Search results for: automated testing tool
7249 Factors Affecting the Fear of Insulin Injection and Finger Punching in Individuals Diagnosed with Diabetes
Authors: Gaye Demi̇rtaş Adli
Abstract:
Research: It was conducted to determine the factors affecting the fear of self-injection and self-pricking of fingers of diabetic individuals.The study was conducted as a cross-sectional, relation-seeking, and descriptive study. The study was conducted on 122 patients who had just started insulin therapy. Data were obtained through The Descriptive Patient Form, The Diabetic Self-Injection, and the Fear of Testing Questionnaire Form (D-FISQ). Descriptive statistical methods used in the evaluation of data are the Mann-Whitney U test, Kruskal-Wallis H test, and the Spearman correlation. The factors affecting the scale scores were evaluated with multiple linear regression analysis. The value of P<0.05 was considered statistically significant. Study group: 56.6% of the patients are male patients. Fear of self-injection (injection), fear of self-testing (test), and total fear (total) scores of women were found to be statistically higher than men (p<0.001). Age, gender, and pain experience were important variables that affected patients' fear of injections. With a one-unit increase in age, the injection fear score decreased by 0.13 points, and the mean injection fear score of women was 2.11 points higher than that of men. It was determined that the patient's age, gender, living with whom, and blood donation history were important variables affecting the fear of self-testing. It is seen that the fear test score decreases by 0.18 points with an increase in age by one unit, and the fear test scores of women compared to men are on average 3,358 points, the fear test scores of those living alone are 4,711 points compared to those living with family members, and the fear test scores of those who do not donate blood are 2,572 compared to those who donate blood score, it was determined that those with more pain experience were 3,156 points higher on average than those with less fear of injection. As a result, it was seen that the most important factors affecting the fear of insulin injection and finger punching in individuals with diabetes were age, gender, pain experience, living with whom, and blood donation history.Keywords: diabetes, needle phobia, fear of injection, insulin injection
Procedia PDF Downloads 717248 Label Free Detection of Small Molecules Using Surface-Enhanced Raman Spectroscopy with Gold Nanoparticles Synthesized with Various Capping Agents
Authors: Zahra Khan
Abstract:
Surface-Enhanced Raman Spectroscopy (SERS) has received increased attention in recent years, focusing on biological and medical applications due to its great sensitivity as well as molecular specificity. In the context of biological samples, there are generally two methodologies for SERS based applications: label-free detection and the use of SERS tags. The necessity of tagging can make the process slower and limits the use for real life. Label-free detection offers the advantage that it reports direct spectroscopic evidence associated with the target molecule rather than the label. Reproducible, highly monodisperse gold nanoparticles (Au NPs) were synthesized using a relatively facile seed-mediated growth method. Different capping agents (TRIS, citrate, and CTAB) were used during synthesis, and characterization was performed. They were then mixed with different analyte solutions before drop-casting onto a glass slide prior to Raman measurements to see which NPs displayed the highest SERS activity as well as their stability. A host of different analytes were tested, both non-biomolecules and biomolecules, which were all successfully detected using this method at concentrations as low as 10-3M with salicylic acid reaching a detection limit in the nanomolar range. SERS was also performed on samples with a mixture of analytes present, whereby peaks from both target molecules were distinctly observed. This is a fast and effective rapid way of testing samples and offers potential applications in the biomedical field as a tool for diagnostic and treatment purposes.Keywords: gold nanoparticles, label free, seed-mediated growth, SERS
Procedia PDF Downloads 1257247 Digital Forensics Showdown: Encase and FTK Head-to-Head
Authors: Rida Nasir, Waseem Iqbal
Abstract:
Due to the constant revolution in technology and the increase in anti-forensic techniques used by attackers to remove their traces, professionals often struggle to choose the best tool to be used in digital forensic investigations. This paper compares two of the most well-known and widely used licensed commercial tools, i.e., Encase & FTK. The comparison was drawn on various parameters and features to provide an authentic evaluation of licensed versions of these well-known commercial tools against various real-world scenarios. In order to discover the popularity of these tools within the digital forensic community, a survey was conducted publicly to determine the preferred choice. The dataset used is the Computer Forensics Reference Dataset (CFReDS). A total of 70 features were selected from various categories. Upon comparison, both FTK and EnCase produce remarkable results. However, each tool has some limitations, and none of the tools is declared best. The comparison drawn is completely unbiased, based on factual data.Keywords: digital forensics, commercial tools, investigation, forensic evaluation
Procedia PDF Downloads 197246 Exploring Time-Series Phosphoproteomic Datasets in the Context of Network Models
Authors: Sandeep Kaur, Jenny Vuong, Marcel Julliard, Sean O'Donoghue
Abstract:
Time-series data are useful for modelling as they can enable model-evaluation. However, when reconstructing models from phosphoproteomic data, often non-exact methods are utilised, as the knowledge regarding the network structure, such as, which kinases and phosphatases lead to the observed phosphorylation state, is incomplete. Thus, such reactions are often hypothesised, which gives rise to uncertainty. Here, we propose a framework, implemented via a web-based tool (as an extension to Minardo), which given time-series phosphoproteomic datasets, can generate κ models. The incompleteness and uncertainty in the generated model and reactions are clearly presented to the user via the visual method. Furthermore, we demonstrate, via a toy EGF signalling model, the use of algorithmic verification to verify κ models. Manually formulated requirements were evaluated with regards to the model, leading to the highlighting of the nodes causing unsatisfiability (i.e. error causing nodes). We aim to integrate such methods into our web-based tool and demonstrate how the identified erroneous nodes can be presented to the user via the visual method. Thus, in this research we present a framework, to enable a user to explore phosphorylation proteomic time-series data in the context of models. The observer can visualise which reactions in the model are highly uncertain, and which nodes cause incorrect simulation outputs. A tool such as this enables an end-user to determine the empirical analysis to perform, to reduce uncertainty in the presented model - thus enabling a better understanding of the underlying system.Keywords: κ-models, model verification, time-series phosphoproteomic datasets, uncertainty and error visualisation
Procedia PDF Downloads 2557245 Applications of Artificial Intelligence (AI) in Cardiac imaging
Authors: Angelis P. Barlampas
Abstract:
The purpose of this study is to inform the reader, about the various applications of artificial intelligence (AI), in cardiac imaging. AI grows fast and its role is crucial in medical specialties, which use large amounts of digital data, that are very difficult or even impossible to be managed by human beings and especially doctors.Artificial intelligence (AI) refers to the ability of computers to mimic human cognitive function, performing tasks such as learning, problem-solving, and autonomous decision making based on digital data. Whereas AI describes the concept of using computers to mimic human cognitive tasks, machine learning (ML) describes the category of algorithms that enable most current applications described as AI. Some of the current applications of AI in cardiac imaging are the follows: Ultrasound: Automated segmentation of cardiac chambers across five common views and consequently quantify chamber volumes/mass, ascertain ejection fraction and determine longitudinal strain through speckle tracking. Determine the severity of mitral regurgitation (accuracy > 99% for every degree of severity). Identify myocardial infarction. Distinguish between Athlete’s heart and hypertrophic cardiomyopathy, as well as restrictive cardiomyopathy and constrictive pericarditis. Predict all-cause mortality. CT Reduce radiation doses. Calculate the calcium score. Diagnose coronary artery disease (CAD). Predict all-cause 5-year mortality. Predict major cardiovascular events in patients with suspected CAD. MRI Segment of cardiac structures and infarct tissue. Calculate cardiac mass and function parameters. Distinguish between patients with myocardial infarction and control subjects. It could potentially reduce costs since it would preclude the need for gadolinium-enhanced CMR. Predict 4-year survival in patients with pulmonary hypertension. Nuclear Imaging Classify normal and abnormal myocardium in CAD. Detect locations with abnormal myocardium. Predict cardiac death. ML was comparable to or better than two experienced readers in predicting the need for revascularization. AI emerge as a helpful tool in cardiac imaging and for the doctors who can not manage the overall increasing demand, in examinations such as ultrasound, computed tomography, MRI, or nuclear imaging studies.Keywords: artificial intelligence, cardiac imaging, ultrasound, MRI, CT, nuclear medicine
Procedia PDF Downloads 787244 Study of the Effect of Sewing on Non Woven Textile Waste at Dry and Composite Scales
Authors: Wafa Baccouch, Adel Ghith, Xavier Legrand, Faten Fayala
Abstract:
Textile waste recycling has become a necessity considering the augmentation of the amount of waste generated each year and the ecological problems that landfilling and burning can cause. Textile waste can be recycled into many different forms according to its composition and its final utilization. Using this waste as reinforcement to composite panels is a new recycling area that is being studied. Compared to virgin fabrics, recycled ones present the disadvantage of having lower structural characteristics, when they are eco-friendly and with low cost. The objective of this work is transforming textile waste into composite material with good characteristic and low price. In this study, we used sewing as a method to improve the characteristics of the recycled textile waste in order to use it as reinforcement to composite material. Textile non-woven waste was afforded by a local textile recycling industry. Performances tests were evaluated using tensile testing machine and based on the testing direction for both reinforcements and composite panels; machine and transverse direction. Tensile tests were conducted on sewed and non sewed fabrics, and then they were used as reinforcements to composite panels via epoxy resin infusion method. Rule of mixtures is used to predict composite characteristics and then compared to experimental ones.Keywords: composite material, epoxy resin, non woven waste, recycling, sewing, textile
Procedia PDF Downloads 5867243 Design and Analysis of Adaptive Type-I Progressive Hybrid Censoring Plan under Step Stress Partially Accelerated Life Testing Using Competing Risk
Authors: Ariful Islam, Showkat Ahmad Lone
Abstract:
Statistical distributions have long been employed in the assessment of semiconductor devices and product reliability. The power function-distribution is one of the most important distributions in the modern reliability practice and can be frequently preferred over mathematically more complex distributions, such as the Weibull and the lognormal, because of its simplicity. Moreover, it may exhibit a better fit for failure data and provide more appropriate information about reliability and hazard rates in some circumstances. This study deals with estimating information about failure times of items under step-stress partially accelerated life tests for competing risk based on adoptive type-I progressive hybrid censoring criteria. The life data of the units under test is assumed to follow Mukherjee-Islam distribution. The point and interval maximum-likelihood estimations are obtained for distribution parameters and tampering coefficient. The performances of the resulting estimators of the developed model parameters are evaluated and investigated by using a simulation algorithm.Keywords: adoptive progressive hybrid censoring, competing risk, mukherjee-islam distribution, partially accelerated life testing, simulation study
