of pesticides. This debate is about the future of agriculture which is sustainable agriculture. This is possible by moving away from conventional agriculture. Conventional agriculture is featured as high inputs and high yields. The use of pesticides in conventional agriculture implies crop production in a wide range. To move away from conventional agriculture is possible through the gradual adoption of less disturbing and polluting agricultural practices at the level of the cropping system. For a healthy environment for crop production in the future there is a need for the maintenance of chemical, physical or biological properties. There is also required to minimize the emission of volatile compounds in the atmosphere. Companies are limiting themselves to a particular interpretation of sustainable development, characterized by technological optimism and production-maximizing. So the main objective of the paper will present the trends in the pesticide industry and in agricultural production in the era of Globalization. The second objective is to analyze sustainable agriculture. Companies of pesticides seem to have identified biotechnology as a promising alternative and supplement to the conventional business of selling pesticides. The agricultural sector is in the process of transforming its conventional mode of operation. Some experts give suggestions to farmers to move towards precision farming and some suggest engaging in organic farming. The methodology of the paper will be historical and analytical. Both primary and secondary sources will be used.Keywords: globalization, pesticides, sustainable development, organic farming
Procedia PDF Downloads 986338 Effect of Probiotics and Vitamin B on Plasma Interferon-Gamma and Interleukin-6 Levels in Active Pulmonary Tuberculosis
Authors: Yulistiani Yulistiani, Zamrotul Izzah, Lintang Bismantara, Wenny Putri Nilamsari, Arif Bachtiar, Budi Suprapti
Abstract:
Interferon-gamma (IFN-γ) and interleukin-6 (IL-6) are pro-inflammatory cytokines, which have the protective immune response against Tuberculosis (TB). Indeed, pro-inflammatory cytokines Mycobacterium tuberculosis antigen-specific CD4+ and CD8+ T cells and NK cells increase the level of production of IFN-γ, a cytokine critical for augmenting the microbicidal activity of phagocytes. On the other hand, M. tuberculosis reduces the effects of IFN-γ by inhibiting the transcription of IFN-γ- responsive genes and by inducing the secretion of IL-6, which inhibits IFN-γ signaling. Probiotics Lactobacillus sp. and Bifidobacterium sp. were known to increase IFN-γ production in vivo, while vitamin B1, B6, and B12 worked on macrophages and releasing cytokines. Therefore, the present study was to evaluate the effect of probiotics and vitamin B supplement on changes of plasma cytokine levels in active pulmonary TB. From October to November 2016, twelve M. tuberculosis-infected patients starting anti-TB drugs were recruited, then divided into two groups. Seven patients were given a combination of probiotics and vitamin B, while five patients were in the control group. Plasma IFN-γ and IL-6 levels were measured by the ELISA kit before and a month after treatment. IFN-γ levels raised in four patients receiving the supplement (P = 0.743), while IL-6 increased in three patients in this group until day 30 of treatment (P = 0.298). Taken together, these results show the promising effect of probiotics and vitamin B on stimulation of IFN-γ and IL-6 production during intensive therapy of TB.Keywords: interferon-gamma, interleukin-6, probiotic, tuberculosis
Procedia PDF Downloads 3496337 Assessment of Energy Efficiency and Life Cycle Greenhouse Gas Emission of Wheat Production on Conservation Agriculture to Achieve Soil Carbon Footprint in Bangladesh
Authors: MD Mashiur Rahman, Muhammad Arshadul Haque
Abstract:
Emerging conservation agriculture (CA) is an option for improving soil health and maintaining environmental sustainability for intensive agriculture, especially in the tropical climate. Three years lengthy research experiment was performed in arid climate from 2018 to 2020 at research field of Bangladesh Agricultural Research Station (RARS)F, Jamalpur (soil texture belongs to Agro-Ecological Zone (AEZ)-8/9, 24˚56'11''N latitude and 89˚55'54''E longitude and an altitude of 16.46m) to evaluate the effect of CA approaches on energy use efficiency and a streamlined life cycle greenhouse gas (GHG) emission of wheat production. For this, the conservation tillage practices (strip tillage (ST) and minimum tillage (MT)) were adopted in comparison to the conventional farmers' tillage (CT), with retained a fixed level (30 cm) of residue retention. This study examined the relationship between energy consumption and life cycle greenhouse gas (GHG) emission of wheat cultivation in Jamalpur region of Bangladesh. Standard energy equivalents megajoules (MJ) were used to measure energy from different inputs and output, similarly, the global warming potential values for the 100-year timescale and a standard unit kilogram of carbon dioxide equivalent (kg CO₂eq) was used to estimate direct and indirect GHG emissions from the use of on-farm and off-farm inputs. Farm efficiency analysis tool (FEAT) was used to analyze GHG emission and its intensity. A non-parametric data envelopment (DEA) analysis was used to estimate the optimum energy requirement of wheat production. The results showed that the treatment combination having MT with optimum energy inputs is the best suit for cost-effective, sustainable CA practice in wheat cultivation without compromising with the yield during the dry season. A total of 22045.86 MJ ha⁻¹, 22158.82 MJ ha⁻¹, and 23656.63 MJ ha⁻¹ input energy for the practice of ST, MT, and CT was used in wheat production, and output energy was calculated as 158657.40 MJ ha⁻¹, 162070.55 MJ ha⁻¹, and 149501.58 MJ ha⁻¹, respectively; where energy use efficiency/net energy ratio was found to be 7.20, 7.31 and 6.32. Among these, MT is the most effective practice option taken into account in the wheat production process. The optimum energy requirement was found to be 18236.71 MJ ha⁻¹ demonstrating for the practice of MT that if recommendations are followed, 18.7% of input energy can be saved. The total greenhouse gas (GHG) emission was calculated to be 2288 kgCO₂eq ha⁻¹, 2293 kgCO₂eq ha⁻¹ and 2331 kgCO₂eq ha⁻¹, where GHG intensity is the ratio of kg CO₂eq emission per MJ of output energy produced was estimated to be 0.014 kg CO₂/MJ, 0.014 kg CO₂/MJ and 0.015 kg CO₂/MJ in wheat production. Therefore, CA approaches ST practice with 30 cm residue retention was the most effective GHG mitigation option when the net life cycle GHG emission was considered in wheat production in the silt clay loam soil of Bangladesh. In conclusion, the CA approaches being implemented for wheat production involving MT practice have the potential to mitigate global warming potential in Bangladesh to achieve soil carbon footprint, where the life cycle assessment approach needs to be applied to a more diverse range of wheat-based cropping systems.Keywords: conservation agriculture and tillage, energy use efficiency, life cycle GHG, Bangladesh
