Search results for: biofuel production
6276 Procedure Model for Data-Driven Decision Support Regarding the Integration of Renewable Energies into Industrial Energy Management
Authors: M. Graus, K. Westhoff, X. Xu
Abstract:
The climate change causes a change in all aspects of society. While the expansion of renewable energies proceeds, industry could not be convinced based on general studies about the potential of demand side management to reinforce smart grid considerations in their operational business. In this article, a procedure model for a case-specific data-driven decision support for industrial energy management based on a holistic data analytics approach is presented. The model is executed on the example of the strategic decision problem, to integrate the aspect of renewable energies into industrial energy management. This question is induced due to considerations of changing the electricity contract model from a standard rate to volatile energy prices corresponding to the energy spot market which is increasingly more affected by renewable energies. The procedure model corresponds to a data analytics process consisting on a data model, analysis, simulation and optimization step. This procedure will help to quantify the potentials of sustainable production concepts based on the data from a factory. The model is validated with data from a printer in analogy to a simple production machine. The overall goal is to establish smart grid principles for industry via the transformation from knowledge-driven to data-driven decisions within manufacturing companies.Keywords: data analytics, green production, industrial energy management, optimization, renewable energies, simulation
Procedia PDF Downloads 4356275 Production and Market of Certified Organic Products in Thailand
Authors: Chaiwat Kongsom, Vitoon Panyakul
Abstract:
The objective of this study was to assess the production and market of certified organic products in Thailand. A purposive sampling technique was used to identify a sample group of 154 organic entrepreneurs for the study. A survey and in-depth interview were employed for data collection. Also, secondary data from organic agriculture certification body and publications was collected. Then descriptive statistics and content analysis technique were used to describe about production and market of certified organic products in Thailand. Results showed that there were 9,218 farmers on 213,183.68 Rai (83,309.2 acre) of certified organic agriculture land (0.29% of national agriculture land). A total of 57.8% of certified organic agricultural lands were certified by the international certification body. Organic farmers produced around 71,847 tons/year and worth around THB 1,914 million (Euro 47.92 million). Excluding primary producers, 471 operators involved in the Thai organic supply chains, including processors, exporters, distributors, green shops, modern trade shops (supermarket shop), farmer’s markets and food establishments were included. Export market was the major market channel and most of organic products were exported to Europe and North America. The total Thai organic market in 2014 was estimated to be worth around THB 2,331.55 million (Euro 58.22 million), of which, 77.9% was for export and 22.06% was for the domestic market. The largest exports of certified organic products were processed foods (66.1% of total export value), followed by organic rice (30.4%). In the domestic market, modern trade was the largest sale channel, accounting for 59.48% of total domestic sales, followed by green shop (29.47%) and food establishment (5.85%). To become a center of organic farming and trading within ASEAN, the Thai organic sector needs to have more policy support in regard to agricultural chemicals, GMO, and community land title. In addition, appropriate strategies need to be developed.Keywords: certified organic products, production, market, Thailand
Procedia PDF Downloads 3226274 Enabling Integrated Production of Electric Vehicles in Automotive Final Assembly: Realization of an Expert Study
Authors: Achim Kampker, Heiner Hans Heimes, Mathias Ordung, Jan-Philip Ganser
Abstract:
In the past years, the automotive industry has changed significantly. Innovative mobility concepts have become more important, and electric vehicles see a chance of replacing vehicles with combustion engines in the long term. However, the coming years will be characterized by coexistence. In this context, there are two possible production scenarios: One the one hand, electric vehicles could be manufactured in bespoke assembly lines. Concerning the uncertainty regarding sales figures development, this alternative boasts a high investment risk. Therefore, an integrated assembly building upon existing structures also seems a feasible solution. This empirical study aims at validating hypotheses concerning theoretical and practical challenges of the integrated production in the final assembly. In order to take a test of approaches of the research by analyzing censored feedback of professionals, these hypotheses are validated in the framework of an expert study. For this purpose, hypotheses have been generated on the basis of a requirements analysis and a concept specification. Thereupon, a list of question has been implemented and deduced from the hypotheses to execute an online- and written-survey and interviews with professionals. The interpretation and evaluation of the findings includes an inter-component comparison for the electric drivetrain. Furthermore, key drivers for a sufficient integrated product and process design are presented.Keywords: automotive industry, final assembly, integrated manufacturing, product and process development
Procedia PDF Downloads 3386273 Analysis of Human Toxicity Potential of Major Building Material Production Stage Using Life Cycle Assessment
Authors: Rakhyun Kim, Sungho Tae
Abstract:
Global environmental issues such as abnormal weathers due to global warming, resource depletion, and ecosystem distortions have been escalating due to rapid increase of population growth, and expansion of industrial and economic development. Accordingly, initiatives have been implemented by many countries to protect the environment through indirect regulation methods such as Environmental Product Declaration (EPD), in addition to direct regulations such as various emission standards. Following this trend, life cycle assessment (LCA) techniques that provide quantitative environmental information, such as Human Toxicity Potential (HTP), for buildings are being developed in the construction industry. However, at present, the studies on the environmental database of building materials are not sufficient to provide this support adequately. The purpose of this study is to analysis human toxicity potential of major building material production stage using life cycle assessment. For this purpose, the theoretical consideration of the life cycle assessment and environmental impact category was performed and the direction of the study was set up. That is, the major material in the global warming potential view was drawn against the building and life cycle inventory database was selected. The classification was performed about 17 kinds of substance and impact index, such as human toxicity potential, that it specifies in CML2001. The environmental impact of analysis human toxicity potential for the building material production stage was calculated through the characterization. Meanwhile, the environmental impact of building material in the same category was analyze based on the characterization impact which was calculated in this study. In this study, establishment of environmental impact coefficients of major building material by complying with ISO 14040. Through this, it is believed to effectively support the decisions of stakeholders to improve the environmental performance of buildings and provide a basis for voluntary participation of architects in environment consideration activities.Keywords: human toxicity potential, major building material, life cycle assessment, production stage