Procedia PDF Downloads 3477242 Design, Development by Functional Analysis in UML and Static Test of a Multimedia Voice and Video Communication Platform on IP for a Use Adapted to the Context of Local Businesses in Lubumbashi
Authors: Blaise Fyama, Elie Museng, Grace Mukoma
Abstract:
In this article we present a java implementation of video telephony using the SIP protocol (Session Initiation Protocol). After a functional analysis of the SIP protocol, we relied on the work of Italian researchers of University of Parma-Italy to acquire adequate libraries for the development of our own communication tool. In order to optimize the code and improve the prototype, we used, in an incremental approach, test techniques based on a static analysis based on the evaluation of the complexity of the software with the application of metrics and the number cyclomatic of Mccabe. The objective is to promote the emergence of local start-ups producing IP video in a well understood local context. We have arrived at the creation of a video telephony tool whose code is optimized.Keywords: static analysis, coding complexity metric mccabe, Sip, uml
Procedia PDF Downloads 1197241 Sea of Light: A Game 'Based Approach for Evidence-Centered Assessment of Collaborative Problem Solving
Authors: Svenja Pieritz, Jakab Pilaszanovich
Abstract:
Collaborative Problem Solving (CPS) is recognized as being one of the most important skills of the 21st century with having a potential impact on education, job selection, and collaborative systems design. Therefore, CPS has been adopted in several standardized tests, including the Programme for International Student Assessment (PISA) in 2015. A significant challenge of evaluating CPS is the underlying interplay of cognitive and social skills, which requires a more holistic assessment. However, the majority of the existing tests are using a questionnaire-based assessment, which oversimplifies this interplay and undermines ecological validity. Two major difficulties were identified: Firstly, the creation of a controllable, real-time environment allowing natural behaviors and communication between at least two people. Secondly, the development of an appropriate method to collect and synthesize both cognitive and social metrics of collaboration. This paper proposes a more holistic and automated approach to the assessment of CPS. To address these two difficulties, a multiplayer problem-solving game called Sea of Light was developed: An environment allowing students to deploy a variety of measurable collaborative strategies. This controlled environment enables researchers to monitor behavior through the analysis of game actions and chat. The according solution for the statistical model is a combined approach of Natural Language Processing (NLP) and Bayesian network analysis. Social exchanges via the in-game chat are analyzed through NLP and fed into the Bayesian network along with other game actions. This Bayesian network synthesizes evidence to track and update different subdimensions of CPS. Major findings focus on the correlations between the evidences collected through in- game actions, the participants’ chat features and the CPS self- evaluation metrics. These results give an indication of which game mechanics can best describe CPS evaluation. Overall, Sea of Light gives test administrators control over different problem-solving scenarios and difficulties while keeping the student engaged. It enables a more complete assessment based on complex, socio-cognitive information on actions and communication. This tool permits further investigations of the effects of group constellations and personality in collaborative problem-solving.Keywords: bayesian network, collaborative problem solving, game-based assessment, natural language processing
Procedia PDF Downloads 1327240 The Use of Budgeting as an Effective Management Tool for Small, Medium and Micro Enterprises during COVID-19 Pandemic: A Perspective from South Africa
Authors: Abongile Zweni, Grate Moyo, Ricardo Peters, Bingwen Yan
Abstract:
Budgets are one of the most important tools that organisations, big or small, need to use as management tools. When organisations, particularly Small, Medium and Micro Enterprises (SMMEs), do not use budgets, they are bound to fail in their infancy stage. The aim of this study was to assess whether or not SMMEs in South Africa used budgets as an effective management tool during the COVID-19 pandemic. For the purposes of this study, data was collected using an online questionnaire (survey). This study used the quantitative research approach. The study used descriptive statistics to analyse the research question. The study found that most SMMEs did not use budgets during the COVID-19 pandemic; one of the reasons, amongst others, was that most of them had to close down during the lockdown, and some of them did not even qualify for government bailout or government grants.Keywords: budget management, SMMEs, COVID-19, South Africa
Procedia PDF Downloads 1927239 Counting People Utilizing Space-Time Imagery
Authors: Ahmed Elmarhomy, K. Terada
Abstract:
An automated method for counting passerby has been proposed using virtual-vertical measurement lines. Space-time image is representing the human regions which are treated using the segmentation process. Different color space has been used to perform the template matching. A proper template matching has been achieved to determine direction and speed of passing people. Distinguish one or two passersby has been investigated using a correlation between passerby speed and the human-pixel area. Finally, the effectiveness of the presented method has been experimentally verified.Keywords: counting people, measurement line, space-time image, segmentation, template matching
Procedia PDF Downloads 4527238 Optimising GIS in Cushioning the Environmental Impact of Infrastructural Projects
Authors: Akerele Akintunde Hareef
Abstract:
