Search results for: LiDAR processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3778

Search results for: LiDAR processing

2578 An Efficient Clustering Technique for Copy-Paste Attack Detection

Authors: N. Chaitawittanun, M. Munlin

Abstract:

Due to rapid advancement of powerful image processing software, digital images are easy to manipulate and modify by ordinary people. Lots of digital images are edited for a specific purpose and more difficult to distinguish form their original ones. We propose a clustering method to detect a copy-move image forgery of JPEG, BMP, TIFF, and PNG. The process starts with reducing the color of the photos. Then, we use the clustering technique to divide information of measuring data by Hausdorff Distance. The result shows that the purposed methods is capable of inspecting the image file and correctly identify the forgery.

Keywords: image detection, forgery image, copy-paste, attack detection

Procedia PDF Downloads 338
2577 Path-Spin to Spin-Spin Hybrid Quantum Entanglement: A Conversion Protocol

Authors: Indranil Bayal, Pradipta Panchadhyayee

Abstract:

Path-spin hybrid entanglement generated and confined in a single spin-1/2 particle is converted to spin-spin hybrid interparticle entanglement, which finds its important applications in quantum information processing. This protocol uses beam splitter, spin flipper, spin measurement, classical channel, unitary transformations, etc., and requires no collective operation on the pair of particles whose spin variables share complete entanglement after the accomplishment of the protocol. The specialty of the protocol lies in the fact that the path-spin entanglement is transferred between spin degrees of freedom of two separate particles initially possessed by a single party.

Keywords: entanglement, path-spin entanglement, spin-spin entanglement, CNOT operation

Procedia PDF Downloads 198
2576 Detection Characteristics of the Random and Deterministic Signals in Antenna Arrays

Authors: Olesya Bolkhovskaya, Alexey Davydov, Alexander Maltsev

Abstract:

In this paper approach to incoherent signal detection in multi-element antenna array are researched and modeled. Two types of useful signals with unknown wavefront were considered. First one is deterministic (Barker code), the second one is random (Gaussian distribution). The derivation of the sufficient statistics took into account the linearity of the antenna array. The performance characteristics and detecting curves are modeled and compared for different useful signals parameters and for different number of elements of the antenna array. Results of researches in case of some additional conditions can be applied to a digital communications systems.

Keywords: antenna array, detection curves, performance characteristics, quadrature processing, signal detection

Procedia PDF Downloads 405
2575 Building Data Infrastructure for Public Use and Informed Decision Making in Developing Countries-Nigeria

Authors: Busayo Fashoto, Abdulhakeem Shaibu, Justice Agbadu, Samuel Aiyeoribe

Abstract:

Data has gone from just rows and columns to being an infrastructure itself. The traditional medium of data infrastructure has been managed by individuals in different industries and saved on personal work tools; one of such is the laptop. This hinders data sharing and Sustainable Development Goal (SDG) 9 for infrastructure sustainability across all countries and regions. However, there has been a constant demand for data across different agencies and ministries by investors and decision-makers. The rapid development and adoption of open-source technologies that promote the collection and processing of data in new ways and in ever-increasing volumes are creating new data infrastructure in sectors such as lands and health, among others. This paper examines the process of developing data infrastructure and, by extension, a data portal to provide baseline data for sustainable development and decision making in Nigeria. This paper employs the FAIR principle (Findable, Accessible, Interoperable, and Reusable) of data management using open-source technology tools to develop data portals for public use. eHealth Africa, an organization that uses technology to drive public health interventions in Nigeria, developed a data portal which is a typical data infrastructure that serves as a repository for various datasets on administrative boundaries, points of interest, settlements, social infrastructure, amenities, and others. This portal makes it possible for users to have access to datasets of interest at any point in time at no cost. A skeletal infrastructure of this data portal encompasses the use of open-source technology such as Postgres database, GeoServer, GeoNetwork, and CKan. These tools made the infrastructure sustainable, thus promoting the achievement of SDG 9 (Industries, Innovation, and Infrastructure). As of 6th August 2021, a wider cross-section of 8192 users had been created, 2262 datasets had been downloaded, and 817 maps had been created from the platform. This paper shows the use of rapid development and adoption of technologies that facilitates data collection, processing, and publishing in new ways and in ever-increasing volumes. In addition, the paper is explicit on new data infrastructure in sectors such as health, social amenities, and agriculture. Furthermore, this paper reveals the importance of cross-sectional data infrastructures for planning and decision making, which in turn can form a central data repository for sustainable development across developing countries.

Keywords: data portal, data infrastructure, open source, sustainability

Procedia PDF Downloads 97
2574 Grid Pattern Recognition and Suppression in Computed Radiographic Images

Authors: Igor Belykh

Abstract:

Anti-scatter grids used in radiographic imaging for the contrast enhancement leave specific artifacts. Those artifacts may be visible or may cause Moiré effect when a digital image is resized on a diagnostic monitor. In this paper, we propose an automated grid artifacts detection and suppression algorithm which is still an actual problem. Grid artifacts detection is based on statistical approach in spatial domain. Grid artifacts suppression is based on Kaiser bandstop filter transfer function design and application avoiding ringing artifacts. Experimental results are discussed and concluded with description of advantages over existing approaches.