Procedia PDF Downloads 1026336 Evaluating the Green Marketing Performance, an Empirical Study for Dates Factories in Al-Kharj Province, Saudi Arabia
Authors: Saleh Abdullah Dabil
Abstract:
The research aims to survey the dates factories in Al-Kharj Province, and then identify the nature of a series of different production processes and the using of raw materials, as well as their finished products, and the extent of their impact on the environment or consumers satisfaction. Twenty dates factories were selected according to their willingness to participate. The participants of dates factories consist of approximately 40 % of all dates factories in Al-Kharj province. All of the dates factories which were visited were observed. The research team also administered number of questionnaires to the public to know their satisfaction levels of the dates products as well as their suggestions. It is accounted to 237 participants who gave their opinion about the dates products and their suggestions. This study is one of rare studies about green marketing in dates factories. What is new about this study is that it depends upon both of the managers and consumers as well as the researchers to look into the factories’ production line and to observe the level of satisfaction. The study resulted in a very good ending because that the green marketing of dates is in its highest level. This indicates that the factories in general using natural materials and no bad materials or subsides used in the production, the levels of satisfaction by consumers are very good, preferring mostly lose product of dates. The preference of lose dates means the tendency to use the dates in their natural product. The recommendations of this study suggest solving marketing problems in transforming raw dates into manufacturing products. This includes biscuits and other types of sweet products.Keywords: green marketing, dates factories, environment impact, consumer satisfaction
Procedia PDF Downloads 2716335 Failure Analysis: Solid Rocket Motor Type “Candy” - Explosion in a Static Test
Authors: Diego Romero, Fabio Rojas, J. Alejandro Urrego
Abstract:
The sounding rockets are aerospace vehicles that were developed in the mid-20th century, and Colombia has been involved in research that was carried out with the aim of innovating with this technology. The rockets are university research programs with the collaboration of the local government, with a simple strategy, develop and reduce the greatest costs associated with the production of a kind type of technology. In this way, in this document presents the failure analysis of a solid rocket motor, with the real compatibly to reach the thermosphere with a low-cost fuel. This solid rocket motor is the latest development of the Uniandes Aerospace Project (PUA for its Spanish acronym), an undergraduate and postgraduate research group at Universidad de los Andes (Bogotá, Colombia), dedicated to incurring in this type of technology. This motor has been carried out on Candy-type solid fuel, which is a compound of potassium nitrate and sorbitol, and the investigation has allowed the production of solid motors powerful enough to reach space, and which represents a unique technological advance in Latin America and an important development in experimental rocketry.To outline the main points the explosion in a static test is an important to explore and demonstrate the ways to develop technology, methodologies, production and manufacturing, being a solid rocket motor with 30 kN of thrust. In conclusion, this analysis explores different fields such as: design, manufacture, materials, production, first fire and more, with different engineering tools with principal objective find root failure. Following the engineering analysis methodology, was possible to design a new version of motor, with learned lessons new manufacturing specification, therefore, when publishing this project, it is intended to be a reference for future research in this field and benefit the industry.Keywords: candy propellant, candy rockets, explosion, failure analysis, static test, solid rocket motor
Procedia PDF Downloads 1616334 Resolving Increased Water-Cut in South and East Kuwait Areas through Water Knock-Out Facility Project
Authors: Sunaitan Al Mutairi, Kumar Vallatharasu, Batool Ismaeel
Abstract:
The Water Knock-Out (WKO) facility project is to handle the undesirable impact of the increasing water production rate in South and East Kuwait (S&EK) areas and break the emulsions and ensure sufficient separation of water at the new upstream facility, to reduce the load on the existing separation equipment in the Gathering Centers (GC). As the existing separation equipment in the Gathering Centers are not efficient to separate the emulsions, the Compact Electrostatic Coalescer (CEC) and Vessel Internal Electrostatic Coalescer (VIEC) technologies have been selected for enhancing the liquid-liquid separation by using the alternating voltage/frequency on electrical fields, to handle the increasing water-cut in S&EK. In the Compact Electrostatic Coalescer (CEC) technology method, the CEC equipment is installed downstream of the inlet separator externally, whereas in the Vessel Internal Electrostatic Coalescer (VIEC) technology method, the VIEC is built inside the treater vessel, downstream of the inlet separator with advanced internals for implementing electrocoalescence of water particles and hence enhancing liquids separation. The CEC and VIEC technologies used in the Water Knockout Facility project has the ability to resolve the increasing water cut in the S&EK area and able to enhance the liquid-liquid separation in the WKO facility separation equipment. In addition, the WKO facility is minimizing the load on the existing Gathering Center’s separation equipment, by tackling the high water-cut wells, upstream of each GC. The required performances at the outlet of the WKO facility are Oil in Water 100ppmv, Water in Oil 15% volume, liquid carryover in gas 0.1 US gal/MMSCFD, for the water cut ranging from 37.5 to 75% volume. The WKO facility project is used to sustain, support and maintain Greater Burgan production at 1.7 Million Barrels of Oil Per Day (MMBOPD), by handling the increasing water production rate.Keywords: emulsion, increasing water-cut, production, separation equipment
Procedia PDF Downloads 2456333 Evaluation of Cellulase and Xylanase Production by Micrococcus Sp. Isolated from Decaying Lignocellulosic Biomass Obtained from Alice Environment in the Eastern Cape of South Africa
Authors: Z. Mmango, U. Nwodo, L. V. Mabinya, A. I. Okoh
Abstract:
Cellulose and hemicellulose account for a large portion of the world‘s plant biomass. In nature, these polysaccharides are intertwined forming complex materials that requires multiple and expensive treatment processes to free up the raw materials trapped in the matrix. Enzymatic degradation remains as the preferred technique as it is inexpensive and eco-friendly. However, the insufficiencies of enzyme battery systems in the degradation of lignocellulosic complex motivate the search for effective degrading enzymes from bacterial isolates from uncommon environment. The study aimed at the evaluation of actinomycetes isolated from saw dust samples collected from wood factory under bed. Cellulase and xylanase production was screened through organism culture on carboxyl methyl cellulose agar and Birchwood xylan. Halo zone indicating lignocellose utilization was shown by an isolate identified through 16S rRNA gene as Micrococcus luteus. The optimum condition for the production of cellulase and xylanase were incubation temperature of 25 °C, fermentation medium pH 5 and 10, agitation speed of 50 and 200 (rpm) and fermentation incubation time of 96 and 84 (h) respectively. The high cellulose and xylanase activity obtained from this isolate portends industrial relevance.Keywords: carboxyl methyl cellulose, birchwood xylan, optimization, cellulase, xylanase, micrococcus, DNS method
Procedia PDF Downloads 3546332 Methanol Steam Reforming with Heat Recovery for Hydrogen-Rich Gas Production
Authors: Horng-Wen Wu, Yi Chao, Rong-Fang Horng
Abstract:
This study is to develop a methanol steam reformer with a heat recovery zone, which recovers heat from exhaust gas of a diesel engine, and to investigate waste heat recovery ratio at the required reaction temperature. The operation conditions of the reformer are reaction temperature (200 °C, 250 °C, and 300 °C), steam to carbonate (S/C) ratio (0.9, 1.1, and 1.3), and N2 volume flow rate (40 cm3/min, 70 cm3/min, and 100 cm3/min). Finally, the hydrogen concentration, the CO, CO2, and N2 concentrations are measured and recorded to calculate methanol conversion efficiency, hydrogen flow rate, and assisting combustion gas and impeding combustion gas ratio. The heat source of this reformer comes from electric heater and waste heat of exhaust gas from diesel engines. The objective is to recover waste heat from the engine and to make more uniform temperature distribution within the reformer. It is beneficial for the reformer to enhance the methanol conversion efficiency and hydrogen-rich gas production. Experimental results show that the highest hydrogen flow rate exists at N2 of the volume rate 40 cm3/min and reforming reaction temperature of 300 °C and the value is 19.6 l/min. With the electric heater and heat recovery from exhaust gas, the maximum heat recovery ratio is 13.18 % occurring at water-methanol (S/C) ratio of 1.3 and the reforming reaction temperature of 300 °C.Keywords: heat recovery, hydrogen-rich production, methanol steam reformer, methanol conversion efficiency
Procedia PDF Downloads 4666331 Taguchi Robust Design for Optimal Setting of Process Wastes Parameters in an Automotive Parts Manufacturing Company
Authors: Charles Chikwendu Okpala, Christopher Chukwutoo Ihueze
Abstract:
As a technique that reduces variation in a product by lessening the sensitivity of the design to sources of variation, rather than by controlling their sources, Taguchi Robust Design entails the designing of ideal goods, by developing a product that has minimal variance in its characteristics and also meets the desired exact performance. This paper examined the concept of the manufacturing approach and its application to brake pad product of an automotive parts manufacturing company. Although the firm claimed that only defects, excess inventory, and over-production were the few wastes that grossly affect their productivity and profitability, a careful study and analysis of their manufacturing processes with the application of Single Minute Exchange of Dies (SMED) tool showed that the waste of waiting is the fourth waste that bedevils the firm. The selection of the Taguchi L9 orthogonal array which is based on the four parameters and the three levels of variation for each parameter revealed that with a range of 2.17, that waiting is the major waste that the company must reduce in order to continue to be viable. Also, to enhance the company’s throughput and profitability, the wastes of over-production, excess inventory, and defects with ranges of 2.01, 1.46, and 0.82, ranking second, third, and fourth respectively must also be reduced to the barest minimum. After proposing -33.84 as the highest optimum Signal-to-Noise ratio to be maintained for the waste of waiting, the paper advocated for the adoption of all the tools and techniques of Lean Production System (LPS), and Continuous Improvement (CI), and concluded by recommending SMED in order to drastically reduce set up time which leads to unnecessary waiting.Keywords: lean production system, single minute exchange of dies, signal to noise ratio, Taguchi robust design, waste
Procedia PDF Downloads 1266330 Calculating Asphaltenes Precipitation Onset Pressure by Using Cardanol as Precipitation Inhibitor: A Strategy to Increment the Oil Well Production
Authors: Camilo A. Guerrero-Martin, Erik Montes Paez, Marcia C. K. Oliveira, Jonathan Campos, Elizabete F. Lucas
Abstract:
Asphaltenes precipitation is considered as a formation damage problem, which can reduce the oil recovery factor. It fouls piping and surface installations, as well as cause serious flow assurance complications and decline oil well production. Therefore, researchers have shown an interest in chemical treatments to control this phenomenon. The aim of this paper is to assess the asphaltenes precipitation onset of crude oils in the presence of cardanol, by titrating the crude with n-heptane. Moreover, based on this results obtained at atmosphere pressure, the asphaltenes precipitation onset pressure were calculated to predict asphaltenes precipitation in the reservoir, by using differential liberation and refractive index data of the oils. The influence of cardanol concentrations in the asphaltenes stabilization of three Brazilian crude oils samples (with similar API densities) was studied. Therefore, four formulations of cardanol in toluene were prepared: 0, 3, 5, 10 and 15 m/m%. The formulations were added to the crude at 2:98 ratio. The petroleum samples were characterized by API density, elemental analysis and differential liberation test. The asphaltenes precipitation onset (APO) was determined by titrating with n-heptane and monitoring with near-infrared (NIR). UV-Vis spectroscopy experiments were also done to assess the precipitate asphaltenes content. The asphaltenes precipitation envelopes (APE) were also determined by numerical simulation (Multiflash). In addition, the adequate artificial lift systems (ALS) for the oils were selected. It was based on the downhole well profile and a screening methodology. Finally, the oil flowrates were modelling by NODAL analysis production system in the PIPESIM software. The results of this study show that the asphaltenes precipitation onset of the crude oils were 2.2, 2.3 and 6.0 mL of n-heptane/g of oil. The cardanol was an effective inhibitor of asphaltenes precipitation for the crude oils used in this study, since it displaces the precipitation pressure of the oil to lower values. This indicates that cardanol can increase the oil wells productivity.Keywords: asphaltenes, NODAL analysis production system, precipitation pressure onset, inhibitory molecule
Procedia PDF Downloads 1756329 Prevalence of Different Poultry Parasitoses in Farms Modern in the North of Ivory Coast
Authors: Coulibaly Fatoumata, Gragnon Biego, Aka N. David, Mbari K. Benjamin, Soro Y. René, Ndiaye Jean-louis
Abstract:
Poultry is nowadays one of the most consumed sources of protein, and its livestock represents one of the few opportunities for savings, investment and protection against risk. It provides income for the most vulnerable sections of society, in particular, women (70%) and children who mainly practice this breeding. A study was conducted in the commune of Korhogo at the level of 52 poultry farms, the objective of which was to know the epidemiological situation of parasitism external and internal poultry in order to contribute to the improvement of the health status of modern poultry farms in the said commune. The method described by OIE (2005), consisting of using the standard formula (n = δ2*p*(1-p) *c /i2), made it possible to calculate the size of the sample. Then, samples of droppings and ectoparasites were taken from the affected farms. After analysis and identification, two (2) species of mallophagous lice, including Menopon gallinae (50%) and Menacanthus stramineus (33%) and a species of bug Cimex lectularius (17%) were highlighted. The laying hens were more infested than broilers. Regarding gastrointestinal parasites, different species (six) have been identified: Trichostrongylus tenuis (17%), Syngamus trachea (19%), Heterakis sp (10%), Ascaridia sp (17%), Raillietina sp (8%) and Eimeria sp (29%). In addition, coccidiosis (Eimeria sp) proved to be the dominant pathology representing 67% of pathologies in broiler farms and 33% in poultry farms. The presence of these parasitoses in these modern farms constitutes a constraint major contribution to productivity and their development In view of all these difficulties, proposals have been made in order to participate in the establishment of a good prophylaxis program (health and medical). In addition, the Ivorian government, with the support of veterinarians, must interfere more in the organization of the health monitoring of traditional chickens and poultry in general through supervision and training in order to preserve public health ( animal, human and environmental health).Keywords: gastrointestinal parasites, ectoparasites, pathologies, poultry, korhogo.
Procedia PDF Downloads 856328 Intelligent Fishers Harness Aquatic Organisms and Climate Change
Authors: Shih-Fang Lo, Tzu-Wei Guo, Chih-Hsuan Lee
Abstract:
Tropical fisheries are vulnerable to the physical and biogeochemical oceanic changes associated with climate change. Warmer temperatures and extreme weather have beendamaging the abundance and growth patterns of aquatic organisms. In recent year, the shrinking of fish stock and labor shortage have increased the threat to global aquacultural production. Thus, building a climate-resilient and sustainable mechanism becomes an urgent, important task for global citizens. To tackle the problem, Taiwanese fishermen applies the artificial intelligence (AI) technology. In brief, the AI system (1) measures real-time water quality and chemical parameters infish ponds; (2) monitors fish stock through segmentation, detection, and classification; and (3) implements fishermen’sprevious experiences, perceptions, and real-life practices. Applying this system can stabilize the aquacultural production and potentially increase the labor force. Furthermore, this AI technology can build up a more resilient and sustainable system for the fishermen so that they can mitigate the influence of extreme weather while maintaining or even increasing their aquacultural production. In the future, when the AI system collected and analyzed more and more data, it can be applied to different regions of the world or even adapt to the future technological or societal changes, continuously providing the most relevant and useful information for fishermen in the world.Keywords: aquaculture, artificial intelligence (AI), real-time system, sustainable fishery
Procedia PDF Downloads 1116327 Power Generation and Treatment potential of Microbial Fuel Cell (MFC) from Landfill Leachate
Authors: Beenish Saba, Ann D. Christy
Abstract:
Modern day municipal solid waste landfills are operated and controlled to protect the environment from contaminants during the biological stabilization and degradation of the solid waste. They are equipped with liners, caps, gas and leachate collection systems. Landfill gas is passively or actively collected and can be used as bio fuel after necessary purification, but leachate treatment is the more difficult challenge. Leachate, if not recirculated in a bioreactor landfill system, is typically transported to a local wastewater treatment plant for treatment. These plants are designed for sewage treatment, and often charge additional fees for higher strength wastewaters such as leachate if they accept them at all. Different biological, chemical, physical and integrated techniques can be used to treat the leachate. Treating that leachate with simultaneous power production using microbial fuel cells (MFC) technology has been a recent innovation, reported its application in its earliest starting phase. High chemical oxygen demand (COD), ionic strength and salt concentration are some of the characteristics which make leachate an excellent substrate for power production in MFCs. Different materials of electrodes, microbial communities, carbon co-substrates and temperature conditions are some factors that can be optimized to achieve simultaneous power production and treatment. The advantage of the MFC is its dual functionality but lower power production and high costs are the hurdles in its commercialization and more widespread application. The studies so far suggest that landfill leachate MFCs can produce 1.8 mW/m2 with 79% COD removal, while amendment with food leachate or domestic wastewater can increase performance up to 18W/m3 with 90% COD removal. The columbic efficiency is reported to vary between 2-60%. However efforts towards biofilm optimization, efficient electron transport system studies and use of genetic tools can increase the efficiency of the MFC and can determine its future potential in treating landfill leachate.Keywords: microbial fuel cell, landfill leachate, power generation, MFC
Procedia PDF Downloads 3166326 Making Lightweight Concrete with Meerschaum
Abstract:
Meerschaum, which is found in the earth’s crust, is a white and clay like hydrous magnesium silicate. It has a wide area of use from production of carious ornaments to chemical industry. It has a white and irregular crystalline structure. It is wet and moist when extracted, which is a good form for processing. At drying phase, it gradually loses its moisture and becomes lighter and harder. In through-dry state, meerschaum is durable and floats on the water. After processing of meerschaum, A ratio between %15 to %40 of the amount becomes waste. This waste is usually kept in a dry-atmosphere which is isolated from environmental effects so that to be used right away when needed. In this study, use of meerschaum waste as aggregate in lightweight concrete is studied. Stress-strain diagrams for concrete with meerschaum aggregate are obtained. Then, stress-strain diagrams of lightweight concrete and concrete with regular aggregate are compared. It is concluded that meerschaum waste can be used in production of lightweight concrete.Keywords: lightweight concrete, meerschaum, aggregate, sepiolite, stress-strain diagram