GIS is an integrating tool for storing, retrieving, manipulating, and analyzing spatial data. It is a tool which defines an area with respect to features and other relevant thematic delineations. On the other hand, Environmental Impact Assessment in short is both positive and negative impact of an infrastructure on an environment. Impact of infrastructural projects on the environment is an aspect of development that barely get extensive portion of pre-project execution phase and when they do, the effects are most times not implemented to cushion the impact they have on human and the environment. In this research, infrastructural projects like road constructions, water reticulation projects, building constructions, bridge etc. have immense impact on the environment and the people that reside in location of construction. Hence, the need for this research tends to portray the relevance of Environmental Impact assessment in calculating the vulnerability of human and the environment to imbalance necessitated by this infrastructural development and how the use of GIS application can be optimally applied to annul or minimize the effect.Keywords: environmental impact assessment (EIA), geographic information system (GIS), infrastructural projects, environment
Procedia PDF Downloads 5527237 Wear Assessment of SS316l-Al2O3 Composites for Heavy Wear Applications
Authors: Catherine Kuforiji, Michel Nganbe
Abstract:
The abrasive wear of composite materials is a major challenge in highly demanding wear applications. Therefore, this study focuses on fabricating, testing and assessing the properties of 50wt% SS316L stainless steel–50wt% Al2O3 particle composites. Composite samples were fabricated using the powder metallurgy route. The effects of the powder metallurgy processing parameters and hard particle reinforcement were studied. The microstructure, density, hardness and toughness were characterized. The wear behaviour was studied using pin-on-disc testing under dry sliding conditions. The highest hardness of 1085.2 HV, the highest theoretical density of 94.7% and the lowest wear rate of 0.00397 mm3/m were obtained at a milling speed of 720 rpm, a compaction pressure of 794.4 MPa and sintering at 1400 °C in an argon atmosphere. Compared to commercial SS316 and fabricated SS316L, the composites had 7.4 times and 11 times lower wear rate, respectively. However, the commercial 90WC-10Co showed 2.2 times lower wear rate compared to the fabricated SS316L-Al2O3 composites primarily due to the higher ceramic content of 90 wt.% in the reference WC-Co. However, eliminating the relatively high porosity of about 5 vol% using processes such as HIP and hot pressing can be expected to lead to further substantial improvements of the composites wear resistance.Keywords: SS316L, Al2O3, powder metallurgy, wear characterization
Procedia PDF Downloads 3047236 Development of Biodegradable Plastic as Mango Fruit Bag
Authors: Andres M. Tuates Jr., Ofero A. Caparino
Abstract:
Plastics have achieved a dominant position in agriculture because of their transparency, lightness in weight, impermeability to water and their resistance to microbial attack. However, this generates a higher quantity of wastes that are difficult to dispose of by farmers. To address these problems, the project aim to develop and evaluate the biodegradable film for mango fruit bag during development. The PBS and starch were melt-blended in a twin-screw extruder and then blown into film extrusion machine. The physic-chemical-mechanical properties of biodegradable fruit bag were done following standard methods of test. Field testing of fruit bag was also conducted to evaluate its durability and efficiency field condition. The PHilMech-FiC fruit bag is made of biodegradable material measuring 6 x 8 inches with a thickness of 150 microns. The tensile strength is within the range of LDPE while the elongation is within the range of HDPE. It is projected that after thirty-six (36) weeks, the film will be totally degraded. Results of field testing show that the quality of harvested fruits using PHilMech-FiC biodegradable fruit bag in terms of percent marketable, non-marketable and export, peel color at the ripe stage, flesh color, TSS, oBrix, percent edible portion is comparable with the existing bagging materials such as Chinese brown paper bag and old newspaper.Keywords: cassava starch, PBS, biodegradable, chemical, mechanical properties
Procedia PDF Downloads 2777235 Decision Support Tool for Water Re-used Systems
Authors: Katarzyna Pawęska, Aleksandra Bawiec, Ewa Burszta-Adamiak, Wiesław Fiałkiewicz
Abstract:
The water shortage becomes a serious problem not only in African and Middle Eastern countries, but also recently in the European Union. Scarcity of water means that not all agricultural, industrial and municipal needs will be met. When the annual availability of renewable freshwater per capita is less than 1,700 cubic meters, countries begin to experience periodic or regular water shortages. The phenomenon of water stress is the result of an imbalance between the constantly growing demand for water and its availability. The constant development of industry, population growth, and climate changes make the situation even worse. The search for alternative water sources and independent supplies is becoming a priority for many countries. Data enabling the assessment of country’s condition regarding water resources, water consumption, water price, wastewater volume, forecasted climate changes e.g. temperature, precipitation, are scattered and their interpretation by common entrepreneurs may be difficult. For this purpose, a digital tool has been developed to support decisions related to the implementation of water and wastewater re-use systems, as a result of an international research project “Framework for organizational decision-making process in water reuse for smart cities” (SMART-WaterDomain) funded under the EIG-CONCERT Japan call on Smart Water Management for Sustainable Society. The developed geo-visualization tool graphically presents, among others, data about the capacity of wastewater treatment plants and the volume of water demand in the private and public sectors for Poland, Germany, and the Czech Republic. It is expected that such a platform, extended with economical water management data and climate forecasts (temperature, precipitation), will allow in the future independent investigation and assessment of water use rate and wastewater production on the local and regional scale. The tool is a great opportunity for small business owners, entrepreneurs, farmers, local authorities, and common users to analyze the impact of climate change on the availability of water in the regions of their business activities. Acknowledgments: The authors acknowledge the support of the Project Organisational Decision Making in Water Reuse for Smart Cities (SMART- WaterDomain), funded by The National Centre for Research and Development and supported by the EIG-Concert Japan.Keywords: circular economy, digital tool, geo-visualization, wastewater re-use