Keywords: grid, computed radiography, pattern recognition, image processing, filtering

Procedia PDF Downloads 283
2573 Fermentation of Tolypocladium inflatum to Produce Cyclosporin in Dairy Waste Culture Medium

Authors: Fereshteh Falah, Alireza Vasiee, Farideh Tabatabaei-Yazdi

Abstract:

In this research, we investigated the usage of dairy sludge in the fermentation process and cyclosporin production. This bioactive compound is a metabolite produced by Tolypocladium inflatum. Results showed that about 200 ppm of cyclosporin can be produced in this fermentation. In order to have a proper and specific function, CyA must be free of any impurities, so we need purification. In this downstream processing, we used chromatographic extraction and evaluation of pharmacological activities of cyA. Results showed that the obtained metabolite has very high activity against Aspergilus niger (25mm clear zone). This cyclosporin was isolated for use as an antibiotic. The current research shows that this drug is very vital and commercially very important.

Keywords: fermentation, cyclosporin A, Tolypocladium inflatum, TLC

Procedia PDF Downloads 127
2572 The Composition and Activity of Germinated Broccoli Seeds and Their Extract

Authors: Boris Nemzer, Tania Reyes-Izquierdo, Zbigniew Pietrzkowski

Abstract:

Glucosinolate is a family of glucosides that can be found in a family of brassica vegetables. Upon the damage of the plant, glucosinolate breakdown by an internal enzyme myrosinase (thioglucosidase; EC 3.2.3.1) into isothiocyanates, such as sulforaphane. Sulforaphane is formed by glucoraphanin cleaving the sugar off by myrosinase and rearranged. Sulforaphane nitrile is formed in the same reaction as sulforaphane with the active of epithiospecifier protein (ESP). Most common food processing procedure would break the plant and mix the glucoraphanin and myrosinase together, and the formed sulforaphane would be further degraded. The purpose of this study is to understand the glucoraphanin/sulforaphane and the myrosinase activity of broccoli seeds germinated at a different time and technological processing conditions that keep the activity of the enzyme to form sulforaphane. Broccoli seeds were germinated in the house. Myrosinase activities were tested as the glucose content using glucose assay kit and measured UV-Vis spectrophotometer. Glucosinolates were measured by HPLC/DAD. Sulforaphane was measured using HPLC-DAD and GC/MS. The 6 hr germinated sprouts have a myrosinase activity 32.2 mg glucose/g, which is comparable with 12 and 24 hour germinated seeds and higher than dry seeds. The glucoraphanin content in 6 hour germinated sprouts is 13935 µg/g which is comparable to 24 hour germinated seeds and lower than the dry seeds. GC/MS results show that the amount of sulforaphane is higher than the amount of sulforaphane nitrile in seeds, 6 hour and 24 hour germinated seeds. The ratio of sulforaphane and sulforaphane nitrile is high in 6 hour germinated seeds, which indicates the inactivated ESP in the reaction. After evaluating the results, the short time germinated seeds can be used as the source of glucoraphanin and myrosinase supply to form potential higher sulforaphane content. Broccoli contains glucosinolates, glucoraphanin (4-methylsulfinylbutyl glucosinolate), which is an important metabolite with health-promoting effects. In the pilot clinical study, we observed the effects of a glucosinolates/glucoraphanin-rich extract from short time germinated broccoli seeds on blood adenosine triphosphate (ATP), reactive oxygen species (ROS) and lactate levels. A single dose of 50 mg of broccoli sprouts extract increased blood levels of ATP up to 61% (p=0.0092) during the first 2 hours after the ingestion. Interestingly, this effect was not associated with an increase in blood ROS or lactate. When compared to the placebo group, levels of lactate were reduced by 10% (p=0.006). These results indicate that broccoli germinated seed extract may positively affect the generation of ATP in humans. Due to the preliminary nature of this work and promising results, larger clinical trials are justified.

Keywords: broccoli glucosinolates, glucoraphanin, germinated seeds, myrosinase, adenosine triphosphate

Procedia PDF Downloads 290
2571 Structured-Ness and Contextual Retrieval Underlie Language Comprehension

Authors: Yao-Ying Lai, Maria Pinango, Ashwini Deo

Abstract:

While grammatical devices are essential to language processing, how comprehension utilizes cognitive mechanisms is less emphasized. This study addresses this issue by probing the complement coercion phenomenon: an entity-denoting complement following verbs like begin and finish receives an eventive interpretation. For example, (1) “The queen began the book” receives an agentive reading like (2) “The queen began [reading/writing/etc.…] the book.” Such sentences engender additional processing cost in real-time comprehension. The traditional account attributes this cost to an operation that coerces the entity-denoting complement to an event, assuming that these verbs require eventive complements. However, in closer examination, examples like “Chapter 1 began the book” undermine this assumption. An alternative, Structured Individual (SI) hypothesis, proposes that the complement following aspectual verbs (AspV; e.g. begin, finish) is conceptualized as a structured individual, construed as an axis along various dimensions (e.g. spatial, eventive, temporal, informational). The composition of an animate subject and an AspV such as (1) engenders an ambiguity between an agentive reading along the eventive dimension like (2), and a constitutive reading along the informational/spatial dimension like (3) “[The story of the queen] began the book,” in which the subject is interpreted as a subpart of the complement denotation. Comprehenders need to resolve the ambiguity by searching contextual information, resulting in additional cost. To evaluate the SI hypothesis, a questionnaire was employed. Method: Target AspV sentences such as “Shakespeare began the volume.” were preceded by one of the following types of context sentence: (A) Agentive-biasing, in which an event was mentioned (…writers often read…), (C) Constitutive-biasing, in which a constitutive meaning was hinted (Larry owns collections of Renaissance literature.), (N) Neutral context, which allowed both interpretations. Thirty-nine native speakers of English were asked to (i) rate each context-target sentence pair from a 1~5 scale (5=fully understandable), and (ii) choose possible interpretations for the target sentence given the context. The SI hypothesis predicts that comprehension is harder for the Neutral condition, as compared to the biasing conditions because no contextual information is provided to resolve an ambiguity. Also, comprehenders should obtain the specific interpretation corresponding to the context type. Results: (A) Agentive-biasing and (C) Constitutive-biasing were rated higher than (N) Neutral conditions (p< .001), while all conditions were within the acceptable range (> 3.5 on the 1~5 scale). This suggests that when lacking relevant contextual information, semantic ambiguity decreases comprehensibility. The interpretation task shows that the participants selected the biased agentive/constitutive reading for condition (A) and (C) respectively. For the Neutral condition, the agentive and constitutive readings were chosen equally often. Conclusion: These findings support the SI hypothesis: the meaning of AspV sentences is conceptualized as a parthood relation involving structured individuals. We argue that semantic representation makes reference to spatial structured-ness (abstracted axis). To obtain an appropriate interpretation, comprehenders utilize contextual information to enrich the conceptual representation of the sentence in question. This study connects semantic structure to human’s conceptual structure, and provides a processing model that incorporates contextual retrieval.