Procedia PDF Downloads 1396272 Estimation of Hydrogen Production from PWR Spent Fuel Due to Alpha Radiolysis
Authors: Sivakumar Kottapalli, Abdesselam Abdelouas, Christoph Hartnack
Abstract:
Spent nuclear fuel generates a mixed field of ionizing radiation to the water. This radiation field is generally dominated by gamma rays and a limited flux of fast neutrons. The fuel cladding effectively attenuates beta and alpha particle radiation. Small fraction of the spent nuclear fuel exhibits some degree of fuel cladding penetration due to pitting corrosion and mechanical failure. Breaches in the fuel cladding allow the exposure of small volumes of water in the cask to alpha and beta ionizing radiation. The safety of the transport of radioactive material is assured by the package complying with the IAEA Requirements for the Safe Transport of Radioactive Material SSR-6. It is of high interest to avoid generation of hydrogen inside the cavity which may to an explosive mixture. The risk of hydrogen production along with other radiation gases should be analyzed for a typical spent fuel for safety issues. This work aims to perform a realistic study of the production of hydrogen by radiolysis assuming most penalizing initial conditions. It consists in the calculation of the radionuclide inventory of a pellet taking into account the burn up and decays. Westinghouse 17X17 PWR fuel has been chosen and data has been analyzed for different sets of enrichment, burnup, cycles of irradiation and storage conditions. The inventory is calculated as the entry point for the simulation studies of hydrogen production by radiolysis kinetic models by MAKSIMA-CHEMIST. Dose rates decrease strongly within ~45 μm from the fuel surface towards the solution(water) in case of alpha radiation, while the dose rate decrease is lower in case of beta and even slower in case of gamma radiation. Calculations are carried out to obtain spectra as a function of time. Radiation dose rate profiles are taken as the input data for the iterative calculations. Hydrogen yield has been found to be around 0.02 mol/L. Calculations have been performed for a realistic scenario considering a capsule containing the spent fuel rod. Thus, hydrogen yield has been debated. Experiments are under progress to validate the hydrogen production rate using cyclotron at > 5MeV (at ARRONAX, Nantes).Keywords: radiolysis, spent fuel, hydrogen, cyclotron
Procedia PDF Downloads 5216271 Qualitative and Quantitative Characterization of Generated Waste in Nouri Petrochemical Complex, Assaluyeh, Iran
Authors: L. Heidari, M. Jalili Ghazizade
Abstract:
In recent years, different petrochemical complexes have been established to produce aromatic compounds. Among them, Nouri Petrochemical Complex (NPC) is the largest producer of aromatic raw materials in the world, and is located in south of Iran. Environmental concerns have been raised in this region due to generation of different types of solid waste generated in the process of aromatics production, and subsequently, industrial waste characterization has been thoroughly considered. The aim of this study is qualitative and quantitative characterization of industrial waste generated in the aromatics production process and determination of the best method for industrial waste management. For this purpose, all generated industrial waste during the production process was determined using a checklist. Four main industrial wastes were identified as follows: spent industrial soil, spent catalyst, spent molecular sieves and spent N-formyl morpholine (NFM) solvent. The amount of heavy metals and organic compounds in these wastes were further measured in order to identify the nature and toxicity of such a dangerous compound. Then industrial wastes were classified based on lab analysis results as well as using different international lists of hazardous waste identification such as EPA, UNEP and Basel Convention. Finally, the best method of waste disposal is selected based on environmental, economic and technical aspects.Keywords: aromatic compounds, industrial soil, molecular sieve, normal formyl morpholine solvent
Procedia PDF Downloads 2316270 Biomass Production Improvement of Beauveria bassiana at Laboratory Scale for a Biopesticide Development
Authors: G. Quiroga-Cubides, M. Cruz, E. Grijalba, J. Sanabria, A. Ceballos, L. García, M. Gómez
Abstract:
Beauveria sp. has been used as an entomopathogenic microorganism for biological control of various plant pests such as whitefly, thrips, aphids and chrysomelidaes (including Cerotoma tingomariana species), which affect soybean crops in Colombia´s Altillanura region. Therefore, a biopesticide prototype based on B. bassiana strain Bv060 was developed at Corpoica laboratories. For the production of B. bassiana conidia, a baseline fermentation was performed at laboratory in a solid medium using broken rice as a substrate, a temperature of 25±2 °C and a relative humidity of 60±10%. The experimental design was completely randomized, with a three-time repetition. These culture conditions resulted in an average conidial concentration of 1.48x10^10 conidia/g, a yield of 13.07 g/kg dry substrate and a productivity of 8.83x10^7 conidia/g*h were achieved. Consequently, the objective of this study was to evaluate the influence of the particle size reduction of rice (<1 mm) and the addition of a complex nitrogen source over conidia production and efficiency parameters in a solid-state fermentation, in a completely randomized experiment with a three-time repetition. For this aim, baseline fermentation conditions of temperature and humidity were employed in a semisolid culture medium with powdered rice (10%) and a complex nitrogen source (8%). As a result, it was possible to increase conidial concentration until 9.87x10^10 conidia/g, yield to 87.07 g/g dry substrate and productivity to 3.43x10^8 conidia/g*h. This suggested that conidial concentration and yield in semisolid fermentation increased almost 7 times compared with baseline while the productivity increased 4 times. Finally, the designed system for semisolid-state fermentation allowed to achieve an easy conidia recovery, which means reduction in time and costs of the production process.Keywords: Beauveria bassiana, biopesticide, solid state fermentation, semisolid medium culture