Procedia PDF Downloads 6046325 Preparation and Characterization of Road Base Material Based on Kazakhstan Production Waste
Authors: K. K. Kaidarova, Ye. K. Aibuldinov, Zh. B. Iskakova, G. Zh. Alzhanova, S. Zh. Zayrova
Abstract:
Currently, the existing road infrastructure of Kazakhstan needs the reconstruction of existing highways and the construction of new roads. The solution to this problem can be achieved by replacing traditional building materials with industrial waste, which in their chemical and mineralogical composition are close to natural raw materials and can partially or completely replace some natural binding materials in road construction. In this regard, the purpose of this study is to develop building materials based on the red sludge of the Pavlodar aluminum plant, blast furnace slag of the Karaganda Metallurgical Plant, lime production waste of the Pavlodar Aluminum Plant as a binder for natural loam. Changes in physical and mechanical properties were studied for uniaxial compression strength, linear expansion coefficient, water resistance, and frost resistance of the samples. Nine mixtures were formed with different percentages of these wastes 1-20:25:4; 2-20:25:6; 3-20:25:8; 4-30:30:4; 5-30:30:6; 6-30:30:8; 7-40:35:4; 8-40:35:6; 9-40:35:8 and the mixture identifier were labeled based on the waste content and composition number. The results of strength measurement during uniaxial compression of the samples showed an almost constant increase in strength and amounted to 0.67–3.56 MPa after three days and 3.33–7.38 MPa after 90 days. This increase in compressive strength is a consequence of the addition of lime and becomes more pronounced over time. The water resistance of the developed materials after 90 days was 7.12 MPa, and the frost resistance for the same period was 7.35 MPa. The maximum values of strength determination were shown by a sample of the composition 9-40:35:8. The study of the mineral composition showed that there was no contamination with heavy metals or dangerous substances. It was determined that road materials made of red sludge, blast furnace slag, lime production waste, and natural loam mixture could be used due to their strength indicators and environmental characteristics.Keywords: production waste, uniaxial compression, water resistance of materials, frost resistance of samples
Procedia PDF Downloads 1196324 The Impact of Economic Growth on Carbon Footprints of High-Income and Non-High-Income Countries: A Comparative Analysis
Authors: Ghunchq Khan
Abstract:
The increase in greenhouse gas (GHGs) emissions is a main environmental problem. Diverse human activities and inappropriate economic growth have stimulated a trade-off between economic growth and environmental deterioration all over the world. The impact of economic growth on the environment has received attention as global warming and environmental problems have become more serious. The focus of this study is on carbon footprints (production and consumption) and analyses the impact of GDP per capita on carbon footprints. A balanced panel of 99 countries from 2000 to 2016 is estimated by employing autoregressive distributed lags (ARDL) model – mean group (MG) and pooled mean group (PMG) estimators. The empirical results indicate that GDP per capita has a significant and positive impact in the short run but a negative effect in the long run on the carbon footprint of production in high-income countries by controlling trade openness, industry share, biological capacity, and population density. At the same time, GDP per capita has a significant and positive impact in both the short and long run on the carbon footprint of the production of non-high-income countries. The results also indicate that GDP per capita negatively impacts the carbon footprint of consumption for high-income countries; on the other hand, the carbon footprint of consumption increases as GDP per capita grows in non-high-income countries.Keywords: ARDL, carbon footprint, economic growth, industry share, trade openness
Procedia PDF Downloads 956323 Modeling of Production Lines Systems with Layout Constraints
Authors: Sadegh Abebi
Abstract:
There are problems with estimating time of product process of products, especially when there is variable serving time, like control stage. These problems will cause overestimation of process time. Layout constraints, reworking constraints and inflexible product schedule in multi product lines, needs a precise planning to reduce volume in particular situation of line stock. In this article, by analyzing real queue systems with layout constraints and by using concepts and principles of Markov chain in queue theory, a hybrid model has been presented. This model can be a base to assess queue systems with probable parameters of service. Here by presenting a case study, the proposed model will be described. so, production lines of a home application manufacturer will be analyzed.Keywords: Queuing theory, Markov Chain, layout, line balance
Procedia PDF Downloads 6256322 Procedure Model for Data-Driven Decision Support Regarding the Integration of Renewable Energies into Industrial Energy Management
Authors: M. Graus, K. Westhoff, X. Xu
Abstract:
The climate change causes a change in all aspects of society. While the expansion of renewable energies proceeds, industry could not be convinced based on general studies about the potential of demand side management to reinforce smart grid considerations in their operational business. In this article, a procedure model for a case-specific data-driven decision support for industrial energy management based on a holistic data analytics approach is presented. The model is executed on the example of the strategic decision problem, to integrate the aspect of renewable energies into industrial energy management. This question is induced due to considerations of changing the electricity contract model from a standard rate to volatile energy prices corresponding to the energy spot market which is increasingly more affected by renewable energies. The procedure model corresponds to a data analytics process consisting on a data model, analysis, simulation and optimization step. This procedure will help to quantify the potentials of sustainable production concepts based on the data from a factory. The model is validated with data from a printer in analogy to a simple production machine. The overall goal is to establish smart grid principles for industry via the transformation from knowledge-driven to data-driven decisions within manufacturing companies.Keywords: data analytics, green production, industrial energy management, optimization, renewable energies, simulation
Procedia PDF Downloads 4356321 Production and Market of Certified Organic Products in Thailand
Authors: Chaiwat Kongsom, Vitoon Panyakul
Abstract:
The objective of this study was to assess the production and market of certified organic products in Thailand. A purposive sampling technique was used to identify a sample group of 154 organic entrepreneurs for the study. A survey and in-depth interview were employed for data collection. Also, secondary data from organic agriculture certification body and publications was collected. Then descriptive statistics and content analysis technique were used to describe about production and market of certified organic products in Thailand. Results showed that there were 9,218 farmers on 213,183.68 Rai (83,309.2 acre) of certified organic agriculture land (0.29% of national agriculture land). A total of 57.8% of certified organic agricultural lands were certified by the international certification body. Organic farmers produced around 71,847 tons/year and worth around THB 1,914 million (Euro 47.92 million). Excluding primary producers, 471 operators involved in the Thai organic supply chains, including processors, exporters, distributors, green shops, modern trade shops (supermarket shop), farmer’s markets and food establishments were included. Export market was the major market channel and most of organic products were exported to Europe and North America. The total Thai organic market in 2014 was estimated to be worth around THB 2,331.55 million (Euro 58.22 million), of which, 77.9% was for export and 22.06% was for the domestic market. The largest exports of certified organic products were processed foods (66.1% of total export value), followed by organic rice (30.4%). In the domestic market, modern trade was the largest sale channel, accounting for 59.48% of total domestic sales, followed by green shop (29.47%) and food establishment (5.85%). To become a center of organic farming and trading within ASEAN, the Thai organic sector needs to have more policy support in regard to agricultural chemicals, GMO, and community land title. In addition, appropriate strategies need to be developed.Keywords: certified organic products, production, market, Thailand
Procedia PDF Downloads 3226320 Enabling Integrated Production of Electric Vehicles in Automotive Final Assembly: Realization of an Expert Study
Authors: Achim Kampker, Heiner Hans Heimes, Mathias Ordung, Jan-Philip Ganser
Abstract:
In the past years, the automotive industry has changed significantly. Innovative mobility concepts have become more important, and electric vehicles see a chance of replacing vehicles with combustion engines in the long term. However, the coming years will be characterized by coexistence. In this context, there are two possible production scenarios: One the one hand, electric vehicles could be manufactured in bespoke assembly lines. Concerning the uncertainty regarding sales figures development, this alternative boasts a high investment risk. Therefore, an integrated assembly building upon existing structures also seems a feasible solution. This empirical study aims at validating hypotheses concerning theoretical and practical challenges of the integrated production in the final assembly. In order to take a test of approaches of the research by analyzing censored feedback of professionals, these hypotheses are validated in the framework of an expert study. For this purpose, hypotheses have been generated on the basis of a requirements analysis and a concept specification. Thereupon, a list of question has been implemented and deduced from the hypotheses to execute an online- and written-survey and interviews with professionals. The interpretation and evaluation of the findings includes an inter-component comparison for the electric drivetrain. Furthermore, key drivers for a sufficient integrated product and process design are presented.Keywords: automotive industry, final assembly, integrated manufacturing, product and process development
Procedia PDF Downloads 3386319 Analysis of Human Toxicity Potential of Major Building Material Production Stage Using Life Cycle Assessment
Authors: Rakhyun Kim, Sungho Tae
Abstract:
Global environmental issues such as abnormal weathers due to global warming, resource depletion, and ecosystem distortions have been escalating due to rapid increase of population growth, and expansion of industrial and economic development. Accordingly, initiatives have been implemented by many countries to protect the environment through indirect regulation methods such as Environmental Product Declaration (EPD), in addition to direct regulations such as various emission standards. Following this trend, life cycle assessment (LCA) techniques that provide quantitative environmental information, such as Human Toxicity Potential (HTP), for buildings are being developed in the construction industry. However, at present, the studies on the environmental database of building materials are not sufficient to provide this support adequately. The purpose of this study is to analysis human toxicity potential of major building material production stage using life cycle assessment. For this purpose, the theoretical consideration of the life cycle assessment and environmental impact category was performed and the direction of the study was set up. That is, the major material in the global warming potential view was drawn against the building and life cycle inventory database was selected. The classification was performed about 17 kinds of substance and impact index, such as human toxicity potential, that it specifies in CML2001. The environmental impact of analysis human toxicity potential for the building material production stage was calculated through the characterization. Meanwhile, the environmental impact of building material in the same category was analyze based on the characterization impact which was calculated in this study. In this study, establishment of environmental impact coefficients of major building material by complying with ISO 14040. Through this, it is believed to effectively support the decisions of stakeholders to improve the environmental performance of buildings and provide a basis for voluntary participation of architects in environment consideration activities.Keywords: human toxicity potential, major building material, life cycle assessment, production stage
Procedia PDF Downloads 1396318 Estimation of Hydrogen Production from PWR Spent Fuel Due to Alpha Radiolysis
Authors: Sivakumar Kottapalli, Abdesselam Abdelouas, Christoph Hartnack
Abstract:
Spent nuclear fuel generates a mixed field of ionizing radiation to the water. This radiation field is generally dominated by gamma rays and a limited flux of fast neutrons. The fuel cladding effectively attenuates beta and alpha particle radiation. Small fraction of the spent nuclear fuel exhibits some degree of fuel cladding penetration due to pitting corrosion and mechanical failure. Breaches in the fuel cladding allow the exposure of small volumes of water in the cask to alpha and beta ionizing radiation. The safety of the transport of radioactive material is assured by the package complying with the IAEA Requirements for the Safe Transport of Radioactive Material SSR-6. It is of high interest to avoid generation of hydrogen inside the cavity which may to an explosive mixture. The risk of hydrogen production along with other radiation gases should be analyzed for a typical spent fuel for safety issues. This work aims to perform a realistic study of the production of hydrogen by radiolysis assuming most penalizing initial conditions. It consists in the calculation of the radionuclide inventory of a pellet taking into account the burn up and decays. Westinghouse 17X17 PWR fuel has been chosen and data has been analyzed for different sets of enrichment, burnup, cycles of irradiation and storage conditions. The inventory is calculated as the entry point for the simulation studies of hydrogen production by radiolysis kinetic models by MAKSIMA-CHEMIST. Dose rates decrease strongly within ~45 μm from the fuel surface towards the solution(water) in case of alpha radiation, while the dose rate decrease is lower in case of beta and even slower in case of gamma radiation. Calculations are carried out to obtain spectra as a function of time. Radiation dose rate profiles are taken as the input data for the iterative calculations. Hydrogen yield has been found to be around 0.02 mol/L. Calculations have been performed for a realistic scenario considering a capsule containing the spent fuel rod. Thus, hydrogen yield has been debated. Experiments are under progress to validate the hydrogen production rate using cyclotron at > 5MeV (at ARRONAX, Nantes).Keywords: radiolysis, spent fuel, hydrogen, cyclotron