Procedia PDF Downloads 567234 Analysis and Prediction of COVID-19 by Using Recurrent LSTM Neural Network Model in Machine Learning
Authors: Grienggrai Rajchakit
Abstract:
As we all know that coronavirus is announced as a pandemic in the world by WHO. It is speeded all over the world with few days of time. To control this spreading, every citizen maintains social distance and self-preventive measures are the best strategies. As of now, many researchers and scientists are continuing their research in finding out the exact vaccine. The machine learning model finds that the coronavirus disease behaves in an exponential manner. To abolish the consequence of this pandemic, an efficient step should be taken to analyze this disease. In this paper, a recurrent neural network model is chosen to predict the number of active cases in a particular state. To make this prediction of active cases, we need a database. The database of COVID-19 is downloaded from the KAGGLE website and is analyzed by applying a recurrent LSTM neural network with univariant features to predict the number of active cases of patients suffering from the corona virus. The downloaded database is divided into training and testing the chosen neural network model. The model is trained with the training data set and tested with a testing dataset to predict the number of active cases in a particular state; here, we have concentrated on Andhra Pradesh state.Keywords: COVID-19, coronavirus, KAGGLE, LSTM neural network, machine learning
Procedia PDF Downloads 1607233 Multivariate Output-Associative RVM for Multi-Dimensional Affect Predictions
Authors: Achut Manandhar, Kenneth D. Morton, Peter A. Torrione, Leslie M. Collins
Abstract:
The current trends in affect recognition research are to consider continuous observations from spontaneous natural interactions in people using multiple feature modalities, and to represent affect in terms of continuous dimensions, incorporate spatio-temporal correlation among affect dimensions, and provide fast affect predictions. These research efforts have been propelled by a growing effort to develop affect recognition system that can be implemented to enable seamless real-time human-computer interaction in a wide variety of applications. Motivated by these desired attributes of an affect recognition system, in this work a multi-dimensional affect prediction approach is proposed by integrating multivariate Relevance Vector Machine (MVRVM) with a recently developed Output-associative Relevance Vector Machine (OARVM) approach. The resulting approach can provide fast continuous affect predictions by jointly modeling the multiple affect dimensions and their correlations. Experiments on the RECOLA database show that the proposed approach performs competitively with the OARVM while providing faster predictions during testing.Keywords: dimensional affect prediction, output-associative RVM, multivariate regression, fast testing
Procedia PDF Downloads 2867232 The Contribution of the PCR-Enzymatic Digestion in the Positive Diagnosis of Proximal Spinal Muscular Atrophy in the Moroccan Population
Authors: H. Merhni, A. Sbiti, I. Ratbi, A. Sefiani
Abstract:
The proximal spinal muscular atrophy (SMA) is a group of neuromuscular disorders characterized by progressive muscle weakness due to the degeneration and loss of anterior motor neurons of the spinal cord. Depending on the age of onset of symptoms and their evolution, four types of SMA, varying in severity, result in a mutations of the SMN gene (survival of Motor neuron). We have analyzed the DNA of 295 patients referred to our genetic counseling; since January 1996 until October 2014; for suspected SMA. The homozygous deletion of exon 7 of the SMN gene was found in 133 patients; of which, 40.6% were born to consanguineous parents. In countries like Morocco, where the frequency of heterozygotes for SMA is high, genetic testing should be offered as first-line and, after careful clinical assessment, especially in newborns and infants with congenital hypotonia unexplained and prognosis compromise. The molecular diagnosis of SMA allows a quick and certainly diagnosis, provide adequate genetic counseling for families at risk and suggest, for couples who want prenatal diagnosis. The analysis of the SMN gene is a perfect example of genetic testing with an excellent cost/benefit ratio that can be of great interest in public health, especially in low-income countries. We emphasize in this work for the benefit of the generalization of molecular diagnosis of SMA by the technique of PCR-enzymatic digestion in other centers in Morocco.Keywords: Exon7, PCR-digestion, SMA, SMN gene
Procedia PDF Downloads 2417231 Assessment of Sustainability Initiatives at Applied Science University in Bahrain
Authors: Bayan Ahmed Alsaffar
Abstract:
The aim of this study is to assess the sustainability initiatives at Applied Sciences University (ASU) in Bahrain using a mixed-methods approach based on students, staff, and faculty perceptions. The study involves a literature review, interviews with faculty members and students, and a survey of ASU's level of sustainability in education, research, operations, administration, and finance that depended on the Sustainability Tracking, Assessment & Rating System (STARS). STARS is a tool used to evaluate the sustainability performance of higher education institutions. The study concludes that a mixed-methods approach can provide a powerful tool for assessing sustainability initiatives at ASU and ultimately lead to insights that can inform effective strategies for improving sustainability efforts. The current study contributes to the field of sustainability in universities and highlights the importance of user engagement and awareness for achieving sustainability goals.Keywords: environment, initiatives, society, sustainability, STARS, university