Procedia PDF Downloads 3016269 Process of Research, Development and Application of New Pelletizer
Authors: Ľubomír Šooš, Peter Križan, Juraj Beniak, Miloš Matúš
Abstract:
The success of introducing a new product on the market is the new principle of production, or progressive design, improved efficiency or high quality of manufactured products. Proportionally with the growth of interest in press-biofuels - pellets or briquettes, is also growing interest in the new design better, more efficiently machines produce pellets, briquettes or granules completely new shapes. Our department has for years dedicated to the development of new highly productive designs pressing machines and new optimized press-biofuels. In this field, we have more than 40 national and international patents. The aim of paper is description of the introduction of a new principle pelleting mill and the description of his process of research, development, manufacturing and testing to deployment into production.Keywords: compacting process, pellets mill, design, new conception, press-biofuels, patent, waste
Procedia PDF Downloads 3836268 Production of Fish Hydrolyzates by Single and Multiple Protease Treatments under Medium High Pressure of 300 MPa
Authors: Namsoo Kim, So-Hee Son, Jin-Soo Maeng, Yong-Jin Cho, Chong-Tai Kim
Abstract:
It has been reported that some enzymes such as trypsin and Alcalase 2.4L are tolerant to a medium high pressure of 300 MPa and preparation of protein hydrolyzates under 300 MPa was advantageous with regard to hydrolysis rate and thus production yield compared with the counterpart under ambient pressure.1,2) In this study, nine fish comprising halibut, soft shell clam and carp were hydrolyzed using Flavourzyme 500MG only, and the combination of Flavourzyme 500 mg, Alcalase 2.4 L, Marugoto E, and Protamex under 300 MPa. Then, the effects of single and multiple protease treatments were determined with respect to contents of soluble solid (SS) and soluble nitrogen, sensory attributes, electrophoretic profiles, and HPLC peak patterns of the fish hydrolyzates (FHs) from various species. The contents of SS of the FHs were quite species-specific and the hydrolyzates of halibut showed the highest SS contents. At this point, multiple protease treatment increased SS content conspicuously in all fish tested. The contents of total soluble nitrogen and TCA-soluble nitrogen were well correlated with those of SS irrespective of fish species and methods of enzyme treatment. Also, it was noticed that multiple protease treatment improved sensory attributes of the FHs considerably. Electropherograms of the FHs showed fast migrating peptide bands that had the molecular masses mostly lower than 1 kDa and this was confirmed by peptide patterns from HPLC analysis for some FHs that had good sensory quality.Keywords: production, fish hydrolyzates, protease treatments, high pressure
Procedia PDF Downloads 2836267 Impact of Unconventional Waters on Spirulina Production under Greenhouse Condition in Ouargla
Authors: Afaf Djaghoubi, Mustapha Daddi Bouhoun, Jr., Ali Seggai
Abstract:
The study of the habitat of Spirulina is the key to ensure the smooth running of its culture outside of its natural habitat. Our experimental work in the Ouargla basin which aims to study the Spirulina productivity cultivated under greenhouse in unconventional waters enriched and non-enriched, drainage and wastewater treated were used in the experiment. For this, we proceeded to measure the biomass concentration by the DO625. The high biomass concentration and productivity amount were in treated wastewater enriched with 2.49±1.09 and 0.12±0.57 respectively, while The high amount in drainage water were in medium enriched with 2.19 ± 0.85 g/l and 0.08±0.52 g/l/d respectively. In spite of the enrichment and the good productivity of these waters, the chemical and microbiological qualities remain to study for a better valuation.Keywords: Algeria, Ouargla, production, Spirulina, unconventional water
Procedia PDF Downloads 2956266 Experimental Validation of a Mathematical Model for Sizing End-of-Production-Line Test Benches for Electric Motors of Electric Vehicle
Authors: Emiliano Lustrissimi, Bonifacio Bianco, Sebastiano Caravaggi, Antonio Rosato
Abstract:
A mathematical framework has been designed to enhance the configuration of an end-of-production-line (EOL) test bench. This system can be used to assess the performance of electric motors or axles intended for electric vehicles. The model has been developed to predict the behaviour of EOL test benches and electric motors/axles under various boundary conditions, eliminating the need for extensive physical testing and reducing the corresponding power consumption. The suggested model is versatile, capable of being utilized across various types of electric motors or axles, and adaptable to accommodate varying power ratings of electric motors or axles. The maximum performance to be guaranteed by the EMs according to the car maker's specifications are taken as inputs in the model. Then, the required performance of each main EOL test bench component is calculated, and the corresponding systems available on the market are selected based on manufacturers’ catalogues. In this study, an EOL test bench has been designed according to the proposed model outputs for testing a low-power (about 22 kW) electric axle. The performance of the designed EOL test bench has been measured and used to validate the proposed model and assess both the consistency of the constraints as well as the accuracy of predictions in terms of electric demands. The comparison between experimental and predicted data exhibited a reasonable agreement, allowing to demonstrate that, despite some discrepancies, the model gives an accurate representation of the EOL test benches' performance.Keywords: electric motors, electric vehicles, end-of-production-line test bench, mathematical model, field tests
Procedia PDF Downloads 506265 Establishment of Thuja Label: Development Prospects for the Marketing Practices of the Handicraft of Essaouira's Marquetry
Authors: Fatima El Kandoussi, Lamiae El Hdiddioui, Mustapha Bouragba
Abstract:
The woodwork of thuja in Essaouira is one of the main crafts in Morocco. Certainly, marquetry reflects both cultural and artistic identity of the city, considering the talent and ancestral knowledge of craftsman working in marquetry. Yet, the production units encounter a considerable number of difficulties among which insufficiencies within marketing practices. Consequently, it is obvious that major improvements are needed, and supportive solutions must be provided in order to improve the Essaouira’s marquetry, as a symbol of the entire province. Thus, the establishment of Thuja Label is a necessary measure that would be the key to ensuring sustainability of this vital craft. The main purpose of this paper is to study marketing practices’ current state of the production units in the marquetry of Essaouira, therefore to recommend remedial actions likely to raise them up to the required functional level.Keywords: craft, marketing practices, marquetry, thuja label