Keywords: ambiguity resolution, contextual retrieval, spatial structured-ness, structured individual

Procedia PDF Downloads 333
2570 Comparison of Processing Conditions for Plasticized PVC and PVB

Authors: Michael Tupý, Jaroslav Císař, Pavel Mokrejš, Dagmar Měřínská, Alice Tesaříková-Svobodová

Abstract:

The worldwide problem is that the recycled PVB is wildly stored in landfills. However, PVB have very similar chemical properties such as PVC. Moreover, both of them are used in plasticized form. Thus, the thermal properties of plasticized PVC obtained from primary production and the PVB was obtained by recycling of windshields are compared. It is carried out in order to find degradable conditions and decide if blend of PVB/PVC can be processable together. Tested PVC contained 38 % of plasticizer diisononyl phthalate (DINP) and PVB was plasticized with 28 % of triethylene glycol, bis(2-ethylhexanoate) (3GO). Thermal and thermo-oxidative decomposition of both vinyl polymers are compared such as DSC and OOT analysis. The tensile strength analysis is added.

Keywords: polyvinyl chloride, polyvinyl butyral, recycling, reprocessing, thermal analysis, decomposition

Procedia PDF Downloads 514
2569 Large-Scale Simulations of Turbulence Using Discontinuous Spectral Element Method

Authors: A. Peyvan, D. Li, J. Komperda, F. Mashayek

Abstract:

Turbulence can be observed in a variety fluid motions in nature and industrial applications. Recent investment in high-speed aircraft and propulsion systems has revitalized fundamental research on turbulent flows. In these systems, capturing chaotic fluid structures with different length and time scales is accomplished through the Direct Numerical Simulation (DNS) approach since it accurately simulates flows down to smallest dissipative scales, i.e., Kolmogorov’s scales. The discontinuous spectral element method (DSEM) is a high-order technique that uses spectral functions for approximating the solution. The DSEM code has been developed by our research group over the course of more than two decades. Recently, the code has been improved to run large cases in the order of billions of solution points. Running big simulations requires a considerable amount of RAM. Therefore, the DSEM code must be highly parallelized and able to start on multiple computational nodes on an HPC cluster with distributed memory. However, some pre-processing procedures, such as determining global element information, creating a global face list, and assigning global partitioning and element connection information of the domain for communication, must be done sequentially with a single processing core. A separate code has been written to perform the pre-processing procedures on a local machine. It stores the minimum amount of information that is required for the DSEM code to start in parallel, extracted from the mesh file, into text files (pre-files). It packs integer type information with a Stream Binary format in pre-files that are portable between machines. The files are generated to ensure fast read performance on different file-systems, such as Lustre and General Parallel File System (GPFS). A new subroutine has been added to the DSEM code to read the startup files using parallel MPI I/O, for Lustre, in a way that each MPI rank acquires its information from the file in parallel. In case of GPFS, in each computational node, a single MPI rank reads data from the file, which is specifically generated for the computational node, and send them to other ranks on the node using point to point non-blocking MPI communication. This way, communication takes place locally on each node and signals do not cross the switches of the cluster. The read subroutine has been tested on Argonne National Laboratory’s Mira (GPFS), National Center for Supercomputing Application’s Blue Waters (Lustre), San Diego Supercomputer Center’s Comet (Lustre), and UIC’s Extreme (Lustre). The tests showed that one file per node is suited for GPFS and parallel MPI I/O is the best choice for Lustre file system. The DSEM code relies on heavily optimized linear algebra operation such as matrix-matrix and matrix-vector products for calculation of the solution in every time-step. For this, the code can either make use of its matrix math library, BLAS, Intel MKL, or ATLAS. This fact and the discontinuous nature of the method makes the DSEM code run efficiently in parallel. The results of weak scaling tests performed on Blue Waters showed a scalable and efficient performance of the code in parallel computing.

Keywords: computational fluid dynamics, direct numerical simulation, spectral element, turbulent flow

Procedia PDF Downloads 133
2568 Implementation of Iterative Algorithm for Earthquake Location

Authors: Hussain K. Chaiel

Abstract:

The development in the field of the digital signal processing (DSP) and the microelectronics technology reduces the complexity of the iterative algorithms that need large number of arithmetic operations. Virtex-Field Programmable Gate Arrays (FPGAs) are programmable silicon foundations which offer an important solution for addressing the needs of high performance DSP designer. In this work, Virtex-7 FPGA technology is used to implement an iterative algorithm to estimate the earthquake location. Simulation results show that an implementation based on block RAMB36E1 and DSP48E1 slices of Virtex-7 type reduces the number of cycles of the clock frequency. This enables the algorithm to be used for earthquake prediction.

