Search results for: adaptive thresholding based on RGB color
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 29428

Search results for: adaptive thresholding based on RGB color

28228 Detection of Internal Mold Infection of Intact Tomatoes by Non-Destructive, Transmittance VIS-NIR Spectroscopy

Authors: K. Petcharaporn

Abstract:

The external characteristics of tomatoes, such as freshness, color and size are typically used in quality control processes for tomatoes sorting. However, the internal mold infection of intact tomato cannot be sorted based on a visible assessment and destructive method alone. In this study, a non-destructive technique was used to predict the internal mold infection of intact tomatoes by using transmittance visible and near infrared (VIS-NIR) spectroscopy. Spectra for 200 samples contained 100 samples for normal tomatoes and 100 samples for mold infected tomatoes were acquired in the wavelength range between 665-955 nm. This data was used in conjunction with partial least squares-discriminant analysis (PLS-DA) method to generate a classification model for tomato quality between groups of internal mold infection of intact tomato samples. For this task, the data was split into two groups, 140 samples were used for a training set and 60 samples were used for a test set. The spectra of both normal and internally mold infected tomatoes showed different features in the visible wavelength range. Combined spectral pretreatments of standard normal variate transformation (SNV) and smoothing (Savitzky-Golay) gave the optimal calibration model in training set, 85.0% (63 out of 71 for the normal samples and 56 out of 69 for the internal mold samples). The classification accuracy of the best model on the test set was 91.7% (29 out of 29 for the normal samples and 26 out of 31 for the internal mold tomato samples). The results from this experiment showed that transmittance VIS-NIR spectroscopy can be used as a non-destructive technique to predict the internal mold infection of intact tomatoes.

Keywords: tomato, mold, quality, prediction, transmittance

Procedia PDF Downloads 362
28227 Kinetic Façade Design Using 3D Scanning to Convert Physical Models into Digital Models

Authors: Do-Jin Jang, Sung-Ah Kim

Abstract:

In designing a kinetic façade, it is hard for the designer to make digital models due to its complex geometry with motion. This paper aims to present a methodology of converting a point cloud of a physical model into a single digital model with a certain topology and motion. The method uses a Microsoft Kinect sensor, and color markers were defined and applied to three paper folding-inspired designs. Although the resulted digital model cannot represent the whole folding range of the physical model, the method supports the designer to conduct a performance-oriented design process with the rough physical model in the reduced folding range.

Keywords: design media, kinetic facades, tangible user interface, 3D scanning

Procedia PDF Downloads 413
28226 Role of Artificial Intelligence in Nano Proteomics

Authors: Mehrnaz Mostafavi

Abstract:

Recent advances in single-molecule protein identification (ID) and quantification techniques are poised to revolutionize proteomics, enabling researchers to delve into single-cell proteomics and identify low-abundance proteins crucial for biomedical and clinical research. This paper introduces a different approach to single-molecule protein ID and quantification using tri-color amino acid tags and a plasmonic nanopore device. A comprehensive simulator incorporating various physical phenomena was designed to predict and model the device's behavior under diverse experimental conditions, providing insights into its feasibility and limitations. The study employs a whole-proteome single-molecule identification algorithm based on convolutional neural networks, achieving high accuracies (>90%), particularly in challenging conditions (95–97%). To address potential challenges in clinical samples, where post-translational modifications affecting labeling efficiency, the paper evaluates protein identification accuracy under partial labeling conditions. Solid-state nanopores, capable of processing tens of individual proteins per second, are explored as a platform for this method. Unlike techniques relying solely on ion-current measurements, this approach enables parallel readout using high-density nanopore arrays and multi-pixel single-photon sensors. Convolutional neural networks contribute to the method's versatility and robustness, simplifying calibration procedures and potentially allowing protein ID based on partial reads. The study also discusses the efficacy of the approach in real experimental conditions, resolving functionally similar proteins. The theoretical analysis, protein labeler program, finite difference time domain calculation of plasmonic fields, and simulation of nanopore-based optical sensing are detailed in the methods section. The study anticipates further exploration of temporal distributions of protein translocation dwell-times and the impact on convolutional neural network identification accuracy. Overall, the research presents a promising avenue for advancing single-molecule protein identification and quantification with broad applications in proteomics research. The contributions made in methodology, accuracy, robustness, and technological exploration collectively position this work at the forefront of transformative developments in the field.

Keywords: nano proteomics, nanopore-based optical sensing, deep learning, artificial intelligence

Procedia PDF Downloads 95
28225 Information Retrieval from Internet Using Hand Gestures

Authors: Aniket S. Joshi, Aditya R. Mane, Arjun Tukaram

Abstract:

In the 21st century, in the era of e-world, people are continuously getting updated by daily information such as weather conditions, news, stock exchange market updates, new projects, cricket updates, sports and other such applications. In the busy situation, they want this information on the little use of keyboard, time. Today in order to get such information user have to repeat same mouse and keyboard actions which includes time and inconvenience. In India due to rural background many people are not much familiar about the use of computer and internet also. Also in small clinics, small offices, and hotels and in the airport there should be a system which retrieves daily information with the minimum use of keyboard and mouse actions. We plan to design application based project that can easily retrieve information with minimum use of keyboard and mouse actions and make our task more convenient and easier. This can be possible with an image processing application which takes real time hand gestures which will get matched by system and retrieve information. Once selected the functions with hand gestures, the system will report action information to user. In this project we use real time hand gesture movements to select required option which is stored on the screen in the form of RSS Feeds. Gesture will select the required option and the information will be popped and we got the information. A real time hand gesture makes the application handier and easier to use.