Procedia PDF Downloads 1986264 Improvement in Drying Characteristics of Raisin by Carbonic Maceration– Process Optimization
Authors: Nursac Akyol, Merve S. Turan, Mustafa Ozcelik, Erdogan Kucukoner, Erkan Karacabey
Abstract:
Traditional raisin production is a long time drying process under sunlight. During this procedure, grapes are open to some environmental effects besides the adverse effects of the long drying period. Thus, there is a need to develop an alternative method being applicable instead of traditional one. To this extent, a combination of a potential pretreatment (carbonic maceration, CM) with convectional oven drying was examined. CM application was used in raisin production (grape drying) as a pretreatment process before oven drying. Pressure, temperature and time were examined as application parameters of CM. In conventional oven drying, the temperature is a process variable. The aim is to find out how CM and convectional drying processes affect the drying characteristics of grapes as well as their physical and chemical properties. For this purpose, the response surface method was used to determine both the effects of the variables and the optimum pretreatment and drying conditions. The optimum conditions of CM for raisin production were 0.3 MPa of pressure value, 4°C of application temperature and 8 hours of application time. The optimized drying temperature was 77°C. The results showed that the application of CM before the drying process improved the drying characteristics. Drying took only 389 minutes for grapes pretreated by CM under optimum conditions and 495 minutes for the control group dried only by the conventional drying process. According to these results, a decrease of 21% was achieved in the time requirement for raisin production. Also, it was observed that the samples dried under optimum conditions had similar physical properties as those the control group had. It was seen that raisin, which was dried under optimum conditions were in better condition in terms of some of the bioactive contents compared to control groups. In light of all results, it is seen that CM has an important potential in the industrial drying of grape samples. The current study was financially supported by TUBITAK, Turkey (Project no: 116R038).Keywords: drying time, pretreatment, response surface methodlogy, total phenolic
Procedia PDF Downloads 1386263 Institutional and Technological Factors Influencing the Adoption of Tenera Oil Palm Practices: Gender Analysis Smallholder Farmers in Edo State, Nigeria
Authors: Cornelius Michael Ekenta
Abstract:
The study determined institutional and technological factors that influence the adoption of tenera oil palm production practices with a gender dimension among smallholder farmers in Edo State, Nigeria. Primary data were generated with use of questionnaire administered to 155 males and 137 female respondents. Results show that the level of adoption of tenera oil palm production practices was low for both male and females. Tobi regression result shows that land ownership structure and affordability at 1% significance influenced male adoption of tenera oil palm production practices while age and level of income at 1% significance influenced female in the adoption. The major roles of male as reported in adopting process were purchase of seedlings, clearing of bush for planting and selling of cut bunches while the major roles of female were periodic weeding, gathering of cut bunches and mulching of palm field. The major constraint faced by male in adoption process were high cost of labour while for females is drudgery nature of the work. The study recommended that the Land Use Act of 1978 should be enforced to help women and non-indigenes to have sizeable farm lands, Government should empower Agricultural Development Programme (ADP) by employing more extension personnel to increase their contacts with the farmers.Keywords: gender, adoption, variety, oil, tenera, Edo
Procedia PDF Downloads 816262 Eco-Entrepreneurship: Practice Examples both in the World and Turkey
Authors: O. Esmen, A. Beduk, K. Eryesil, F. Karacelebi
Abstract:
Entrepreneurship is crucial for the economy of countries in development of economy, creating new jobs and increasing employment; therefore improving welfare and a modern point of view in the society. In the development of a country encouragement of entrepreneurship and entrepreneurial qualities also play a paramount role. The increase in the world population results in more production, which brings excessive use of resources and inevitably shortage of them. In addition to this; development in technology, mismanagement in production and deficiency of waste system cause negative effects on the environmental ecological balance. Nowadays, with the societies getting awareness of environment while buying products and services, they prefer companies which are careful about environment. And as a result of this, ecoentrepreneurship gains importance. In this study; ecoentrepreneurship, which we think will gain more importance in the world and Turkey, is presented with the examples from the world and Turkey.Keywords: ecoentrepreneurship, entrepreneurship, environmental awareness, development of economy
Procedia PDF Downloads 2616261 Molecular Farming: Plants Producing Vaccine and Diagnostic Reagent
Authors: Katerina H. Takova, Ivan N. Minkov, Gergana G. Zahmanova
Abstract:
Molecular farming is the production of recombinant proteins in plants with the aim to use the protein as a purified product, crude extract or directly in the planta. Plants gain more attention as expression systems compared to other ones due to the cost effective production of pharmaceutically important proteins, appropriate post-translational modifications, assembly of complex proteins, absence of human pathogens to name a few. In addition, transient expression in plant leaves enables production of recombinant proteins within few weeks. Hepatitis E virus (HEV) is a causative agent of acute hepatitis. HEV causes epidemics in developing countries and is primarily transmitted through the fecal-oral route. Presently, all efforts for development of Hepatitis E vaccine are focused on the Open Read Frame 2 (ORF2) capsid protein as it contains epitopes that can induce neutralizing antibodies. For our purpose, we used the CMPV-based vector-pEAQ-HT for transient expression of HEV ORF2 in Nicotiana benthamina. Different molecular analysis (Western blot and ELISA) showed that HEV ORF2 capsid protein was expressed in plant tissue in high-yield up to 1g/kg of fresh leaf tissue. Electron microscopy showed that the capsid protein spontaneously assembled in low abundance virus-like particles (VLPs), which are highly immunogenic structures and suitable for vaccine development. The expressed protein was recognized by both human and swine HEV positive sera and can be used as a diagnostic reagent for the detection of HEV infection. Production of HEV capsid protein in plants is a promising technology for further HEV vaccine investigations. Here, we reported for a rapid high-yield transient expression of a recombinant protein in plants suitable for vaccine production as well as a diagnostic reagent. Acknowledgments -The authors’ research on HEV is supported with grants from the Project PlantaSYST under the Widening Program, H2020 as well as under the UK Biotechnological and Biological Sciences Research Council (BBSRC) Institute Strategic Programme Grant ‘Understanding and Exploiting Plant and Microbial Secondary Metabolism’ (BB/J004596/1). The authors want to thank Prof. George Lomonossoff (JIC, Norwich, UK) for his contribution.Keywords: hepatitis E virus, plant molecular farming, transient expression, vaccines