Procedia PDF Downloads 937230 Determination of Poisson’s Ratio and Elastic Modulus of Compression Textile Materials
Authors: Chongyang Ye, Rong Liu
Abstract:
Compression textiles such as compression stockings (CSs) have been extensively applied for the prevention and treatment of chronic venous insufficiency of lower extremities. The involvement of multiple mechanical factors such as interface pressure, frictional force, and elastic materials make the interactions between lower limb and CSs to be complex. Determination of Poisson’s ratio and elastic moduli of CS materials are critical for constructing finite element (FE) modeling to numerically simulate a complex interactive system of CS and lower limb. In this study, a mixed approach, including an analytic model based on the orthotropic Hooke’s Law and experimental study (uniaxial tension testing and pure shear testing), has been proposed to determine Young’s modulus, Poisson’s ratio, and shear modulus of CS fabrics. The results indicated a linear relationship existing between the stress and strain properties of the studied CS samples under controlled stretch ratios (< 100%). The newly proposed method and the determined key mechanical properties of elastic orthotropic CS fabrics facilitate FE modeling for analyzing in-depth the effects of compression material design on their resultant biomechanical function in compression therapy.Keywords: elastic compression stockings, Young’s modulus, Poisson’s ratio, shear modulus, mechanical analysis
Procedia PDF Downloads 1187229 Characterization of Filled HNBR Elastomers for Sealing Application in Cold Climate Areas
Authors: Anton G. Akulichev, Avinash Tiwari, Ben Alcock, Andreas Echtermeyer
Abstract:
Low temperatures are known to pose a major threat for polymers; many are prone to excessive stiffness or even brittleness. There is a technology gap between the properties of existing elastomeric sealing materials and the properties needed for service in extremely cold regions. Moreover, some aspects of low temperature behaviour of rubber are not thoroughly studied and understood. The paper presents results of laboratory testing of a conventional oilfield HNBR (hydrogenated nitrile butadiene rubber) elastomer at low climatic temperatures above and below its glass transition point, as well as the performance of some filled HNBR formulations. Particular emphasis in the experiments is put on rubber viscoelastic characteristics studied by Dynamic Mechanical Analysis (DMA) and quasi-static mechanical testing results at low temperatures. As demonstrated by the stress relaxation and DMA experiments the transition region near Tg of the studied compound has the most striking features, like rapid stress relaxation, as compared to the glassy and rubbery plateau. In addition the quasi-static experiments show that molecular movement below Tg is not completely frozen, but rather evident and manifested in a certain stress decay as well. The effect of temperature and filler additions on typical mechanical and other properties of the materials is also discussed.Keywords: characterization, filled elastomers, HNBR, low temperature
Procedia PDF Downloads 3137228 Augmented Reality Sandbox and Constructivist Approach for Geoscience Teaching and Learning
Authors: Muhammad Nawaz, Sandeep N. Kundu, Farha Sattar
Abstract:
Augmented reality sandbox adds new dimensions to education and learning process. It can be a core component of geoscience teaching and learning to understand the geographic contexts and landform processes. Augmented reality sandbox is a useful tool not only to create an interactive learning environment through spatial visualization but also it can provide an active learning experience to students and enhances the cognition process of learning. Augmented reality sandbox can be used as an interactive learning tool to teach geomorphic and landform processes. This article explains the augmented reality sandbox and the constructivism approach for geoscience teaching and learning, and endeavours to explore the ways to teach the geographic processes using the three-dimensional digital environment for the deep learning of the geoscience concepts interactively.Keywords: augmented reality sandbox, constructivism, deep learning, geoscience
Procedia PDF Downloads 4027227 Overcoming Barriers to Improve HIV Education and Public Health Outcomes in the Democratic Republic of Congo
Authors: Danielle A. Walker, Kyle L. Johnson, Tara B. Thomas, Sandor Dorgo, Jacen S. Moore
Abstract:
Approximately 37 million people worldwide are infected with the Human Immunodeficiency Virus (HIV), with the majority located in sub-Saharan Africa. The relationship existing between HIV incidence and socioeconomic inequity confirms the critical need for programs promoting HIV education, prevention and treatment access. This literature review analyzed 36 sources with a specific focus on the Democratic Republic of Congo, whose critically low socioeconomic status and education rate have resulted in a drastically high HIV rates. Relationships between HIV testing and treatment and barriers to care were explored. Cultural and religious considerations were found to be vital when creating and implementing HIV education and testing programs. Partnerships encouraging active support from community-based spiritual leaders to implement HIV educational programs were also key mechanisms to reach communities and individuals. Gender roles were highlighted as a key component for implementation of effective community trust-building and successful HIV education programs. The efficacy of added support by hospitals and clinics in rural areas to facilitate access to HIV testing and care for people living with HIV/AIDS (PLWHA) was discussed. This review highlighted the need for healthcare providers to provide a network of continued education for PLWHA in clinical settings during disclosure and throughout the course of treatment to increase retention in care and promote medication adherence for viral load suppression. Implementation of culturally sensitive models that rely on community familiarity with HIV educators such as ‘train-the-trainer’ were also proposed as efficacious tools for educating rural communities about HIV. Further research is needed to promote community partnerships for HIV education, understand the cultural context of gender roles as barriers to care, and empower local health care providers to be successful within the HIV Continuum of Care.Keywords: cultural sensitivity, Democratic Republic of the Congo, education, HIV