Keywords: hand detection, hand tracking, hand gesture recognition, HSV color model, Blob detection

Procedia PDF Downloads 289
28224 A Gold-Based Nanoformulation for Delivery of the CRISPR/Cas9 Ribonucleoprotein for Genome Editing

Authors: Soultana Konstantinidou, Tiziana Schmidt, Elena Landi, Alessandro De Carli, Giovanni Maltinti, Darius Witt, Alicja Dziadosz, Agnieszka Lindstaedt, Michele Lai, Mauro Pistello, Valentina Cappello, Luciana Dente, Chiara Gabellini, Piotr Barski, Vittoria Raffa

Abstract:

CRISPR/Cas9 technology has gained the interest of researchers in the field of biotechnology for genome editing. Since its discovery as a microbial adaptive immune defense, this system has been widely adopted and is acknowledged for having a variety of applications. However, critical barriers related to safety and delivery are persisting. Here, we propose a new concept of genome engineering, which is based on a nano-formulation of Cas9. The Cas9 enzyme was conjugated to a gold nanoparticle (AuNP-Cas9). The AuNP-Cas9 maintained its cleavage efficiency in vitro, to the same extent as the ribonucleoprotein, including non-conjugated Cas9 enzyme, and showed high gene editing efficiency in vivo in zebrafish embryos. Since CRISPR/Cas9 technology is extensively used in cancer research, melanoma was selected as a validation target. Cell studies were performed in A375 human melanoma cells. Particles per se had no impact on cell metabolism and proliferation. Intriguingly, the AuNP-Cas9 internalized spontaneously in cells and localized as a single particle in the cytoplasm and organelles. More importantly, the AuNP-Cas9 showed a high nuclear localization signal. The AuNP-Cas9, overcoming the delivery difficulties of Cas9, could be used in cellular biology and localization studies. Taking advantage of the plasmonic properties of gold nanoparticles, this technology could potentially be a bio-tool for combining gene editing and photothermal therapy in cancer cells. Further work will be focused on intracellular interactions of the nano-formulation and characterization of the optical properties.

Keywords: CRISPR/Cas9, gene editing, gold nanoparticles, nanotechnology

Procedia PDF Downloads 101
28223 Detection of Internal Mold Infection of Intact For Tomatoes by Non-Destructive, Transmittance VIS-NIR Spectroscopy

Authors: K. Petcharaporn, N. Prathengjit

Abstract:

The external characteristics of tomatoes, such as freshness, color and size are typically used in quality control processes for tomatoes sorting. However, the internal mold infection of intact tomato cannot be sorted based on a visible assessment and destructive method alone. In this study, a non-destructive technique was used to predict the internal mold infection of intact tomatoes by using transmittance visible and near infrared (VIS-NIR) spectroscopy. Spectra for 200 samples contained 100 samples for normal tomatoes and 100 samples for mold infected tomatoes were acquired in the wavelength range between 665-955 nm. This data was used in conjunction with partial least squares-discriminant analysis (PLS-DA) method to generate a classification model for tomato quality between groups of internal mold infection of intact tomato samples. For this task, the data was split into two groups, 140 samples were used for a training set and 60 samples were used for a test set. The spectra of both normal and internally mold infected tomatoes showed different features in the visible wavelength range. Combined spectral pretreatments of standard normal variate transformation (SNV) and smoothing (Savitzky-Golay) gave the optimal calibration model in training set, 85.0% (63 out of 71 for the normal samples and 56 out of 69 for the internal mold samples). The classification accuracy of the best model on the test set was 91.7% (29 out of 29 for the normal samples and 26 out of 31 for the internal mold tomato samples). The results from this experiment showed that transmittance VIS-NIR spectroscopy can be used as a non-destructive technique to predict the internal mold infection of intact tomatoes.

Keywords: tomato, mold, quality, prediction, transmittance

Procedia PDF Downloads 519
28222 Design of a Photovoltaic Power Generation System Based on Artificial Intelligence and Internet of Things

Authors: Wei Hu, Wenguang Chen, Chong Dong

Abstract:

In order to improve the efficiency and safety of photovoltaic power generation devices, this photovoltaic power generation system combines Artificial Intelligence (AI) and the Internet of Things (IoT) to control the chasing photovoltaic power generation device to track the sun to improve power generation efficiency and then convert energy management. The system uses artificial intelligence as the control terminal, the power generation device executive end uses the Linux system, and Exynos4412 is the CPU. The power generating device collects the sun image information through Sony CCD. After several power generating devices feedback the data to the CPU for processing, several CPUs send the data to the artificial intelligence control terminal through the Internet. The control terminal integrates the executive terminal information, time information, and environmental information to decide whether to generate electricity normally and then whether to convert the converted electrical energy into the grid or store it in the battery pack. When the power generation environment is abnormal, the control terminal authorizes the protection strategy, the power generation device executive terminal stops power generation and enters a self-protection posture, and at the same time, the control terminal synchronizes the data with the cloud. At the same time, the system is more intelligent, more adaptive, and longer life.

Keywords: photo-voltaic power generation, the pursuit of light, artificial intelligence, internet of things, photovoltaic array, power management

Procedia PDF Downloads 123
28221 Green Synthesis of Silver and Silver-Gold Alloy Nanoparticle Using Cyanobacteria as Bioreagent

Authors: Piya Roychoudhury, Ruma Pal

Abstract:

Cyanobacteria, commonly known as blue green algae were found to be an effective bioreagent for nanoparticle synthesis. Nowadays silver nanoparticles (AgNPs) are very popular due to their antimicrobial and anti-proliferative activity. To exploit these characters in different biotechnological fields, it is very essential to synthesize more stable, non-toxic nano-silver. For this reason silver-gold alloy (Ag-AuNPs) nanoparticles are of great interest as they are more stable, harder and more effective than single metal nanoparticles. In the present communication we described a simple technique for rapid synthesis of biocompatible AgNP and Ag-AuNP employing cyanobacteria, Leptolyngbya and Lyngbya respectively. For synthesis of AgNP the biomass of Leptolyngbya valderiana (200 mg Fresh weight) was exposed to 9 mM AgNO3 solution (pH 4). For synthesis of Ag-AuNP Lyngbya majuscula (200 mg Fresh weight) was exposed to equimolar solution of hydrogen tetra-auro chlorate and silver nitrate (1mM, pH 4). After 72 hrs of exposure thallus of Leptolyngyba turned brown in color and filaments of Lyngbya turned pink in color that indicated synthesis of nanoparticles. The produced particles were extracted from the cyanobacterial biomass using nano-capping agent, sodium citrate. Firstly, extracted brown and pink suspensions were taken for Energy Dispersive X-ray (EDAX) analysis to confirm the presence of silver in brown suspension and presence of both gold and silver in pink suspension. Extracted nanoparticles showed a distinct single plasmon band (AgNP at 411 nm; Ag-Au NP at 481 nm) in Uv-vis spectroscopy. It was revealed from Transmission electron microscopy (TEM) that all the synthesized particles were spherical in nature with a size range of ~2-25 nm. In X-ray powder diffraction (XRD) analysis four intense peaks appeared at 38.2°, 44.5°, 64.8°and 77.8° which confirmed the crystallographic nature of synthesized particles. Presence of different functional groups viz. N-H, C=C, C–O, C=O on the surface of nanoparticles were recorded by Fourier transform infrared spectroscopy (FTIR). Scanning Electron microscopy (SEM) images showed the surface topography of metal treated filaments of cyanobacteria. The stability of the particles was observed by Zeta potential study. Antibiotic property of synthesized particles was tested by Agar well diffusion method against gram negative bacteria Pseudomonas aeruginosa. Overall, this green-technique requires low energy, less manufacturing cost and produces rapidly eco-friendly metal nanoparticles.

Keywords: cyanobacteria, silver nanoparticles, silver-gold alloy nanoparticles, spectroscopy

Procedia PDF Downloads 323
28220 The Maps of Meaning (MoM) Consciousness Theory

Authors: Scott Andersen

Abstract:

Perhaps simply and rather unadornedly, consciousness is having multiple goals for action and the continuously adjudication of such goals to implement action, referred to as the Maps of Meaning (MoM) Consciousness Theory. The MoM theory triangulates through three parallel corollaries, action (behavior), mechanism (morphology/pathophysiology), and goals (teleology). (1) An organism’s consciousness contains a fluid, nested goals. These goals are not intentionality, but intersectionality, embodiment meeting the world. i.e., Darwinian inclusive fitness or randomization, then survival of the fittest. These goals form via gradual descent under inclusive fitness, the goals being the abstraction of a ‘match’ between the evolutionary environment and organism. Human consciousness implements the brain efficiency hypothesis, genetics, epigenetics, and experience crystallize efficiencies, not necessitating best or objective but fitness, i.e., perceived efficiency based on one’s adaptive environment. These efficiencies are objectively arbitrary, but determine the operation and level of one’s consciousness, termed extreme thrownness. Since inclusive fitness drives efficiencies in physiologic mechanism, morphology and behavior (action) and originates one’s goals, embodiment is necessarily entangled to human consciousness as its the intersection of mechanism or action (both necessitating embodiment) occurring in the world that determines fitness. Perception is the operant process of consciousness and is the consciousness’ de facto goal adjudication process. Goal operationalization is fundamentally efficiency-based via one’s unique neuronal mapping as a byproduct of genetics, epigenetics, and experience. Perception involves information intake and information discrimination, equally underpinned by efficiencies of inclusive fitness via extreme thrownness. Perception isn’t a ‘frame rate,’ but Bayesian priors of efficiency based on one’s extreme thrownness. Consciousness and human consciousness is a modular (i.e., a scalar level of richness, which builds up like building blocks) and dimensionalized (i.e., cognitive abilities become possibilities as emergent phenomena at various modularities, like stratified factors in factor analysis). The meta dimensions of human consciousness seemingly include intelligence quotient, personality (five-factor model), richness of perception intake, and richness of perception discrimination, among other potentialities. Future consciousness research should utilize factor analysis to parse modularities and dimensions of human consciousness and animal models.

Keywords: consciousness, perception, prospection, embodiment

Procedia PDF Downloads 59
28219 Effects of Carbon Dioxide on the Sensory of Pumpkin seed and Its Toxicity Against Oryzaephilus mercator

Authors: Reza Sadeghi

Abstract:

Carbon dioxide treatment is one of the new methods for storage pest control. It can be used to replace chemical approaches. In the present study, the mortalities of Oryzaephilus mercator as the key pest of stored products, especially nuts, were studied after being exposed to different CO2 pressures (0.1, 0.2, 0.3, 0.4 and 0.5 bar) within 24 hours. The mortality percentages of O. mercator increased with an increase in CO2 pressure. The results obtained from experiments on the qualitative characteristics of the studied dates through the sensory test revealed that CO2 pressures did not affect their aroma, color, crispness, firmness, and overall acceptance. Therefore, it could be concluded that the atmospheric CO2 gas provided a cost-effective and environmentally friendly method for controlling the insect pests of pumpkin seed, besides preserving their sensory and quality properties.

Keywords: carbon dioxide, control, seed, qualitative characteristics

Procedia PDF Downloads 113
28218 Synthesis of Magnetic Plastic Waste-Reduced Graphene Oxide Composite and Its Application in Dye Adsorption from Aqueous Solution

Authors: Pamphile Ndagijimana, Xuejiao Liu, Zhiwei Li, Yin Wang

Abstract:

The valorization of plastic wastes, as a mitigation strategy, is attracting the researchers’ attention since these wastes have raised serious environmental concerns. Plastic wastes have been reported to adsorb the organic pollutants in the water environment and to be the main vector of those pollutants in the aquatic environment, especially dyes, as a serious water pollution concern. Recycling technologies of plastic wastes such as landfills, incineration, and energy recovery have been adopted to manage those wastes before getting exposed to the environment. However, they are far from being widely accepted due to their related environmental pollution, lack of space for the landfill as well as high cost. Therefore, modification is necessary for green plastic adsorbent in water applications. Current routes for plastic modification into adsorbents are based on the combustion method, but they have weaknesses of air pollution as well as high cost. Thus, the green strategy for plastic modification into adsorbents is highly required. Furthermore, recent researchers recommended that if plastic wastes are combined with other solid carbon materials, they could promote their application in water treatment. Herein, we present new insight into using plastic waste-based materials as future green adsorbents. Magnetic plastic-reduced graphene oxide (MPrGO) composite was synthesized by cross-linking method and applied in removing methylene blue (MB) from an aqueous solution. Furthermore, the following advantages have been achieved: (i) The density of plastic and reduced graphene oxide were enhanced, (ii) no second pollution of black color in solution, (iii) small amount of graphene oxide (1%) was linked on 10g of plastic waste, and the composite presented the high removal efficiency, (iv) easy recovery of adsorbent from water. The low concentration of MB (10-30mg/L) was all removed by 0.3g of MPrGO. Different characterization techniques such as XRD, SEM, FTIR, BET, XPS, and Raman spectroscopy were performed, and the results confirmed a conjugation between plastic waste and graphene oxide. This MPrGO composite presented a good prospect for the valorization of plastic waste, and it is a promising composite material in water treatment.