Procedia PDF Downloads 1516260 Intelligent Chemistry Approach to Improvement of Oxygenates Analytical Method in Light Hydrocarbon by Multidimensional Gas Chromatography - FID and MS
Authors: Ahmed Aboforn
Abstract:
Butene-1 product is consider effectively raw material in Polyethylene production, however Oxygenates impurities existing will be effected ethylene/butene-1 copolymers synthesized through titanium-magnesium-supported Ziegler-Natta catalysts. Laterally, Petrochemical industries are challenge against poor quality of Butene-1 and other C4 mix – feedstock that reflected on business impact and production losing. In addition, propylene product suffering from contamination by oxygenates components and causing for lose production and plant upset of Polypropylene process plants. However, Multidimensional gas chromatography (MDGC) innovative analytical methodology is a chromatography technique used to separate complex samples, as mixing different functional group as Hydrocarbon and oxygenates compounds and have similar retention factors, by running the eluent through two or more columns instead of the customary single column. This analytical study striving to enhance the quality of Oxygenates analytical method, as monitoring the concentration of oxygenates with accurate and precise analytical method by utilizing multidimensional GC supported by Backflush technique and Flame Ionization Detector, which have high performance separation of hydrocarbon and Oxygenates; also improving the minimum detection limits (MDL) to detect the concentration <1.0 ppm. However different types of oxygenates as (Alcohols, Aldehyde, Ketones, Ester and Ether) may be determined in other Hydrocarbon streams asC3, C4-mix, until C12 mixture, supported by liquid injection auto-sampler.Keywords: analytical chemistry, gas chromatography, petrochemicals, oxygenates
Procedia PDF Downloads 836259 Simulation-based Decision Making on Intra-hospital Patient Referral in a Collaborative Medical Alliance
Authors: Yuguang Gao, Mingtao Deng
Abstract:
The integration of independently operating hospitals into a unified healthcare service system has become a strategic imperative in the pursuit of hospitals’ high-quality development. Central to the concept of group governance over such transformation, exemplified by a collaborative medical alliance, is the delineation of shared value, vision, and goals. Given the inherent disparity in capabilities among hospitals within the alliance, particularly in the treatment of different diseases characterized by Disease Related Groups (DRG) in terms of effectiveness, efficiency and resource utilization, this study aims to address the centralized decision-making of intra-hospital patient referral within the medical alliance to enhance the overall production and quality of service provided. We first introduce the notion of production utility, where a higher production utility for a hospital implies better performance in treating patients diagnosed with that specific DRG group of diseases. Then, a Discrete-Event Simulation (DES) framework is established for patient referral among hospitals, where patient flow modeling incorporates a queueing system with fixed capacities for each hospital. The simulation study begins with a two-member alliance. The pivotal strategy examined is a "whether-to-refer" decision triggered when the bed usage rate surpasses a predefined threshold for either hospital. Then, the decision encompasses referring patients to the other hospital based on DRG groups’ production utility differentials as well as bed availability. The objective is to maximize the total production utility of the alliance while minimizing patients’ average length of stay and turnover rate. Thus the parameter under scrutiny is the bed usage rate threshold, influencing the efficacy of the referral strategy. Extending the study to a three-member alliance, which could readily be generalized to multi-member alliances, we maintain the core setup while introducing an additional “which-to-refer" decision that involves referring patients with specific DRG groups to the member hospital according to their respective production utility rankings. The overarching goal remains consistent, for which the bed usage rate threshold is once again a focal point for analysis. For the two-member alliance scenario, our simulation results indicate that the optimal bed usage rate threshold hinges on the discrepancy in the number of beds between member hospitals, the distribution of DRG groups among incoming patients, and variations in production utilities across hospitals. Transitioning to the three-member alliance, we observe similar dependencies on these parameters. Additionally, it becomes evident that an imbalanced distribution of DRG diagnoses and further disparity in production utilities among member hospitals may lead to an increase in the turnover rate. In general, it was found that the intra-hospital referral mechanism enhances the overall production utility of the medical alliance compared to individual hospitals without partnership. Patients’ average length of stay is also reduced, showcasing the positive impact of the collaborative approach. However, the turnover rate exhibits variability based on parameter setups, particularly when patients are redirected within the alliance. In conclusion, the re-structuring of diagnostic disease groups within the medical alliance proves instrumental in improving overall healthcare service outcomes, providing a compelling rationale for the government's promotion of patient referrals within collaborative medical alliances.Keywords: collaborative medical alliance, disease related group, patient referral, simulation
Procedia PDF Downloads 586258 Optimum Turbomachine Preliminary Selection for Power Regeneration in Vapor Compression Cool Production Plants
Authors: Sayyed Benyamin Alavi, Giovanni Cerri, Leila Chennaoui, Ambra Giovannelli, Stefano Mazzoni
Abstract:
Primary energy consumption and emissions of pollutants (including CO2) sustainability call to search methodologies to lower power absorption for unit of a given product. Cool production plants based on vapour compression are widely used for many applications: air conditioning, food conservation, domestic refrigerators and freezers, special industrial processes, etc. In the field of cool production, the amount of Yearly Consumed Primary Energy is enormous, thus, saving some percentage of it, leads to big worldwide impact in the energy consumption and related energy sustainability. Among various techniques to reduce power required by a Vapour Compression Cool Production Plant (VCCPP), the technique based on Power Regeneration by means of Internal Direct Cycle (IDC) will be considered in this paper. Power produced by IDC reduces power need for unit of produced Cool Power by the VCCPP. The paper contains basic concepts that lead to develop IDCs and the proposed options to use the IDC Power. Among various selections for using turbo machines, Best Economically Available Technologies (BEATs) have been explored. Based on vehicle engine turbochargers, they have been taken into consideration for this application. According to BEAT Database and similarity rules, the best turbo machine selection leads to the minimum nominal power required by VCCPP Main Compressor. Results obtained installing the prototype in “ad hoc” designed test bench will be discussed and compared with the expected performance. Forecasts for the upgrading VCCPP, various applications will be given and discussed. 4-6% saving is expected for air conditioning cooling plants and 15-22% is expected for cryogenic plants.Keywords: Refrigeration Plant, Vapour Pressure Amplifier, Compressor, Expander, Turbine, Turbomachinery Selection, Power Saving
Procedia PDF Downloads 4266257 A Reactive Flexible Job Shop Scheduling Model in a Stochastic Environment
Authors: Majid Khalili, Hamed Tayebi
Abstract:
This paper considers a stochastic flexible job-shop scheduling (SFJSS) problem in the presence of production disruptions, and reactive scheduling is implemented in order to find the optimal solution under uncertainty. In this problem, there are two main disruptions including machine failure which influences operation time, and modification or cancellation of the order delivery date during production. In order to decrease the negative effects of these difficulties, two derived strategies from reactive scheduling are used; the first one is relevant to being able to allocate multiple machine to each job, and the other one is related to being able to select the best alternative process from other job while some disruptions would be created in the processes of a job. For this purpose, a Mixed Integer Linear Programming model is proposed.Keywords: flexible job-shop scheduling, reactive scheduling, stochastic environment, mixed integer linear programming
Procedia PDF Downloads 3606256 Biogas Control: Methane Production Monitoring Using Arduino
Authors: W. Ait Ahmed, M. Aggour, M. Naciri
Abstract:
Extracting energy from biomass is an important alternative to produce different types of energy (heat, electricity, or both) assuring low pollution and better efficiency. It is a new yet reliable approach to reduce green gas emission by extracting methane from industry effluents and use it to power machinery. We focused in our project on using paper and mill effluents, treated in a UASB reactor. The methane produced is used in the factory’s power supply. The aim of this work is to develop an electronic system using Arduino platform connected to a gas sensor, to measure and display the curve of daily methane production on processing. The sensor will send the gas values in ppm to the Arduino board so that the later sends the RS232 hardware protocol. The code developed with processing will transform the values into a curve and display it on the computer screen.Keywords: biogas, Arduino, processing, code, methane, gas sensor, program
Procedia PDF Downloads 3216255 Modeling of the Thermal Exchanges of an Intelligent Polymer Film for the Development of New Generations of Greenhouses
Authors: Ziani Zakarya, Mahdad Moustafa Yassine
Abstract:
Greenhouse farming has greatly contributed to the development of modern agriculture by optimizing crops, especially market gardening, ornamental horticulture, and recently, fruit species ... Greenhouse cultivation has enabled farmers to produce fruits and vegetables out of season while guaranteeing them a good production, and therefore a considerable gain throughout the year. However, this mode of production has shown its limits, especially in extreme conditions, such as the continental steppe climate and the Saharan climate, which are characterized by significant thermal amplitudes and strong winds, making it impossible to use conventional greenhouses for several months, of the year. In Algeria and precisely in the highlands, the use of greenhouses by farmers is very rare or occasional, especially in spring, because the limiting factors mentioned above are frequent there, causing significant damage to the plant product and to the environment. infrastructure. The same observation is observed in the Saharan regions but with less frequencies. Certainly, the use of controlled multi-chapel greenhouses would solve the problem, but at what cost? These hi-tech infrastructures are very expensive to purchase but also to maintain, so few farmers have the financial means to obtain them. In addition, the existence of intelligent and less expensive polymer films, whose properties could control greenhouse production parameters, in particular, the temperature parameter, maybe a judicious solution for the development of new generations of greenhouses that can be used in extreme conditions and normal.Keywords: greenhouse, polymer film, modern agriculture, optimizing crops
Procedia PDF Downloads 1786254 Impact of Land Ownership on Rangeland Condition in the Gauteng Province, South Africa
Authors: N. L. Letsoalo, H. T. Pule, J. T. Tjelele, N. R. Mkhize, K. R. Mbatha
Abstract:
Rangelands are major feed resource for livestock farming in South Africa, despite being subjected to different forms of degradation. These forms of degradation are as a result of inappropriate veld and livestock management practices such as excessive stocking rates. While information on judicious veld management is available, adoption of appropriate practices is still unsatisfactory and seems to depend partly on the type of land ownership of farmers. The objectives of this study were to; (I) compare rangeland condition (species richness, basal cover, veld condition score, and herbaceous biomass) among three land ownership types (leased land, communal land and private land), and (II) determine the relationships between veld condition score (%) and herbaceous biomass (kg DM/ha) production. Vegetation was assessed at fifty farms under different land use types using nearest plant technique. Grass species composition and forage value were estimated using PROC FREQ procedure of SAS 9.3. A one-way ANOVA was used to determine significant differences (P < 0.05) in species richness, basal cover, veld condition (%) large stock units, grazing capacity and herbaceous biomass production among the three grazing systems. A total of 28 grass species were identified, of which 95% and 5% were perennials and annuals, respectively. The most commonly distributed and highly palatable grass species, Digitaria eriantha had significantly higher frequency under private owned lands (32.3 %) compared to communal owned lands (12.3%). There were no significant difference on grass species richness and basal cover among land ownership types (P > 0.05). There were significant differences on veld condition score and biomass production (P < 0.05). Private lands had significantly higher (69.63%) veld condition score than leased (56.07%) and communal lands (52.55%). Biomass production was significantly higher (± S.E.) 2990.30 ± 214 kg DM/ha on private owned lands, compared to leased lands 2069.85 ± 196 kg DM/ha and communal lands 1331.04 ± 102 kg DM/ha. Biomass production was positively correlated with rangeland condition (r = 0.895; P < 0.005). These results suggest that rangeland conditions on communal and leased lands are in poor condition than those on private lands. More research efforts are needed to improve management of rangelands in communal and leased land in Gauteng province.Keywords: grazing, herbaceous biomass, management practices, species richness