Keywords: DSP, earthquake, FPGA, iterative algorithm

Procedia PDF Downloads 389
2567 Oleic Acid Enhances Hippocampal Synaptic Efficacy

Authors: Rema Vazhappilly, Tapas Das

Abstract:

Oleic acid is a cis unsaturated fatty acid and is known to be a partially essential fatty acid due to its limited endogenous synthesis during pregnancy and lactation. Previous studies have demonstrated the role of oleic acid in neuronal differentiation and brain phospholipid synthesis. These evidences indicate a major role for oleic acid in learning and memory. Interestingly, oleic acid has been shown to enhance hippocampal long term potentiation (LTP), the physiological correlate of long term synaptic plasticity. However the effect of oleic acid on short term synaptic plasticity has not been investigated. Short term potentiation (STP) is the physiological correlate of short term synaptic plasticity which is the key underlying molecular mechanism of short term memory and neuronal information processing. STP in the hippocampal CA1 region has been known to require the activation of N-methyl-D-aspartate receptors (NMDARs). The NMDAR dependent hippocampal STP as a potential mechanism for short term memory has been a subject of intense interest for the past few years. Therefore in the present study the effect of oleic acid on NMDAR dependent hippocampal STP was determined in mouse hippocampal slices (in vitro) using Multi-electrode array system. STP was induced by weak tetanic Stimulation (one train of 100 Hz stimulations for 0.1s) of the Schaffer collaterals of CA1 region of the hippocampus in slices treated with different concentrations of oleic acid in presence or absence of NMDAR antagonist D-AP5 (30 µM) . Oleic acid at 20 (mean increase in fEPSP amplitude = ~135 % Vs. Control = 100%; P<0.001) and 30 µM (mean increase in fEPSP amplitude = ~ 280% Vs. Control = 100%); P<0.001) significantly enhanced the STP following weak tetanic stimulation. Lower oleic acid concentrations at 10 µM did not modify the hippocampal STP induced by weak tetanic stimulation. The hippocampal STP induced by weak tetanic stimulation was completely blocked by the NMDA receptor antagonist D-AP5 (30µM) in both oleic acid and control treated hippocampal slices. This lead to the conclusion that the hippocampal STP elicited by weak tetanic stimulation and enhanced by oleic acid was NMDAR dependent. Together these findings suggest that oleic acid may enhance the short term memory and neuronal information processing through the modulation of NMDAR dependent hippocampal short-term synaptic plasticity. In conclusion this study suggests the possible role of oleic acid to prevent the short term memory loss and impaired neuronal function throughout development.

Keywords: oleic acid, short-term potentiation, memory, field excitatory post synaptic potentials, NMDA receptor

Procedia PDF Downloads 335
2566 Agenesis of the Corpus Callosum: The Role of Neuropsychological Assessment with Implications to Psychosocial Rehabilitation

Authors: Ron Dick, P. S. D. V. Prasadarao, Glenn Coltman

Abstract:

Agenesis of the corpus callosum (ACC) is a failure to develop corpus callosum - the large bundle of fibers of the brain that connects the two cerebral hemispheres. It can occur as a partial or complete absence of the corpus callosum. In the general population, its estimated prevalence rate is 1 in 4000 and a wide range of genetic, infectious, vascular, and toxic causes have been attributed to this heterogeneous condition. The diagnosis of ACC is often achieved by neuroimaging procedures. Though persons with ACC can perform normally on intelligence tests they generally present with a range of neuropsychological and social deficits. The deficit profile is characterized by poor coordination of motor movements, slow reaction time, processing speed and, poor memory. Socially, they present with deficits in communication, language processing, the theory of mind, and interpersonal relationships. The present paper illustrates the role of neuropsychological assessment with implications to psychosocial management in a case of agenesis of the corpus callosum. Method: A 27-year old left handed Caucasian male with a history of ACC was self-referred for a neuropsychological assessment to assist him in his employment options. Parents noted significant difficulties with coordination and balance at an early age of 2-3 years and he was diagnosed with dyspraxia at the age of 14 years. History also indicated visual impairment, hypotonia, poor muscle coordination, and delayed development of motor milestones. MRI scan indicated agenesis of the corpus callosum with ventricular morphology, widely spaced parallel lateral ventricles and mild dilatation of the posterior horns; it also showed colpocephaly—a disproportionate enlargement of the occipital horns of the lateral ventricles which might be affecting his motor abilities and visual defects. The MRI scan ruled out other structural abnormalities or neonatal brain injury. At the time of assessment, the subject presented with such problems as poor coordination, slowed processing speed, poor organizational skills and time management, and difficulty with social cues and facial expressions. A comprehensive neuropsychological assessment was planned and conducted to assist in identifying the current neuropsychological profile to facilitate the formulation of a psychosocial and occupational rehabilitation programme. Results: General intellectual functioning was within the average range and his performance on memory-related tasks was adequate. Significant visuospatial and visuoconstructional deficits were evident across tests; constructional difficulties were seen in tasks such as copying a complex figure, building a tower and manipulating blocks. Poor visual scanning ability and visual motor speed were evident. Socially, the subject reported heightened social anxiety, difficulty in responding to cues in the social environment, and difficulty in developing intimate relationships. Conclusion: Persons with ACC are known to present with specific cognitive deficits and problems in social situations. Findings from the current neuropsychological assessment indicated significant visuospatial difficulties, poor visual scanning and problems in social interactions. His general intellectual functioning was within the average range. Based on the findings from the comprehensive neuropsychological assessment, a structured psychosocial rehabilitation programme was developed and recommended.