Keywords: plastic waste, graphene oxide, dye, adsorption

Procedia PDF Downloads 89
28217 A Convergent Interacting Particle Method for Computing Kpp Front Speeds in Random Flows

Authors: Tan Zhang, Zhongjian Wang, Jack Xin, Zhiwen Zhang

Abstract:

We aim to efficiently compute the spreading speeds of reaction-diffusion-advection (RDA) fronts in divergence-free random flows under the Kolmogorov-Petrovsky-Piskunov (KPP) nonlinearity. We study a stochastic interacting particle method (IPM) for the reduced principal eigenvalue (Lyapunov exponent) problem of an associated linear advection-diffusion operator with spatially random coefficients. The Fourier representation of the random advection field and the Feynman-Kac (FK) formula of the principal eigenvalue (Lyapunov exponent) form the foundation of our method implemented as a genetic evolution algorithm. The particles undergo advection-diffusion and mutation/selection through a fitness function originated in the FK semigroup. We analyze the convergence of the algorithm based on operator splitting and present numerical results on representative flows such as 2D cellular flow and 3D Arnold-Beltrami-Childress (ABC) flow under random perturbations. The 2D examples serve as a consistency check with semi-Lagrangian computation. The 3D results demonstrate that IPM, being mesh-free and self-adaptive, is simple to implement and efficient for computing front spreading speeds in the advection-dominated regime for high-dimensional random flows on unbounded domains where no truncation is needed.

Keywords: KPP front speeds, random flows, Feynman-Kac semigroups, interacting particle method, convergence analysis

Procedia PDF Downloads 46
28216 An Impairment of Spatiotemporal Gait Adaptation in Huntington's Disease when Navigating around Obstacles

Authors: Naznine Anwar, Kim Cornish, Izelle Labuschagne, Nellie Georgiou-Karistianis

Abstract:

Falls and subsequent injuries are common features in symptomatic Huntington’s disease (symp-HD) individuals. As part of daily walking, navigating around obstacles may incur a greater risk of falls in symp-HD. We designed obstacle-crossing experiment to examine adaptive gait dynamics and to identify underlying spatiotemporal gait characteristics that could increase the risk of falling in symp-HD. This experiment involved navigating around one or two ground-based obstacles under two conditions (walking while navigating around one obstacle, and walking while navigating around two obstacles). A total of 32 participants were included, 16 symp-HD and 16 healthy controls with age and sex matched. We used a GAITRite electronic walkway to examine the spatiotemporal gait characteristics and inter-trail gait variability when participants walked at their preferable speed. A minimum of six trials were completed which were performed for baseline free walk and also for each and every condition during navigating around the obstacles. For analysis, we separated all walking steps into three phases as approach steps, navigating steps and recovery steps. The mean and inter-trail variability (within participant standard deviation) for each step gait variable was calculated across the six trails. We found symp-HD individuals significantly decreased their gait velocity and step length and increased step duration variability during the navigating steps and recovery steps compared with approach steps. In contrast, HC individuals showed less difference in gait velocity, step time and step length variability from baseline in both respective conditions as well as all three approaches. These findings indicate that increasing spatiotemporal gait variability may be a possible compensatory strategy that is adopted by symp-HD individuals to effectively navigate obstacles during walking. Such findings may offer benefit to clinicians in the development of strategies for HD individuals to improve functional outcomes in the home and hospital based rehabilitation program.

Keywords: Huntington’s disease, gait variables, navigating around obstacle, basal ganglia dysfunction

Procedia PDF Downloads 443
28215 A Dual Channel Optical Sensor for Norepinephrine via Situ Generated Silver Nanoparticles

Authors: Shalini Menon, K. Girish Kumar

Abstract:

Norepinephrine (NE) is one of the naturally occurring catecholamines which act both as a neurotransmitter and a hormone. Catecholamine levels are used for the diagnosis and regulation of phaeochromocytoma, a neuroendocrine tumor of the adrenal medulla. The development of simple, rapid and cost-effective sensors for NE still remains a great challenge. Herein, a dual-channel sensor has been developed for the determination of NE. A mixture of AgNO₃, NaOH, NH₃.H₂O and cetrimonium bromide in appropriate concentrations was taken as the working solution. To the thoroughly vortexed mixture, an appropriate volume of NE solution was added. After a particular time, the fluorescence and absorbance were measured. Fluorescence measurements were made by exciting at a wavelength of 400 nm. A dual-channel optical sensor has been developed for the colorimetric as well as the fluorimetric determination of NE. Metal enhanced fluorescence property of nanoparticles forms the basis of the fluorimetric detection of this assay, whereas the appearance of brown color in the presence of NE leads to colorimetric detection. Wide linear ranges and sub-micromolar detection limits were obtained using both the techniques. Moreover, the colorimetric approach was applied for the determination of NE in synthetic blood serum and the results obtained were compared with the classic high-performance liquid chromatography (HPLC) method. Recoveries between 97% and 104% were obtained using the proposed method. Based on five replicate measurements, relative standard deviation (RSD) for NE determination in the examined synthetic blood serum was found to be 2.3%. This indicates the reliability of the proposed sensor for real sample analysis.