Procedia PDF Downloads 1676253 Development of Strategy for Enhanced Production of Industrial Enzymes by Microscopic Fungi in Submerged Fermentation
Authors: Zhanara Suleimenova, Raushan Blieva, Aigerim Zhakipbekova, Inkar Tapenbayeva, Zhanar Narmuratova
Abstract:
Green processes are based on innovative technologies that do not negatively affect the environment. Industrial enzymes originated from biological systems can effectively contribute to sustainable development through being isolated from microorganisms which are fermented using primarily renewable resources. Many widespread microorganisms secrete a significant amount of biocatalysts into the environment, which greatly facilitates the task of their isolation and purification. The ability to control the enzyme production through the regulation of their biosynthesis and the selection of nutrient media and cultivation conditions allows not only to increase the yield of enzymes but also to obtain enzymes with certain properties. In this regard, large potentialities are embedded in immobilized cells. Enzyme production technology in a secreted active form enabling industrial application on an economically feasible scale has been developed. This method is based on the immobilization of enzyme producers on a solid career. Immobilizing has a range of advantages: decreasing the price of the final product, absence of foreign substances, controlled process of enzyme-genesis, the ability of various enzymes' simultaneous production, etc. Design of proposed equipment gives the opportunity to increase the activity of immobilized cell culture filtrate comparing to free cells, growing in periodic culture conditions. Such technology allows giving a 10-times raise in culture productivity, to prolong the process of fungi cultivation and periods of active culture liquid generation. Also, it gives the way to improve the quality of filtrates (to make them more clear) and exclude time-consuming processes of recharging fermentative vials, that require manual removing of mycelium.Keywords: industrial enzymes, immobilization, submerged fermentation, microscopic fungi
Procedia PDF Downloads 1416252 Reducing Inventory Costs by Reducing Inventory Levels: Kuwait Flour Mills and Bakeries Company
Authors: Dana Al-Qattan, Faiza Goodarzi, Heba Al-Resheedan, Kawther Shehab, Shoug Al-Ansari
Abstract:
This project involves working with different types of forecasting methods and facility planning tools to help the company we have chosen to improve and reduce its inventory, increase its sales, and decrease its wastes and losses. The methods that have been used by the company have shown no improvement in decreasing the annual losses. The research made in the company has shown that no interest has been made in exploring different techniques to help the company. In this report, we introduce several methods and techniques that will help the company make more accurate forecasts and use of the available space efficiently. We expect our approach to reduce costs without affecting the quality of the product, and hence making production more viable.Keywords: production planning, inventory management, inventory control, simulation, facility planning and design, engineering economy and costs
Procedia PDF Downloads 5706251 The Role of Biosecurity in Sustainable Aquaculture
Authors: Barbara Montwill
Abstract:
The last three decades of continuing increase in the farming of aquatic animals worldwide placed a biosecurity in a different perspective. An introduction of new countries, technologies, species to aquaculture, increased movement of animals are a few factors the might be associated with biosecurity risks. Most farms depend on trade for various inputs such as broodstock, post-larvae/fingerlings and feed. These inputs represent potential pathways by which pathogens can enter farming operations and create conditions for emergence of new or reoccurrence of diseases and production loses. Farm biosecurity should be considered an essential component of a national aquatic animal biosecurity program and together with adequate import and export controls can lead to the development of successful aquaculture industry as a reliable source of safe seafood product. This presentation would describe some biosecurity management approaches to minimize the negative impact of aquatic diseases on production and preserve the power of antibiotics.Keywords: aquaculture, biosecurity, antibiotics, antibiotics residues
Procedia PDF Downloads 2806250 Dairy Value Chain: Assessing the Inter Linkage of Dairy Farm and Small-Scale Dairy Processing in Tigray: Case Study of Mekelle City
Authors: Weldeabrha Kiros Kidanemaryam, DepaTesfay Kelali Gidey, Yikaalo Welu Kidanemariam
Abstract:
Dairy services are considered as sources of income, employment, nutrition and health for smallholder rural and urban farmers. The main objective of this study is to assess the interlinkage of dairy farms and small-scale dairy processing in Mekelle, Tigray. To achieve the stated objective, a descriptive research approach was employed where data was collected from 45 dairy farmers and 40 small-scale processors and analyzed by calculating the mean values and percentages. Findings show that the dairy business in the study area is characterized by a shortage of feed and water for the farm. The dairy farm is dominated by breeds of hybrid type, followed by the so called ‘begait’. Though the farms have access to medication and vaccination for the cattle, they fell short of hygiene practices, reliable shade for the cattle and separate space for the claves. The value chain at the milk production stage is characterized by a low production rate, selling raw milk without adding value and a very meager traditional processing practice. Furthermore, small-scale milk processors are characterized by collecting milk from farmers and producing cheese, butter, ghee and sour milk. They do not engage in modern milk processing like pasteurized milk, yogurt and table butter. Most small-scale milk processors are engaged in traditional production systems. Additionally, the milk consumption and marketing part of the chain is dominated by the informal market (channel), where market problems, lack of skill and technology, shortage of loans and weak policy support are being faced as the main challenges. Based on the findings, recommendations and future research areas are forwarded.Keywords: value-chain, dairy, milk production, milk processing
Procedia PDF Downloads 326249 A Multi-Objective Decision Making Model for Biodiversity Conservation and Planning: Exploring the Concept of Interdependency