Keywords: agenesis, callosum, corpus, neuropsychology, psychosocial, rehabilitation

Procedia PDF Downloads 276
2565 Regulatory and Economic Challenges of AI Integration in Cyber Insurance

Authors: Shreyas Kumar, Mili Shangari

Abstract:

Integrating artificial intelligence (AI) in the cyber insurance sector represents a significant advancement, offering the potential to revolutionize risk assessment, fraud detection, and claims processing. However, this integration introduces a range of regulatory and economic challenges that must be addressed to ensure responsible and effective deployment of AI technologies. This paper examines the multifaceted regulatory landscape governing AI in cyber insurance and explores the economic implications of compliance, innovation, and market dynamics. AI's capabilities in processing vast amounts of data and identifying patterns make it an invaluable tool for insurers in managing cyber risks. Yet, the application of AI in this domain is subject to stringent regulatory scrutiny aimed at safeguarding data privacy, ensuring algorithmic transparency, and preventing biases. Regulatory bodies, such as the European Union with its General Data Protection Regulation (GDPR), mandate strict compliance requirements that can significantly impact the deployment of AI systems. These regulations necessitate robust data protection measures, ethical AI practices, and clear accountability frameworks, all of which entail substantial compliance costs for insurers. The economic implications of these regulatory requirements are profound. Insurers must invest heavily in upgrading their IT infrastructure, implementing robust data governance frameworks, and training personnel to handle AI systems ethically and effectively. These investments, while essential for regulatory compliance, can strain financial resources, particularly for smaller insurers, potentially leading to market consolidation. Furthermore, the cost of regulatory compliance can translate into higher premiums for policyholders, affecting the overall affordability and accessibility of cyber insurance. Despite these challenges, the potential economic benefits of AI integration in cyber insurance are significant. AI-enhanced risk assessment models can provide more accurate pricing, reduce the incidence of fraudulent claims, and expedite claims processing, leading to overall cost savings and increased efficiency. These efficiencies can improve the competitiveness of insurers and drive innovation in product offerings. However, balancing these benefits with regulatory compliance is crucial to avoid legal penalties and reputational damage. The paper also explores the potential risks associated with AI integration, such as algorithmic biases that could lead to unfair discrimination in policy underwriting and claims adjudication. Regulatory frameworks need to evolve to address these issues, promoting fairness and transparency in AI applications. Policymakers play a critical role in creating a balanced regulatory environment that fosters innovation while protecting consumer rights and ensuring market stability. In conclusion, the integration of AI in cyber insurance presents both regulatory and economic challenges that require a coordinated approach involving regulators, insurers, and other stakeholders. By navigating these challenges effectively, the industry can harness the transformative potential of AI, driving advancements in risk management and enhancing the resilience of the cyber insurance market. This paper provides insights and recommendations for policymakers and industry leaders to achieve a balanced and sustainable integration of AI technologies in cyber insurance.

Keywords: artificial intelligence (AI), cyber insurance, regulatory compliance, economic impact, risk assessment, fraud detection, cyber liability insurance, risk management, ransomware

Procedia PDF Downloads 33
2564 Incidence of Fungal Infections and Mycotoxicosis in Pork Meat and Pork By-Products in Egyptian Markets

Authors: Ashraf Samir Hakim, Randa Mohamed Alarousy

Abstract:

The consumption of food contaminated with molds (microscopic filamentous fungi) and their toxic metabolites results in the development of food-borne mycotoxicosis. The spores of molds are ubiquitously spread in the environment and can be detected everywhere. Ochratoxin A is a potentially carcinogenic fungal toxin found in a variety of food commodities , not only is considered the most abundant and hence the most commonly detected member but also is the most toxic one.Ochratoxin A is the most abundant and hence the most commonly detected member, but is also the most toxic of the three. A very limited research works concerning foods of porcine origin in Egypt were obtained in spite of presence a considerable swine population and consumers. In this study, the quality of various ready-to-eat local and imported pork meat and meat byproducts sold in Egyptian markets as well as edible organs as liver and kidney were assessed for the presence of various molds and their toxins as a raw material. Mycological analysis was conducted on (n=110) samples which included pig livers n=10 and kidneys n=10 from the Basateen slaughter house; local n=70 and 20 imported processed pork meat byproducts.The isolates were identified using traditional mycological and biochemical tests while, Ochratoxin A levels were quantitatively analyzed using the high performance liquid. Results of conventional mycological tests for detecting the presence of fungal growth (yeasts or molds) were negative, while the results of mycotoxins concentrations were be greatly above the permiceable limits or "tolerable weekly intake" (TWI) of ochratoxin A established by EFSA in 2006 in local pork and pork byproducts while the imported samples showed a very slightly increasing.Since ochratoxin A is stable and generally resistant to heat and processing, control of ochratoxin A contamination lies in the control of the growth of the toxin-producing fungi. Effective prevention of ochratoxin A contamination therefore depends on good farming and agricultural practices. Good Agricultural Practices (GAP) including methods to reduce fungal infection and growth during harvest, storage, transport and processing provide the primary line of defense against contamination with ochratoxin A. To the best of our knowledge this is the first report of mycological assessment, especially the mycotoxins in pork byproducts in Egypt.

Keywords: Egyptian markets, mycotoxicosis, ochratoxin A, pork meat, pork by-products

Procedia PDF Downloads 466
2563 Denoising of Magnetotelluric Signals by Filtering

Authors: Rodrigo Montufar-Chaveznava, Fernando Brambila-Paz, Ivette Caldelas

Abstract:

In this paper, we present the advances corresponding to the denoising processing of magnetotelluric signals using several filters. In particular, we use the most common spatial domain filters such as median and mean, but we are also using the Fourier and wavelet transform for frequency domain filtering. We employ three datasets obtained at the different sampling rate (128, 4096 and 8192 bps) and evaluate the mean square error, signal-to-noise relation, and peak signal-to-noise relation to compare the kernels and determine the most suitable for each case. The magnetotelluric signals correspond to earth exploration when water is searched. The object is to find a denoising strategy different to the one included in the commercial equipment that is employed in this task.