Keywords: norepinephrine, colorimetry, fluorescence, silver nanoparticles

Procedia PDF Downloads 113
28214 Investigating the Influence of Activation Functions on Image Classification Accuracy via Deep Convolutional Neural Network

Authors: Gulfam Haider, sana danish

Abstract:

Convolutional Neural Networks (CNNs) have emerged as powerful tools for image classification, and the choice of optimizers profoundly affects their performance. The study of optimizers and their adaptations remains a topic of significant importance in machine learning research. While numerous studies have explored and advocated for various optimizers, the efficacy of these optimization techniques is still subject to scrutiny. This work aims to address the challenges surrounding the effectiveness of optimizers by conducting a comprehensive analysis and evaluation. The primary focus of this investigation lies in examining the performance of different optimizers when employed in conjunction with the popular activation function, Rectified Linear Unit (ReLU). By incorporating ReLU, known for its favorable properties in prior research, the aim is to bolster the effectiveness of the optimizers under scrutiny. Specifically, we evaluate the adjustment of these optimizers with both the original Softmax activation function and the modified ReLU activation function, carefully assessing their impact on overall performance. To achieve this, a series of experiments are conducted using a well-established benchmark dataset for image classification tasks, namely the Canadian Institute for Advanced Research dataset (CIFAR-10). The selected optimizers for investigation encompass a range of prominent algorithms, including Adam, Root Mean Squared Propagation (RMSprop), Adaptive Learning Rate Method (Adadelta), Adaptive Gradient Algorithm (Adagrad), and Stochastic Gradient Descent (SGD). The performance analysis encompasses a comprehensive evaluation of the classification accuracy, convergence speed, and robustness of the CNN models trained with each optimizer. Through rigorous experimentation and meticulous assessment, we discern the strengths and weaknesses of the different optimization techniques, providing valuable insights into their suitability for image classification tasks. By conducting this in-depth study, we contribute to the existing body of knowledge surrounding optimizers in CNNs, shedding light on their performance characteristics for image classification. The findings gleaned from this research serve to guide researchers and practitioners in making informed decisions when selecting optimizers and activation functions, thus advancing the state-of-the-art in the field of image classification with convolutional neural networks.

Keywords: deep neural network, optimizers, RMsprop, ReLU, stochastic gradient descent

Procedia PDF Downloads 125
28213 Feeding Value Improvement of Rice Straw Fermented by Spent Mushroom Substrate on Growth and Lactating Performance of Dairy Goat

Authors: G. J. Fan, T. T. Lee, M. H. Chen, T. F. Shiao, B. Yu, C. F. Lee

Abstract:

Rice straw with poor feed quality and spent mushroom substrate are both the most abundant agricultural residues in Taiwan. Edible mushrooms from white rot fungi possess lignocellulase activity. It was expected to improve the feeding value of rice straw for ruminant by solid-state fermentation pretreatment using spent mushroom substrate. Six varieties or subspecies of spent edible mushrooms (Pleurotus ostreatus (blue or white color), P. sajor-caju, P. citrinopileatus, P. eryngii and Ganoderma lucidium) substrate were evaluated in solid-state fermentation process with rice straw for 8 wks. Quality improvement of fermented rice straw was determined by its in vitro digestibility, lignocellulose degradability, and cell wall breakdown checked by scanning electron microscope. Results turned out that Pleurotus ostreatus (white color) and P. sajor-caju had the better lignocellulose degradation effect than the others and was chosen for advance in vivo study. Rice straw fermented with spent Pleurotus ostreatus or Pleurotus sajor-caju mushroom substrate 8 wks was prepared for growing and lactating feeding trials of dairy goat, respectively. Pangolagrass hay at 15% diet dry matter was the control diet. Fermented or original rice straw was added to substitute pangolagrass hay in both feeding trials. A total of 30 head of Alpine castrated ram were assigned into three groups for 11 weeks, 5 pens (2 head/pen) each group. A total of 21 head of Saanen and Alpine goats were assigned into three treatments and individually fed in two repeat lactating trials with 28-d each. In castrated ram study, results showed that fermented rice straw by spent Pleurotus ostreatus mushroom substrate attributed the higher daily dry matter intakes (DMI, 1.53 vs. 1.20 kg) and body weight gain (138 vs. 101 g) than goats fed original rice straw. DMI (2.25 vs. 1.81 kg) and milk yield (3.31 vs. 3.02 kg) of lactating goats fed control pangolagrass diet and fermented rice straw by spent Pleurotus sajor-caju mushroom substrate were also higher than those fed original rice straw diet (P < 0.05). Milk compositions, milk fat, protein, total solid and lactose, were similar among treatments. In conclusion, solid-state fermentation by spent Pleurotus ostreatus or Pleurotus sajor-caju mushroom substrate could effectively improve the feeding value of rice straw. Fermented rice straw is a good alternative fiber feed resource for growing and lactating dairy goats and 15% in diet dry matter is recommended.

Keywords: feeding value, fermented rice straw, growing and lactating dairy goat, spent Pleurotus ostreatus and Pleurotus sajor-caju mushroom substrate

Procedia PDF Downloads 174
28212 Cross-Layer Design of Event-Triggered Adaptive OFDMA Resource Allocation Protocols with Application to Vehicle Clusters

Authors: Shaban Guma, Naim Bajcinca

Abstract:

We propose an event-triggered algorithm for the solution of a distributed optimization problem by means of the projected subgradient method. Thereby, we invoke an OFDMA resource allocation scheme by applying an event-triggered sensitivity analysis at the access point. The optimal resource assignment of the subcarriers to the involved wireless nodes is carried out by considering the sensitivity analysis of the overall objective function as defined by the control of vehicle clusters with respect to the information exchange between the nodes.

Keywords: consensus, cross-layer, distributed, event-triggered, multi-vehicle, protocol, resource, OFDMA, wireless

Procedia PDF Downloads 331
28211 6D Posture Estimation of Road Vehicles from Color Images

Authors: Yoshimoto Kurihara, Tad Gonsalves

Abstract:

Currently, in the field of object posture estimation, there is research on estimating the position and angle of an object by storing a 3D model of the object to be estimated in advance in a computer and matching it with the model. However, in this research, we have succeeded in creating a module that is much simpler, smaller in scale, and faster in operation. Our 6D pose estimation model consists of two different networks – a classification network and a regression network. From a single RGB image, the trained model estimates the class of the object in the image, the coordinates of the object, and its rotation angle in 3D space. In addition, we compared the estimation accuracy of each camera position, i.e., the angle from which the object was captured. The highest accuracy was recorded when the camera position was 75°, the accuracy of the classification was about 87.3%, and that of regression was about 98.9%.