Procedia PDF Downloads 2747226 Adaption of the Design Thinking Method for Production Planning in the Meat Industry Using Machine Learning Algorithms
Authors: Alica Höpken, Hergen Pargmann
Abstract:
The resource-efficient planning of the complex production planning processes in the meat industry and the reduction of food waste is a permanent challenge. The complexity of the production planning process occurs in every part of the supply chain, from agriculture to the end consumer. It arises from long and uncertain planning phases. Uncertainties such as stochastic yields, fluctuations in demand, and resource variability are part of this process. In the meat industry, waste mainly relates to incorrect storage, technical causes in production, or overproduction. The high amount of food waste along the complex supply chain in the meat industry could not be reduced by simple solutions until now. Therefore, resource-efficient production planning by conventional methods is currently only partially feasible. The realization of intelligent, automated production planning is basically possible through the application of machine learning algorithms, such as those of reinforcement learning. By applying the adapted design thinking method, machine learning methods (especially reinforcement learning algorithms) are used for the complex production planning process in the meat industry. This method represents a concretization to the application area. A resource-efficient production planning process is made available by adapting the design thinking method. In addition, the complex processes can be planned efficiently by using this method, since this standardized approach offers new possibilities in order to challenge the complexity and the high time consumption. It represents a tool to support the efficient production planning in the meat industry. This paper shows an elegant adaption of the design thinking method to apply the reinforcement learning method for a resource-efficient production planning process in the meat industry. Following, the steps that are necessary to introduce machine learning algorithms into the production planning of the food industry are determined. This is achieved based on a case study which is part of the research project ”REIF - Resource Efficient, Economic and Intelligent Food Chain” supported by the German Federal Ministry for Economic Affairs and Climate Action of Germany and the German Aerospace Center. Through this structured approach, significantly better planning results are achieved, which would be too complex or very time consuming using conventional methods.Keywords: change management, design thinking method, machine learning, meat industry, reinforcement learning, resource-efficient production planning
Procedia PDF Downloads 1287225 Tool for Analysing the Sensitivity and Tolerance of Mechatronic Systems in Matlab GUI
Authors: Bohuslava Juhasova, Martin Juhas, Renata Masarova, Zuzana Sutova
Abstract:
The article deals with the tool in Matlab GUI form that is designed to analyse a mechatronic system sensitivity and tolerance. In the analysed mechatronic system, a torque is transferred from the drive to the load through a coupling containing flexible elements. Different methods of control system design are used. The classic form of the feedback control is proposed using Naslin method, modulus optimum criterion and inverse dynamics method. The cascade form of the control is proposed based on combination of modulus optimum criterion and symmetric optimum criterion. The sensitivity is analysed on the basis of absolute and relative sensitivity of system function to the change of chosen parameter value of the mechatronic system, as well as the control subsystem. The tolerance is analysed in the form of determining the range of allowed relative changes of selected system parameters in the field of system stability. The tool allows to analyse an influence of torsion stiffness, torsion damping, inertia moments of the motor and the load and controller(s) parameters. The sensitivity and tolerance are monitored in terms of the impact of parameter change on the response in the form of system step response and system frequency-response logarithmic characteristics. The Symbolic Math Toolbox for expression of the final shape of analysed system functions was used. The sensitivity and tolerance are graphically represented as 2D graph of sensitivity or tolerance of the system function and 3D/2D static/interactive graph of step/frequency response.Keywords: mechatronic systems, Matlab GUI, sensitivity, tolerance
Procedia PDF Downloads 4337224 Computational Model of Human Cardiopulmonary System
Authors: Julian Thrash, Douglas Folk, Michael Ciracy, Audrey C. Tseng, Kristen M. Stromsodt, Amber Younggren, Christopher Maciolek
Abstract:
The cardiopulmonary system is comprised of the heart, lungs, and many dynamic feedback mechanisms that control its function based on a multitude of variables. The next generation of cardiopulmonary medical devices will involve adaptive control and smart pacing techniques. However, testing these smart devices on living systems may be unethical and exceedingly expensive. As a solution, a comprehensive computational model of the cardiopulmonary system was implemented in Simulink. The model contains over 240 state variables and over 100 equations previously described in a series of published articles. Simulink was chosen because of its ease of introducing machine learning elements. Initial results indicate that physiologically correct waveforms of pressures and volumes were obtained in the simulation. With the development of a comprehensive computational model, we hope to pioneer the future of predictive medicine by applying our research towards the initial stages of smart devices. After validation, we will introduce and train reinforcement learning agents using the cardiopulmonary model to assist in adaptive control system design. With our cardiopulmonary model, we will accelerate the design and testing of smart and adaptive medical devices to better serve those with cardiovascular disease.Keywords: adaptive control, cardiopulmonary, computational model, machine learning, predictive medicine