Authors: M. Mohan, J. P. Roise, G. P. Catts
Abstract:
Despite living in an era where conservation zones are de-facto the central element in any sustainable wildlife management strategy, we still find ourselves grappling with several pareto-optimal situations regarding resource allocation and area distribution for the same. In this paper, a multi-objective decision making (MODM) model is presented to answer the question of whether or not we can establish mutual relationships between these contradicting objectives. For our study, we considered a Red-cockaded woodpecker (Picoides borealis) habitat conservation scenario in the coastal plain of North Carolina, USA. Red-cockaded woodpecker (RCW) is a non-migratory territorial bird that excavates cavities in living pine trees for roosting and nesting. The RCW groups nest in an aggregation of cavity trees called ‘cluster’ and for our model we use the number of clusters to be established as a measure of evaluating the size of conservation zone required. The case study is formulated as a linear programming problem and the objective function optimises the Red-cockaded woodpecker clusters, carbon retention rate, biofuel, public safety and Net Present Value (NPV) of the forest. We studied the variation of individual objectives with respect to the amount of area available and plotted a two dimensional dynamic graph after establishing interrelations between the objectives. We further explore the concept of interdependency by integrating the MODM model with GIS, and derive a raster file representing carbon distribution from the existing forest dataset. Model results demonstrate the applicability of interdependency from both linear and spatial perspectives, and suggest that this approach holds immense potential for enhancing environmental investment decision making in future.Keywords: conservation, interdependency, multi-objective decision making, red-cockaded woodpecker
Procedia PDF Downloads 3376248 Effect of Far Infrared and Endothelial Cell Growth Supplement on Human Umbilical Vascular Endothelial Cells
Authors: Ming-Tzu Tsai, Jui-Ting Hsu, Chia-Chieh Lin, Feng-Tsai Chiang, Cheng-Chin Huang
Abstract:
Far infrared (FIR), an invisible and short electromagnetic waves ranges from 6-14 μm also defines as the “growth ray.” Although the mechanism of FIR is still unknown, most data have suggested that FIR could accelerate the skin microcirculation by elevating the blood flow and nitric-oxide (NO) synthesis. In this present work, the effect of FIR irradiation and endothelial cell growth supplement (ECGS) on human umbilical vascular endothelial cells (HUVECs) was evaluated. To understand whether the cell viability and NO production of HUVECs affected by NO, cells with/without ECGS were treated in the presence or absence of L-NAME, an eNOS inhibitor. For FIR exposure, FIR-emitted ceramic powders consisted of a variety of well-mixed metal oxides were developed. The results showed that L-NAME did had a strong effect on the inhibition of NO production, especially in the ECGS-treated group. However, the cell viability of each group was rarely affected in the presence of L-NAME. Cells with the incubation of ECGS showed much higher cell viability compared to the control. Moreover, NO production of HUVECs exposed to FIR irradiation was significantly inhibited in the presence of L-NAME. It suggested that NO could play a role modulating the downstream signals of HUVECs during FIR exposure.Keywords: far-infrared irradiation (FIR), nitric oxide (NO), endothelial nitric oxide synthase (eNOS), endothelial cell growth supplement (ECGS)
Procedia PDF Downloads 4296247 Effects of Glucogenic and Lipogenic Diets on Ruminal Microbiota and Metabolites in Vitro
Authors: Beihai Xiong, Dengke Hua, Wouter Hendriks, Wilbert Pellikaan
Abstract:
To improve the energy status of dairy cows in the early lactation, lots of jobs have been done on adjusting the starch to fiber ratio in the diet. As a complex ecosystem, the rumen contains a large population of microorganisms which plays a crucial role in feed degradation. Further study on the microbiota alterations and metabolic changes under different dietary energy sources is essential and valuable to better understand the function of the ruminal microorganisms and thereby to optimize the rumen function and enlarge feed efficiency. The present study will focus on the effects of two glucogenic diets (G: ground corn and corn silage; S: steam-flaked corn and corn silage) and a lipogenic diet (L: sugar beet pulp and alfalfa silage) on rumen fermentation, gas production, the ruminal microbiota and metabolome, and also their correlations in vitro. The gas production was recorded consistently, and the gas volume and producing rate at times 6, 12, 24, 48 h were calculated separately. The fermentation end-products were measured after fermenting for 48 h. The ruminal bacteria and archaea communities were determined by 16S RNA sequencing technique, the metabolome profile was tested through LC-MS methods. Compared to the diet G and S, the L diet had a lower dry matter digestibility, propionate production, and ammonia-nitrogen concentration. The two glucogenic diets performed worse in controlling methane and lactic acid production compared to the L diet. The S diet produced the greatest cumulative gas volume at any time points during incubation compared to the G and L diet. The metabolic analysis revealed that the lipid digestion was up-regulated by the diet L than other diets. On the subclass level, most metabolites belonging to the fatty acids and conjugates were higher, but most metabolites belonging to the amino acid, peptides, and analogs were lower in diet L than others. Differences in rumen fermentation characteristics were associated with (or resulting from) changes in the relative abundance of bacterial and archaeal genera. Most highly abundant bacteria were stable or slightly influenced by diets, while several amylolytic and cellulolytic bacteria were sensitive to the dietary changes. The L diet had a significantly higher number of cellulolytic bacteria, including the genera of Ruminococcus, Butyrivibrio, Eubacterium, Lachnospira, unclassified Lachnospiraceae, and unclassified Ruminococcaceae. The relative abundances of amylolytic bacteria genera including Selenomonas_1, Ruminobacter, and Succinivibrionaceae_UCG-002 were higher in diet G and S. These affected bacteria was also proved to have high associations with certain metabolites. The Selenomonas_1 and Succinivibrionaceae_UCG-002 may contribute to the higher propionate production in the diet G and S through enhancing the succinate pathway. The results indicated that the two glucogenic diets had a greater extent of gas production, a higher dry matter digestibility, and produced more propionate than diet L. The steam-flaked corn did not show a better performance on fermentation end-products than ground corn. This study has offered a deeper understanding of ruminal microbial functions which could assistant the improvement in rumen functions and thereby in the ruminant production.Keywords: gas production, metabolome, microbiota, rumen fermentation
Procedia PDF Downloads 153