Keywords: 6D posture estimation, image recognition, deep learning, AlexNet

Procedia PDF Downloads 155
28210 Adaptive Routing Protocol for Dynamic Wireless Sensor Networks

Authors: Fayez Mostafa Alhamoui, Adnan Hadi Mahdi Al- Helali

Abstract:

The main issue in designing a wireless sensor network (WSN) is the finding of a proper routing protocol that complies with the several requirements of high reliability, short latency, scalability, low power consumption, and many others. This paper proposes a novel routing algorithm that complies with these design requirements. The new routing protocol divides the WSN into several sub-networks and each sub-network is divided into several clusters. This division is designed to reduce the number of radio transmission and hence decreases the power consumption. The network division may be changed dynamically to adapt with the network changes and allows the realization of the design requirements.

Keywords: wireless sensor networks, routing protocols, AD HOC topology, cluster, sub-network, WSN design requirements

Procedia PDF Downloads 537
28209 Biostratigraphy of Neogene and Quaternary Deposits of the West Turkmen Depression

Authors: Arzu Javadova

Abstract:

The complex of sedimentary deposits that make up the West Turkmen Basin is almost completely hidden under the Quaternary formations. The most ancient deposits emerging on the surface in some places are the deposits of the Red Color Suite of the Pliocene. Miocene deposits are exposed only at the Western end of the Kopet Dag. The main object of stratigraphic, including micropaleontological studies, were the deposits of the Quaternary and Pliocene forming marine and coastal structures. The identified stratigraphic units have certain characteristic Ostracod complexes. The fauna of the Ostracod acquires special significance in the stratification of Neogene and Quaternary deposits. Ostracods of the Neogene, Pliocene and Quaternary deposits of the West Turkmen depression are represented by a large part of the species common in the corresponding deposits of Azerbaijan and Iran.

Keywords: neogene, quaternary, turkmenistan, south caspian basin, ostracoda, foraminifera, biostratigraphy, paleontology

Procedia PDF Downloads 62
28208 Engage, Connect, Empower: Agile Approach in the University Students' Education

Authors: D. Bjelica, T. Slavinski, V. Vukimrovic, D. Pavlovic, D. Bodroza, V. Dabetic

Abstract:

Traditional methods and techniques used in higher education may be significantly persuasive on the university students' perception about quality of the teaching process. Students’ satisfaction with the university experience may be affected by chosen educational approaches. Contemporary project management trends recognize agile approaches' beneficial, so modern practice highlights their usage, especially in the IT industry. A key research question concerns the possibility of applying agile methods in youth education. As agile methodology pinpoint iteratively-incremental delivery of results, its employment could be remarkably fruitful in education. This paper demonstrates the agile concept's application in the university students’ education through the continuous delivery of student solutions. Therefore, based on the fundamental values and principles of the agile manifest, paper will analyze students' performance and learned lessons in their encounter with the agile environment. The research is based on qualitative and quantitative analysis that includes sprints, as preparation and realization of student tasks in shorter iterations. Consequently, the performance of student teams will be monitored through iterations, as well as the process of adaptive planning and realization. Grounded theory methodology has been used in this research, as so as descriptive statistics and Man Whitney and Kruskal Wallis test for group comparison. Developed constructs of the model will be showcase through qualitative research, then validated through a pilot survey, and eventually tested as a concept in the final survey. The paper highlights the variability of educational curricula based on university students' feedbacks, which will be collected at the end of every sprint and indicates to university students' satisfaction inconsistency according to approaches applied in education. Values delivered by the lecturers will also be continuously monitored; thus, it will be prioritizing in order to students' requests. Minimal viable product, as the early delivery of results, will be particularly emphasized in the implementation process. The paper offers both theoretical and practical implications. This research contains exceptional lessons that may be applicable by educational institutions in curriculum creation processes, or by lecturers in curriculum design and teaching. On the other hand, they can be beneficial regarding university students' satisfaction increscent in respect of teaching styles, gained knowledge, or even educational content.

Keywords: academic performances, agile, high education, university students' satisfaction

Procedia PDF Downloads 129
28207 Determining the Thermal Performance and Comfort Indices of a Naturally Ventilated Room with Reduced Density Reinforced Concrete Wall Construction over Conventional M-25 Grade Concrete

Authors: P. Crosby, Shiva Krishna Pavuluri, S. Rajkumar

Abstract:

Purpose: Occupied built-up space can be broadly classified as air-conditioned and naturally ventilated. Regardless of the building type, the objective of all occupied built-up space is to provide a thermally acceptable environment for human occupancy. Considering this aspect, air-conditioned spaces allow a greater degree of flexibility to control and modulate the comfort parameters during the operation phase. However, in the case of naturally ventilated space, a number of design features favoring indoor thermal comfort should be mandatorily conceptualized starting from the design phase. One such primary design feature that requires to be prioritized is, selection of building envelope material, as it decides the flow of energy from outside environment to occupied spaces. Research Methodology: In India and many countries across globe, the standardized material used for building envelope is re-enforced concrete (i.e. M-25 grade concrete). The comfort inside the RC built environment for warm & humid climate (i.e. mid-day temp of 30-35˚C, diurnal variation of 5-8˚C & RH of 70-90%) is unsatisfying to say the least. This study is mainly focused on reviewing the impact of mix design of conventional M25 grade concrete on inside thermal comfort. In this mix design, air entrainment in the range of 2000 to 2100 kg/m3 is introduced to reduce the density of M-25 grade concrete. Thermal performance parameters & indoor comfort indices are analyzed for the proposed mix and compared in relation to the conventional M-25 grade. There are diverse methodologies which govern indoor comfort calculation. In this study, three varied approaches specifically a) Indian Adaptive Thermal comfort model, b) Tropical Summer Index (TSI) c) Air temperature less than 33˚C & RH less than 70% to calculate comfort is adopted. The data required for the thermal comfort study is acquired by field measurement approach (i.e. for the new mix design) and simulation approach by using design builder (i.e. for the conventional concrete grade). Findings: The analysis points that the Tropical Summer Index has a higher degree of stringency in determining the occupant comfort band whereas also providing a leverage in thermally tolerable band over & above other methodologies in the context of the study. Another important finding is the new mix design ensures a 10% reduction in indoor air temperature (IAT) over the outdoor dry bulb temperature (ODBT) during the day. This translates to a significant temperature difference of 6 ˚C IAT and ODBT.