Procedia PDF Downloads 5216317 Qualitative and Quantitative Characterization of Generated Waste in Nouri Petrochemical Complex, Assaluyeh, Iran
Authors: L. Heidari, M. Jalili Ghazizade
Abstract:
In recent years, different petrochemical complexes have been established to produce aromatic compounds. Among them, Nouri Petrochemical Complex (NPC) is the largest producer of aromatic raw materials in the world, and is located in south of Iran. Environmental concerns have been raised in this region due to generation of different types of solid waste generated in the process of aromatics production, and subsequently, industrial waste characterization has been thoroughly considered. The aim of this study is qualitative and quantitative characterization of industrial waste generated in the aromatics production process and determination of the best method for industrial waste management. For this purpose, all generated industrial waste during the production process was determined using a checklist. Four main industrial wastes were identified as follows: spent industrial soil, spent catalyst, spent molecular sieves and spent N-formyl morpholine (NFM) solvent. The amount of heavy metals and organic compounds in these wastes were further measured in order to identify the nature and toxicity of such a dangerous compound. Then industrial wastes were classified based on lab analysis results as well as using different international lists of hazardous waste identification such as EPA, UNEP and Basel Convention. Finally, the best method of waste disposal is selected based on environmental, economic and technical aspects.Keywords: aromatic compounds, industrial soil, molecular sieve, normal formyl morpholine solvent
Procedia PDF Downloads 2316316 Biomass Production Improvement of Beauveria bassiana at Laboratory Scale for a Biopesticide Development
Authors: G. Quiroga-Cubides, M. Cruz, E. Grijalba, J. Sanabria, A. Ceballos, L. García, M. Gómez
Abstract:
Beauveria sp. has been used as an entomopathogenic microorganism for biological control of various plant pests such as whitefly, thrips, aphids and chrysomelidaes (including Cerotoma tingomariana species), which affect soybean crops in Colombia´s Altillanura region. Therefore, a biopesticide prototype based on B. bassiana strain Bv060 was developed at Corpoica laboratories. For the production of B. bassiana conidia, a baseline fermentation was performed at laboratory in a solid medium using broken rice as a substrate, a temperature of 25±2 °C and a relative humidity of 60±10%. The experimental design was completely randomized, with a three-time repetition. These culture conditions resulted in an average conidial concentration of 1.48x10^10 conidia/g, a yield of 13.07 g/kg dry substrate and a productivity of 8.83x10^7 conidia/g*h were achieved. Consequently, the objective of this study was to evaluate the influence of the particle size reduction of rice (<1 mm) and the addition of a complex nitrogen source over conidia production and efficiency parameters in a solid-state fermentation, in a completely randomized experiment with a three-time repetition. For this aim, baseline fermentation conditions of temperature and humidity were employed in a semisolid culture medium with powdered rice (10%) and a complex nitrogen source (8%). As a result, it was possible to increase conidial concentration until 9.87x10^10 conidia/g, yield to 87.07 g/g dry substrate and productivity to 3.43x10^8 conidia/g*h. This suggested that conidial concentration and yield in semisolid fermentation increased almost 7 times compared with baseline while the productivity increased 4 times. Finally, the designed system for semisolid-state fermentation allowed to achieve an easy conidia recovery, which means reduction in time and costs of the production process.Keywords: Beauveria bassiana, biopesticide, solid state fermentation, semisolid medium culture
Procedia PDF Downloads 3016315 Process of Research, Development and Application of New Pelletizer
Authors: Ľubomír Šooš, Peter Križan, Juraj Beniak, Miloš Matúš
Abstract:
The success of introducing a new product on the market is the new principle of production, or progressive design, improved efficiency or high quality of manufactured products. Proportionally with the growth of interest in press-biofuels - pellets or briquettes, is also growing interest in the new design better, more efficiently machines produce pellets, briquettes or granules completely new shapes. Our department has for years dedicated to the development of new highly productive designs pressing machines and new optimized press-biofuels. In this field, we have more than 40 national and international patents. The aim of paper is description of the introduction of a new principle pelleting mill and the description of his process of research, development, manufacturing and testing to deployment into production.Keywords: compacting process, pellets mill, design, new conception, press-biofuels, patent, waste
Procedia PDF Downloads 3836314 Production of Fish Hydrolyzates by Single and Multiple Protease Treatments under Medium High Pressure of 300 MPa
Authors: Namsoo Kim, So-Hee Son, Jin-Soo Maeng, Yong-Jin Cho, Chong-Tai Kim
Abstract:
It has been reported that some enzymes such as trypsin and Alcalase 2.4L are tolerant to a medium high pressure of 300 MPa and preparation of protein hydrolyzates under 300 MPa was advantageous with regard to hydrolysis rate and thus production yield compared with the counterpart under ambient pressure.1,2) In this study, nine fish comprising halibut, soft shell clam and carp were hydrolyzed using Flavourzyme 500MG only, and the combination of Flavourzyme 500 mg, Alcalase 2.4 L, Marugoto E, and Protamex under 300 MPa. Then, the effects of single and multiple protease treatments were determined with respect to contents of soluble solid (SS) and soluble nitrogen, sensory attributes, electrophoretic profiles, and HPLC peak patterns of the fish hydrolyzates (FHs) from various species. The contents of SS of the FHs were quite species-specific and the hydrolyzates of halibut showed the highest SS contents. At this point, multiple protease treatment increased SS content conspicuously in all fish tested. The contents of total soluble nitrogen and TCA-soluble nitrogen were well correlated with those of SS irrespective of fish species and methods of enzyme treatment. Also, it was noticed that multiple protease treatment improved sensory attributes of the FHs considerably. Electropherograms of the FHs showed fast migrating peptide bands that had the molecular masses mostly lower than 1 kDa and this was confirmed by peptide patterns from HPLC analysis for some FHs that had good sensory quality.Keywords: production, fish hydrolyzates, protease treatments, high pressure