Procedia PDF Downloads 1797223 News Publication on Facebook: Emotional Analysis of Hooks
Authors: Gemma Garcia Lopez
Abstract:
The goal of this study is to perform an emotional analysis of the hooks used in Facebook by three of the most important daily newspapers in the USA. These hook texts are used to get the user's attention and invite him to read the news and linked contents. Thanks to the emotional analysis in text, made with the tool of IBM, Tone Analyzer, we discovered that more than 30% of the hooks can be classified emotionally as joy, sadness, anger or fear. This study gathered the publications made by The New York Times, USA Today and The Washington Post during a random day. The results show that the choice of words by the journalist, can expose the reader to different emotions before clicking on the content. In the three cases analyzed, the absence of emotions in some cases, and the presence of emotions in text in others, appear in very similar percentages. Therefore, beyond the objectivity and veracity of the content, a new factor could come into play: the emotional influence on the reader as a mediatic manipulation tool.Keywords: emotional analysis of newspapers hooks, emotions on Facebook, newspaper hooks on Facebook, news publication on Facebook
Procedia PDF Downloads 1557222 Effect of CSL Tube Type on the Drilled Shaft Axial Load Carrying Capacity
Authors: Ali Motevalli, Shahin Nayyeri Amiri
Abstract:
Cross-Hole Sonic Logging (CSL) is a common type of Non-Destructive Testing (NDT) method, which is currently used to check the integrity of placed drilled shafts. CSL evaluates the integrity of the concrete inside the cage and between the access tubes based on propagation of ultrasonic waves between two or more access tubes. A number of access tubes are installed inside the reinforcing cage prior to concrete placement as guides for sensors. The access tubes can be PVC or steel galvanized based on ASTM6760. The type of the CSL tubes can affect the axial strength of the drilled shaft. The objective of this study is to compare the amount of axial load capacity of drilled shafts due to using a different type of CSL tubes inside the caging. To achieve this, three (3) large-scale drilled shaft samples were built and tested using a hydraulic actuator at the Florida International University’s (FIU) Titan America Structures and Construction Testing (TASCT) laboratory. During the static load test, load-displacement curves were recorded by the data acquisition system (MegaDAC). Three drilled shaft samples were built to evaluate the effect of the type of the CSL tube on the axial load capacity in drilled shaft foundations.Keywords: drilled shaft foundations, axial load capacity, cage, PVC, galvanized tube, CSL tube
Procedia PDF Downloads 4027221 Effect of Testing Device Calibration on Liquid Limit Assessment
Authors: M. O. Bayram, H. B. Gencdal, N. O. Fercan, B. Basbug
Abstract:
Liquid limit, which is used as a measure of soil strength, can be detected by Casagrande and fall-cone testing methods. The two methods majorly diverge from each other in terms of operator dependency. The Casagrande method that is applied according to ASTM D4318-17 standards may give misleading results, especially if the calibration process is not performed well. To reveal the effect of calibration for drop height and amount of soil paste placement in the Casagrande cup, a series of tests were carried out by multipoint method as it is specified in the ASTM standards. The tests include the combination of 6 mm, 8 mm, 10 mm, and 12 mm drop heights and under-filled, half-filled, and full-filled Casagrande cups by kaolinite samples. It was observed that during successive tests, the drop height of the cup deteriorated; hence the device was recalibrated before and after each test to provide the accuracy of the results. Besides, the tests by under-filled and full-filled samples for higher drop heights revealed lower liquid limit values than the lower drop heights revealed. For the half-filled samples, it was clearly seen that the liquid limit values didn’t change at all as the drop height increased, and this explains the function of standard specifications.Keywords: calibration, casagrande cup method, drop height, kaolinite, liquid limit, placing form
Procedia PDF Downloads 1607220 4D Modelling of Low Visibility Underwater Archaeological Excavations Using Multi-Source Photogrammetry in the Bulgarian Black Sea
Authors: Rodrigo Pacheco-Ruiz, Jonathan Adams, Felix Pedrotti
Abstract:
This paper introduces the applicability of underwater photogrammetric survey within challenging conditions as the main tool to enhance and enrich the process of documenting archaeological excavation through the creation of 4D models. Photogrammetry was being attempted on underwater archaeological sites at least as early as the 1970s’ and today the production of traditional 3D models is becoming a common practice within the discipline. Photogrammetry underwater is more often implemented to record exposed underwater archaeological remains and less so as a dynamic interpretative tool. Therefore, it tends to be applied in bright environments and when underwater visibility is > 1m, reducing its implementation on most submerged archaeological sites in more turbid conditions. Recent years have seen significant development of better digital photographic sensors and the improvement of optical technology, ideal for darker environments. Such developments, in tandem with powerful processing computing systems, have allowed underwater photogrammetry to be used by this research as a standard recording and interpretative tool. Using multi-source photogrammetry (5, GoPro5 Hero Black cameras) this paper presents the accumulation of daily (4D) underwater surveys carried out in the Early Bronze Age (3,300 BC) to Late Ottoman (17th Century AD) archaeological site of Ropotamo in the Bulgarian Black Sea under challenging conditions (< 0.5m visibility). It proves that underwater photogrammetry can and should be used as one of the main recording methods even in low light and poor underwater conditions as a way to better understand the complexity of the underwater archaeological record.Keywords: 4D modelling, Black Sea Maritime Archaeology Project, multi-source photogrammetry, low visibility underwater survey
Procedia PDF Downloads 236