Keywords: Indian adaptive thermal comfort, indoor air temperature, thermal comfort, tropical summer index

Procedia PDF Downloads 320
28206 Physicochemical and Sensorial Evaluation of Astringency Reduction in Cashew Apple (Annacardium occidentale L.) Powder Processing in Cookie Elaboration

Authors: Elida Gastelum-Martinez, Neith A. Pacheco-Lopez, Juan L. Morales-Landa

Abstract:

Cashew agroindustry obtained from cashew apple crop (Anacardium occidentale L.) generates large amounts of unused waste in Campeche, Mexico. Despite having a high content of nutritional compounds such as ascorbic acid, carotenoids, fiber, carbohydrates, and minerals, it is not consumed due to its astringent sensation. The aim of this work was to develop a processing method for cashew apple waste in order to obtain a powder with reduced astringency able to be used as an additive in the food industry. The processing method consisted first in reducing astringency by inducing tannins from cashew apple peel to react and form precipitating complexes with a colloid rich in proline and histidine. Then cashew apples were processed to obtain a dry powder. Astringency reduction was determined by total phenolic content and evaluated by sensorial analysis in cashew-apple-powder based cookies. Total phenolic content in processed powders showed up to 72% lower concentration compared to control samples. The sensorial evaluation indicated that cookies baked using cashew apple powder with reduced astringency were 96.8% preferred. Sensorial characteristics like texture, color and taste were also well-accepted attributes. In conclusion, the method applied for astringency reduction is a viable tool to produce cashew apple powder with desirable sensorial properties to be used in the development of food products.

Keywords: astringency reduction, cashew apple waste, food industry, sensorial evaluation

Procedia PDF Downloads 351
28205 Unsupervised Neural Architecture for Saliency Detection

Authors: Natalia Efremova, Sergey Tarasenko

Abstract:

We propose a novel neural network architecture for visual saliency detections, which utilizes neuro physiologically plausible mechanisms for extraction of salient regions. The model has been significantly inspired by recent findings from neuro physiology and aimed to simulate the bottom-up processes of human selective attention. Two types of features were analyzed: color and direction of maximum variance. The mechanism we employ for processing those features is PCA, implemented by means of normalized Hebbian learning and the waves of spikes. To evaluate performance of our model we have conducted psychological experiment. Comparison of simulation results with those of experiment indicates good performance of our model.

Keywords: neural network models, visual saliency detection, normalized Hebbian learning, Oja's rule, psychological experiment

Procedia PDF Downloads 348
28204 Automatic Furrow Detection for Precision Agriculture

Authors: Manpreet Kaur, Cheol-Hong Min

Abstract:

The increasing advancement in the robotics equipped with machine vision sensors applied to precision agriculture is a demanding solution for various problems in the agricultural farms. An important issue related with the machine vision system concerns crop row and weed detection. This paper proposes an automatic furrow detection system based on real-time processing for identifying crop rows in maize fields in the presence of weed. This vision system is designed to be installed on the farming vehicles, that is, submitted to gyros, vibration and other undesired movements. The images are captured under image perspective, being affected by above undesired effects. The goal is to identify crop rows for vehicle navigation which includes weed removal, where weeds are identified as plants outside the crop rows. The images quality is affected by different lighting conditions and gaps along the crop rows due to lack of germination and wrong plantation. The proposed image processing method consists of four different processes. First, image segmentation based on HSV (Hue, Saturation, Value) decision tree. The proposed algorithm used HSV color space to discriminate crops, weeds and soil. The region of interest is defined by filtering each of the HSV channels between maximum and minimum threshold values. Then the noises in the images were eliminated by the means of hybrid median filter. Further, mathematical morphological processes, i.e., erosion to remove smaller objects followed by dilation to gradually enlarge the boundaries of regions of foreground pixels was applied. It enhances the image contrast. To accurately detect the position of crop rows, the region of interest is defined by creating a binary mask. The edge detection and Hough transform were applied to detect lines represented in polar coordinates and furrow directions as accumulations on the angle axis in the Hough space. The experimental results show that the method is effective.

Keywords: furrow detection, morphological, HSV, Hough transform

Procedia PDF Downloads 231
28203 Evolutionary Genomic Analysis of Adaptation Genomics

Authors: Agostinho Antunes

Abstract:

The completion of the human genome sequencing in 2003 opened a new perspective into the importance of whole genome sequencing projects, and currently multiple species are having their genomes completed sequenced, from simple organisms, such as bacteria, to more complex taxa, such as mammals. This voluminous sequencing data generated across multiple organisms provides also the framework to better understand the genetic makeup of such species and related ones, allowing to explore the genetic changes underlining the evolution of diverse phenotypic traits. Here, recent results from our group retrieved from comparative evolutionary genomic analyses of varied species will be considered to exemplify how gene novelty and gene enhancement by positive selection might have been determinant in the success of adaptive radiations into diverse habitats and lifestyles.

Keywords: adaptation, animals, evolution, genomics

Procedia PDF Downloads 429
28202 Wash Fastness of Textile Fibers Dyed with Natural Dye from Eucalyptus Wood Steaming Waste

Authors: Ticiane Rossi, Maurício C. Araújo, José O. Brito, Harold S. Freeman

Abstract:

Natural dyes are gaining interest due their expected low risk to human health and to the environment. In this study, the wash fastness of a natural coloring matter from the liquid waste produced in the steam treatment of eucalyptus wood in textile fabrics was investigated. Specifically, eucalyptus wood extract was used to dye cotton, nylon and wool in an exhaust dyeing process without the addition of the traditional mordanting agents and then submitted to wash fastness analysis. The resulting dyed fabrics were evaluated for color fastness. It was found that wash fastness of dyed fabrics was very good to cotton and excellent to nylon and wool.