Procedia PDF Downloads 2836313 Impact of Unconventional Waters on Spirulina Production under Greenhouse Condition in Ouargla
Authors: Afaf Djaghoubi, Mustapha Daddi Bouhoun, Jr., Ali Seggai
Abstract:
The study of the habitat of Spirulina is the key to ensure the smooth running of its culture outside of its natural habitat. Our experimental work in the Ouargla basin which aims to study the Spirulina productivity cultivated under greenhouse in unconventional waters enriched and non-enriched, drainage and wastewater treated were used in the experiment. For this, we proceeded to measure the biomass concentration by the DO625. The high biomass concentration and productivity amount were in treated wastewater enriched with 2.49±1.09 and 0.12±0.57 respectively, while The high amount in drainage water were in medium enriched with 2.19 ± 0.85 g/l and 0.08±0.52 g/l/d respectively. In spite of the enrichment and the good productivity of these waters, the chemical and microbiological qualities remain to study for a better valuation.Keywords: Algeria, Ouargla, production, Spirulina, unconventional water
Procedia PDF Downloads 2956312 Experimental Validation of a Mathematical Model for Sizing End-of-Production-Line Test Benches for Electric Motors of Electric Vehicle
Authors: Emiliano Lustrissimi, Bonifacio Bianco, Sebastiano Caravaggi, Antonio Rosato
Abstract:
A mathematical framework has been designed to enhance the configuration of an end-of-production-line (EOL) test bench. This system can be used to assess the performance of electric motors or axles intended for electric vehicles. The model has been developed to predict the behaviour of EOL test benches and electric motors/axles under various boundary conditions, eliminating the need for extensive physical testing and reducing the corresponding power consumption. The suggested model is versatile, capable of being utilized across various types of electric motors or axles, and adaptable to accommodate varying power ratings of electric motors or axles. The maximum performance to be guaranteed by the EMs according to the car maker's specifications are taken as inputs in the model. Then, the required performance of each main EOL test bench component is calculated, and the corresponding systems available on the market are selected based on manufacturers’ catalogues. In this study, an EOL test bench has been designed according to the proposed model outputs for testing a low-power (about 22 kW) electric axle. The performance of the designed EOL test bench has been measured and used to validate the proposed model and assess both the consistency of the constraints as well as the accuracy of predictions in terms of electric demands. The comparison between experimental and predicted data exhibited a reasonable agreement, allowing to demonstrate that, despite some discrepancies, the model gives an accurate representation of the EOL test benches' performance.Keywords: electric motors, electric vehicles, end-of-production-line test bench, mathematical model, field tests
Procedia PDF Downloads 506311 Establishment of Thuja Label: Development Prospects for the Marketing Practices of the Handicraft of Essaouira's Marquetry
Authors: Fatima El Kandoussi, Lamiae El Hdiddioui, Mustapha Bouragba
Abstract:
The woodwork of thuja in Essaouira is one of the main crafts in Morocco. Certainly, marquetry reflects both cultural and artistic identity of the city, considering the talent and ancestral knowledge of craftsman working in marquetry. Yet, the production units encounter a considerable number of difficulties among which insufficiencies within marketing practices. Consequently, it is obvious that major improvements are needed, and supportive solutions must be provided in order to improve the Essaouira’s marquetry, as a symbol of the entire province. Thus, the establishment of Thuja Label is a necessary measure that would be the key to ensuring sustainability of this vital craft. The main purpose of this paper is to study marketing practices’ current state of the production units in the marquetry of Essaouira, therefore to recommend remedial actions likely to raise them up to the required functional level.Keywords: craft, marketing practices, marquetry, thuja label
Procedia PDF Downloads 1986310 Improvement in Drying Characteristics of Raisin by Carbonic Maceration– Process Optimization
Authors: Nursac Akyol, Merve S. Turan, Mustafa Ozcelik, Erdogan Kucukoner, Erkan Karacabey
Abstract:
Traditional raisin production is a long time drying process under sunlight. During this procedure, grapes are open to some environmental effects besides the adverse effects of the long drying period. Thus, there is a need to develop an alternative method being applicable instead of traditional one. To this extent, a combination of a potential pretreatment (carbonic maceration, CM) with convectional oven drying was examined. CM application was used in raisin production (grape drying) as a pretreatment process before oven drying. Pressure, temperature and time were examined as application parameters of CM. In conventional oven drying, the temperature is a process variable. The aim is to find out how CM and convectional drying processes affect the drying characteristics of grapes as well as their physical and chemical properties. For this purpose, the response surface method was used to determine both the effects of the variables and the optimum pretreatment and drying conditions. The optimum conditions of CM for raisin production were 0.3 MPa of pressure value, 4°C of application temperature and 8 hours of application time. The optimized drying temperature was 77°C. The results showed that the application of CM before the drying process improved the drying characteristics. Drying took only 389 minutes for grapes pretreated by CM under optimum conditions and 495 minutes for the control group dried only by the conventional drying process. According to these results, a decrease of 21% was achieved in the time requirement for raisin production. Also, it was observed that the samples dried under optimum conditions had similar physical properties as those the control group had. It was seen that raisin, which was dried under optimum conditions were in better condition in terms of some of the bioactive contents compared to control groups. In light of all results, it is seen that CM has an important potential in the industrial drying of grape samples. The current study was financially supported by TUBITAK, Turkey (Project no: 116R038).Keywords: drying time, pretreatment, response surface methodlogy, total phenolic
Procedia PDF Downloads 138