Keywords: denoising, filtering, magnetotelluric signals, wavelet transform

Procedia PDF Downloads 370
2562 Central African Republic Government Recruitment Agency Based on Identity Management and Public Key Encryption

Authors: Koyangbo Guere Monguia Michel Alex Emmanuel

Abstract:

In e-government and especially recruitment, many researches have been conducted to build a trustworthy and reliable online or application system capable to process users or job applicant files. In this research (Government Recruitment Agency), cloud computing, identity management and public key encryption have been used to management domains, access control authorization mechanism and to secure data exchange between entities for reliable procedure of processing files.

Keywords: cloud computing network, identity management systems, public key encryption, access control and authorization

Procedia PDF Downloads 358
2561 Design and Implementation of an Image Based System to Enhance the Security of ATM

Authors: Seyed Nima Tayarani Bathaie

Abstract:

In this paper, an image-receiving system was designed and implemented through optimization of object detection algorithms using Haar features. This optimized algorithm served as face and eye detection separately. Then, cascading them led to a clear image of the user. Utilization of this feature brought about higher security by preventing fraud. This attribute results from the fact that services will be given to the user on condition that a clear image of his face has already been captured which would exclude the inappropriate person. In order to expedite processing and eliminating unnecessary ones, the input image was compressed, a motion detection function was included in the program, and detection window size was confined.

Keywords: face detection algorithm, Haar features, security of ATM

Procedia PDF Downloads 419
2560 Grey Prediction of Atmospheric Pollutants in Shanghai Based on GM(1,1) Model Group

Authors: Diqin Qi, Jiaming Li, Siman Li

Abstract:

Based on the use of the three-point smoothing method for selectively processing original data columns, this paper establishes a group of grey GM(1,1) models to predict the concentration ranges of four major air pollutants in Shanghai from 2023 to 2024. The results indicate that PM₁₀, SO₂, and NO₂ maintain the national Grade I standards, while the concentration of PM₂.₅ has decreased but still remains within the national Grade II standards. Combining the forecast results, recommendations are provided for the Shanghai municipal government's efforts in air pollution prevention and control.

Keywords: atmospheric pollutant prediction, Grey GM(1, 1), model group, three-point smoothing method

Procedia PDF Downloads 35
2559 Effect of High-Pressure and Thermal Treatments on Quality Markers of Strawberry Nectars

Authors: Karen Louise Lacey, Dario Javier Pavon Vargas, Massimiliano Rinaldi, Luca Cattani, Sara Rainieri

Abstract:

The effects of high-pressure processing (HPP) and thermal treatments (TT) on quality markers of strawberry nectar (12 °Brix, 3,3 pH) was studied before and after treatments. TT and HPP treatments ensured a 3-log aerobic bacteria inactivation. No significant difference was detected in terms of pH and °Brix. TT samples were less red (a* less positive) than all HPP treated samples, while all samples were less red than the control. Apparent viscosity was significantly increased in all the HPP treatments, at 10 1/s shear rate, control was 79.04±7.94 mPa•s and the 600 MPa-20 min treatment were 327.10±1.64 mPa•s. This work suggests that HPP treatments may maintain the quality markers of strawberry nectar better.

Keywords: HPP, strawberry nectar, colour , viscosity

Procedia PDF Downloads 130
2558 Consumer Load Profile Determination with Entropy-Based K-Means Algorithm

Authors: Ioannis P. Panapakidis, Marios N. Moschakis

Abstract:

With the continuous increment of smart meter installations across the globe, the need for processing of the load data is evident. Clustering-based load profiling is built upon the utilization of unsupervised machine learning tools for the purpose of formulating the typical load curves or load profiles. The most commonly used algorithm in the load profiling literature is the K-means. While the algorithm has been successfully tested in a variety of applications, its drawback is the strong dependence in the initialization phase. This paper proposes a novel modified form of the K-means that addresses the aforementioned problem. Simulation results indicate the superiority of the proposed algorithm compared to the K-means.

Keywords: clustering, load profiling, load modeling, machine learning, energy efficiency and quality

Procedia PDF Downloads 164
2557 Reasons for Food Losses and Waste in Basic Production of Meat Sector in Poland

Authors: Sylwia Laba, Robert Laba, Krystian Szczepanski, Mikolaj Niedek, Anna Kaminska-Dworznicka

Abstract:

Meat and its products are considered food products, having the most unfavorable effect on the environment that requires rational management of these products and waste, originating throughout the whole chain of manufacture, processing, transport, and trade of meat. From the economic and environmental viewpoints, it is important to limit the losses and food wastage and the food waste in the whole meat sector. The link to basic production includes obtaining raw meat, i.e., animal breeding, management, and transport of animals to the slaughterhouse. Food is any substance or product, intended to be consumed by humans. It was determined (for the needs of the present studies) when the raw material is considered as a food. It is the moment when the animals are prepared to loading with the aim to be transported to a slaughterhouse and utilized for food purposes. The aim of the studies was to determine the reasons for loss generation in the basic production of the meat sector in Poland during the years 2017 – 2018. The studies on food losses and waste in the meat sector in basic production were carried out in two areas: red meat i.e., pork and beef and poultry meat. The studies of basic production were conducted in the period of March-May 2019 at the territory of the whole country on a representative trial of 278 farms, including 102 pork production, 55–beef production, and 121 poultry meat production. The surveys were carried out with the utilization of questionnaires by the PAPI (Paper & Pen Personal Interview) method; the pollsters conducted direct questionnaire interviews. Research results indicate that it is followed that any losses were not recorded during the preparation, loading, and transport of the animals to the slaughterhouse in 33% of the visited farms. In the farms where the losses were indicated, the crushing and suffocations, occurring during the production of pigs, beef cattle and poultry, were the main reasons for these losses. They constituted ca. 40% of the reported reasons. The stress generated by loading and transport caused 16 – 17% (depending on the season of the year) of the loss reasons. In the case of poultry production, in 2017, additionally, 10.7% of losses were caused by inappropriate conditions of loading and transportation, while in 2018 – 11.8%. The diseases were one of the reasons for the losses in pork and beef production (7% of the losses). The losses and waste, generated during livestock production and in meat processing and trade cannot be managed or recovered. They have to be disposed of. It is, therefore, important to prevent and minimize the losses throughout the whole production chain. It is possible to introduce the appropriate measures, connected mainly with the appropriate conditions and methods of animal loading and transport.

Keywords: food losses, food waste, livestock production, meat sector

Procedia PDF Downloads 144
2556 Assessing Supply Chain Performance through Data Mining Techniques: A Case of Automotive Industry

Authors: Emin Gundogar, Burak Erkayman, Nusret Sazak

Abstract:

Providing effective management performance through the whole supply chain is critical issue and hard to applicate. The proper evaluation of integrated data may conclude with accurate information. Analysing the supply chain data through OLAP (On-Line Analytical Processing) technologies may provide multi-angle view of the work and consolidation. In this study, association rules and classification techniques are applied to measure the supply chain performance metrics of an automotive manufacturer in Turkey. Main criteria and important rules are determined. The comparison of the results of the algorithms is presented.

Keywords: supply chain performance, performance measurement, data mining, automotive

Procedia PDF Downloads 513
2555 Management Information System to Help Managers for Providing Decision Making in an Organization

Authors: Ajayi Oluwasola Felix

Abstract:

Management information system (MIS) provides information for the managerial activities in an organization. The main purpose of this research is, MIS provides accurate and timely information necessary to facilitate the decision-making process and enable the organizations planning control and operational functions to be carried out effectively. Management information system (MIS) is basically concerned with processing data into information and is then communicated to the various departments in an organization for appropriate decision-making. MIS is a subset of the overall planning and control activities covering the application of humans technologies, and procedures of the organization. The information system is the mechanism to ensure that information is available to the managers in the form they want it and when they need it.

Keywords: Management Information Systems (MIS), information technology, decision-making, MIS in Organizations

Procedia PDF Downloads 556
2554 Enhancing Scalability in Ethereum Network Analysis: Methods and Techniques

Authors: Stefan K. Behfar

Abstract:

The rapid growth of the Ethereum network has brought forth the urgent need for scalable analysis methods to handle the increasing volume of blockchain data. In this research, we propose efficient methodologies for making Ethereum network analysis scalable. Our approach leverages a combination of graph-based data representation, probabilistic sampling, and parallel processing techniques to achieve unprecedented scalability while preserving critical network insights. Data Representation: We develop a graph-based data representation that captures the underlying structure of the Ethereum network. Each block transaction is represented as a node in the graph, while the edges signify temporal relationships. This representation ensures efficient querying and traversal of the blockchain data. Probabilistic Sampling: To cope with the vastness of the Ethereum blockchain, we introduce a probabilistic sampling technique. This method strategically selects a representative subset of transactions and blocks, allowing for concise yet statistically significant analysis. The sampling approach maintains the integrity of the network properties while significantly reducing the computational burden. Graph Convolutional Networks (GCNs): We incorporate GCNs to process the graph-based data representation efficiently. The GCN architecture enables the extraction of complex spatial and temporal patterns from the sampled data. This combination of graph representation and GCNs facilitates parallel processing and scalable analysis. Distributed Computing: To further enhance scalability, we adopt distributed computing frameworks such as Apache Hadoop and Apache Spark. By distributing computation across multiple nodes, we achieve a significant reduction in processing time and enhanced memory utilization. Our methodology harnesses the power of parallelism, making it well-suited for large-scale Ethereum network analysis. Evaluation and Results: We extensively evaluate our methodology on real-world Ethereum datasets covering diverse time periods and transaction volumes. The results demonstrate its superior scalability, outperforming traditional analysis methods. Our approach successfully handles the ever-growing Ethereum data, empowering researchers and developers with actionable insights from the blockchain. Case Studies: We apply our methodology to real-world Ethereum use cases, including detecting transaction patterns, analyzing smart contract interactions, and predicting network congestion. The results showcase the accuracy and efficiency of our approach, emphasizing its practical applicability in real-world scenarios. Security and Robustness: To ensure the reliability of our methodology, we conduct thorough security and robustness evaluations. Our approach demonstrates high resilience against adversarial attacks and perturbations, reaffirming its suitability for security-critical blockchain applications. Conclusion: By integrating graph-based data representation, GCNs, probabilistic sampling, and distributed computing, we achieve network scalability without compromising analytical precision. This approach addresses the pressing challenges posed by the expanding Ethereum network, opening new avenues for research and enabling real-time insights into decentralized ecosystems. Our work contributes to the development of scalable blockchain analytics, laying the foundation for sustainable growth and advancement in the domain of blockchain research and application.