Keywords: eucalyptus, natural dye, textile fibers, wash fastness

Procedia PDF Downloads 614
28201 Educational Leadership and Artificial Intelligence

Authors: Sultan Ghaleb Aldaihani

Abstract:

- The environment in which educational leadership takes place is becoming increasingly complex due to factors like globalization and rapid technological change. - This is creating a "leadership gap" where the complexity of the environment outpaces the ability of leaders to effectively respond. - Educational leadership involves guiding teachers and the broader school system towards improved student learning and achievement. 2. Implications of Artificial Intelligence (AI) in Educational Leadership: - AI has great potential to enhance education, such as through intelligent tutoring systems and automating routine tasks to free up teachers. - AI can also have significant implications for educational leadership by providing better information and data-driven decision-making capabilities. - Computer-adaptive testing can provide detailed, individualized data on student learning that leaders can use for instructional decisions and accountability. 3. Enhancing Decision-Making Processes: - Statistical models and data mining techniques can help identify at-risk students earlier, allowing for targeted interventions. - Probability-based models can diagnose students likely to drop out, enabling proactive support. - These data-driven approaches can make resource allocation and decision-making more effective. 4. Improving Efficiency and Productivity: - AI systems can automate tasks and change processes to improve the efficiency of educational leadership and administration. - Integrating AI can free up leaders to focus more on their role's human, interactive elements.

Keywords: Education, Leadership, Technology, Artificial Intelligence

Procedia PDF Downloads 43
28200 The Method for Synthesis of Chromium Oxide Nano Particles as Increasing Color Intensity on Industrial Ceramics

Authors: Bagher Aziz Kalantari, Javad Rafiei, Mohamad Reza Talei Bavil Olyai

Abstract:

Disclosed is a method of preparing a pigmentary chromium oxide nano particles having 50 percent particle size less than about 100nm. According to the disclosed method, a substantially dry solid composition of potassium dichromate and carbon active is heated in CO2 atmosphere to a temperature of about 600ºc for 1hr. Thereafter, the solid Cr2O3 product was washed twice with distilled water. The other aim of this study is to assess both the colouring performance and the potential of nano-pigments in the ceramic tile decoration. The rationable consists in nano-pigment application in several ceramics, including a comparison of colour performance with conventional micro-pigments.

Keywords: green chromium oxide, nano particles, colour performances, particle size

Procedia PDF Downloads 335
28199 NK Cells Expansion Model from PBMC Led to a Decrease of CD4+ and an Increase of CD8+ and CD25+CD127- T-Reg Lymphocytes in Patients with Ovarian Neoplasia

Authors: Rodrigo Fernandes da Silva, Daniela Maira Cardozo, Paulo Cesar Martins Alves, Sophie Françoise Derchain, Fernando Guimarães

Abstract:

T-reg lymphocytes are important for the control of peripheral tolerance. They control the adaptive immune system and prevent autoimmunity through its suppressive action on CD4+ and CD8+ lymphocytes. The suppressive action also includes B lymphocytes, dendritic cells, monocytes/macrophages and recently, studies have shown that T-reg are also able to inhibit NK cells, therefore they exert their control of the immune response from innate to adaptive response. Most tumors express self-ligands, therefore it is believed that T-reg cells induce tolerance of the immune system, hindering the development of successful immunotherapies. T-reg cells have been linked to the suppression mechanisms of the immune response against tumors, including ovarian cancer. The goal of this study was to disclose the sub-population of the expanded CD3+ lymphocytes reported by previous studies, using the long-term culture model designed by Carlens et al 2001, to generate effector cell suspensions enriched with cytotoxic CD3-CD56+ NK cells, from PBMC of ovarian neoplasia patients. Methods and Results: Blood was collected from 12 patients with ovarian neoplasia after signed consent: 7 benign (Bng) and 5 malignant (Mlg). Mononuclear cells were separated by Ficoll-Paque gradient. Long-term culture was conducted by a 21 day culturing process with SCGM CellGro medium supplemented with anti-CD3 (10ng/ml, first 5 days), IL-2 (1000UI/ml) and FBS (10%). After 21 days of expansion, there was an increase in the population of CD3+ lymphocytes in the benign and malignant group. Within CD3+ population, there was a significant decrease in the population of CD4+ lymphocytes in the benign (median Bgn D-0=73.68%, D-21=21.05%) (p<0.05) and malignant (median Mlg D-0=64.00%, D-21=11.97%) (p < 0.01) group. Inversely, after 21 days of expansion, there was an increase in the population of CD8+ lymphocytes within the CD3+ population in the benign (median Bgn D-0=16.80%, D-21=38.56%) and malignant (median Mlg D-0=27.12%, D-21=72.58%) group. However, this increase was only significant on the malignant group (p<0.01). Within the CD3+CD4+ population, there was a significant increase (p < 0.05) in the population of T-reg lymphocytes in the benign (median Bgn D-0=9.84%, D-21=39.47%) and malignant (median Mlg D-0=3.56%, D-21=16.18%) group. Statistical analysis inter groups was performed by Kruskal-Wallis test and intra groups by Mann Whitney test. Conclusion: The CD4+ and CD8+ sub-population of CD3+ lymphocytes shifts with the culturing process. This might be due to the process of the immune system to produce a cytotoxic response. At the same time, T-reg lymphocytes increased within the CD4+ population, suggesting a modulation of the immune response towards cells of the immune system. The expansion of the T-reg population can hinder an immune response against cancer. Therefore, an immunotherapy using this expansion procedure should aim to halt the expansion of T-reg or its immunosuppresion capability.

Keywords: regulatory T cells, CD8+ T cells, CD4+ T cells, NK cell expansion

Procedia PDF Downloads 451