Keywords: Ethereum, scalable network, GCN, probabilistic sampling, distributed computing

Procedia PDF Downloads 76
2553 Fractional Residue Number System

Authors: Parisa Khoshvaght, Mehdi Hosseinzadeh

Abstract:

During the past few years, the Residue Number System (RNS) has been receiving considerable interest due to its parallel and fault-tolerant properties. This system is a useful tool for Digital Signal Processing (DSP) since it can support parallel, carry-free, high-speed and low power arithmetic. One of the drawbacks of Residue Number System is the fractional numbers, that is, the corresponding circuit is very hard to realize in conventional CMOS technology. In this paper, we propose a method in which the numbers of transistors are significantly reduced. The related delay is extremely diminished, in the first glance we use this method to solve concerning problem of one decimal functional number some how this proposition can be extended to generalize the idea. Another advantage of this method is the independency on the kind of moduli.

Keywords: computer arithmetic, residue number system, number system, one-Hot, VLSI

Procedia PDF Downloads 495
2552 Structured Cross System Planning and Control in Modular Production Systems by Using Agent-Based Control Loops

Authors: Simon Komesker, Achim Wagner, Martin Ruskowski

Abstract:

In times of volatile markets with fluctuating demand and the uncertainty of global supply chains, flexible production systems are the key to an efficient implementation of a desired production program. In this publication, the authors present a holistic information concept taking into account various influencing factors for operating towards the global optimum. Therefore, a strategy for the implementation of multi-level planning for a flexible, reconfigurable production system with an alternative production concept in the automotive industry is developed. The main contribution of this work is a system structure mixing central and decentral planning and control evaluated in a simulation framework. The information system structure in current production systems in the automotive industry is rigidly hierarchically organized in monolithic systems. The production program is created rule-based with the premise of achieving uniform cycle time. This program then provides the information basis for execution in subsystems at the station and process execution level. In today's era of mixed-(car-)model factories, complex conditions and conflicts arise in achieving logistics, quality, and production goals. There is no provision for feedback loops of results from the process execution level (resources) and process supporting (quality and logistics) systems and reconsideration in the planning systems. To enable a robust production flow, the complexity of production system control is artificially reduced by the line structure and results, for example in material-intensive processes (buffers and safety stocks - two container principle also for different variants). The limited degrees of freedom of line production have produced the principle of progress figure control, which results in one-time sequencing, sequential order release, and relatively inflexible capacity control. As a result, modularly structured production systems such as modular production according to known approaches with more degrees of freedom are currently difficult to represent in terms of information technology. The remedy is an information concept that supports cross-system and cross-level information processing for centralized and decentralized decision-making. Through an architecture of hierarchically organized but decoupled subsystems, the paradigm of hybrid control is used, and a holonic manufacturing system is offered, which enables flexible information provisioning and processing support. In this way, the influences from quality, logistics, and production processes can be linked holistically with the advantages of mixed centralized and decentralized planning and control. Modular production systems also require modularly networked information systems with semi-autonomous optimization for a robust production flow. Dynamic prioritization of different key figures between subsystems should lead the production system to an overall optimum. The tasks and goals of quality, logistics, process, resource, and product areas in a cyber-physical production system are designed as an interconnected multi-agent-system. The result is an alternative system structure that executes centralized process planning and decentralized processing. An agent-based manufacturing control is used to enable different flexibility and reconfigurability states and manufacturing strategies in order to find optimal partial solutions of subsystems, that lead to a near global optimum for hybrid planning. This allows a robust near to plan execution with integrated quality control and intralogistics.

Keywords: holonic manufacturing system, modular production system, planning, and control, system structure

Procedia PDF Downloads 169
2551 About the Case Portfolio Management Algorithms and Their Applications

Authors: M. Chumburidze, N. Salia, T. Namchevadze

Abstract:

This work deal with case processing problems in business. The task of strategic credit requirements management of cases portfolio is discussed. The information model of credit requirements in a binary tree diagram is considered. The algorithms to solve issues of prioritizing clusters of cases in business have been investigated. An implementation of priority queues to support case management operations has been presented. The corresponding pseudo codes for the programming application have been constructed. The tools applied in this development are based on binary tree ordering algorithms, optimization theory, and business management methods.

Keywords: credit network, case portfolio, binary tree, priority queue, stack

Procedia PDF Downloads 150
2550 Study of Inhibition of the End Effect Based on AR Model Predict of Combined Data Extension and Window Function

Authors: Pan Hongxia, Wang Zhenhua

Abstract:

In this paper, the EMD decomposition in the process of endpoint effect adopted data based on AR model to predict the continuation and window function method of combining the two effective inhibition. Proven by simulation of the simulation signal obtained the ideal effect, then, apply this method to the gearbox test data is also achieved good effect in the process, for the analysis of the subsequent data processing to improve the calculation accuracy. In the end, under various working conditions for the gearbox fault diagnosis laid a good foundation.

Keywords: gearbox, fault diagnosis, ar model, end effect

Procedia PDF Downloads 366
2549 An Analysis of Privacy and Security for Internet of Things Applications

Authors: Dhananjay Singh, M. Abdullah-Al-Wadud

Abstract:

The Internet of Things is a concept of a large scale ecosystem of wireless actuators. The actuators are defined as things in the IoT, those which contribute or produces some data to the ecosystem. However, ubiquitous data collection, data security, privacy preserving, large volume data processing, and intelligent analytics are some of the key challenges into the IoT technologies. In order to solve the security requirements, challenges and threats in the IoT, we have discussed a message authentication mechanism for IoT applications. Finally, we have discussed data encryption mechanism for messages authentication before propagating into IoT networks.

Keywords: Internet of Things (IoT), message authentication, privacy, security

Procedia PDF Downloads 382