Search results for: EDM (Electrical Discharge Machining)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3071

Search results for: EDM (Electrical Discharge Machining)

1871 Development of Methods for Plastic Injection Mold Weight Reduction

Authors: Bita Mohajernia, R. J. Urbanic

Abstract:

Mold making techniques have focused on meeting the customers’ functional and process requirements; however, today, molds are increasing in size and sophistication, and are difficult to manufacture, transport, and set up due to their size and mass. Presently, mold weight saving techniques focus on pockets to reduce the mass of the mold, but the overall size is still large, which introduces costs related to the stock material purchase, processing time for process planning, machining and validation, and excess waste materials. Reducing the overall size of the mold is desirable for many reasons, but the functional requirements, tool life, and durability cannot be compromised in the process. It is proposed to use Finite Element Analysis simulation tools to model the forces, and pressures to determine where the material can be removed. The potential results of this project will reduce manufacturing costs. In this study, a light weight structure is defined by an optimal distribution of material to carry external loads. The optimization objective of this research is to determine methods to provide the optimum layout for the mold structure. The topology optimization method is utilized to improve structural stiffness while decreasing the weight using the OptiStruct software. The optimized CAD model is compared with the primary geometry of the mold from the NX software. Results of optimization show an 8% weight reduction while the actual performance of the optimized structure, validated by physical testing, is similar to the original structure.

Keywords: finite element analysis, plastic injection molding, topology optimization, weight reduction

Procedia PDF Downloads 290
1870 Application of Molecular Materials in the Manufacture of Flexible and Organic Devices for Photovoltaic Applications

Authors: Mariana Gomez Gomez, Maria Elena Sanchez Vergara

Abstract:

Many sustainable approaches to generate electric energy have emerged in the last few decades; one of them is through solar cells. Yet, this also has the disadvantage of highly polluting inorganic semiconductor manufacturing processes. Therefore, the use of molecular semiconductors must be considered. In this work, allene compounds C24H26O4 and C24H26O5 were used as dopants to manufacture semiconductors films based on PbPc by high-vacuum evaporation technique. IR spectroscopy was carried out to determine the phase and any significant chemical changes which may occur during the thermal evaporation. According to UV-visible spectroscopy and Tauc’s model, the deposition process generated thin films with an activation energy range of 1.47 to 1.55 eV for direct transitions and 1.29 to 1.33 eV for indirect transitions. These values place the manufactured films within the range of low bandgap semiconductors. The flexible devices were manufactured: polyethylene terephthalate (PET), Indium tin oxide (ITO)/organic semiconductor/ Cubic Close Packed (CCP). The characterization of the devices was carried out by evaluating electrical conductivity using the four-probe collinear method. I-V curves were obtained under different lighting conditions at room temperature. OS1 (PbPc/C24H26O4) showed an Ohmic behavior, while OS2 (PbPc/C24H26O5) reached higher current values ​​at lower voltages. The results obtained show that the semiconductors devices doped with allene compounds can be used in the manufacture of optoelectronic devices.

Keywords: electrical properties, optical gap, phthalocyanine, thin film.

Procedia PDF Downloads 249
1869 Experimental Characterization of the AA7075 Aluminum Alloy Using Hot Shear Tensile Test

Authors: Trunal Bhujangrao, Catherine Froustey, Fernando Veiga, Philippe Darnis, Franck Girot Mata

Abstract:

The understanding of the material behavior under shear loading has great importance for a researcher in manufacturing processes like cutting, machining, milling, turning, friction stir welding, etc. where the material experiences large deformation at high temperature. For such material behavior analysis, hot shear tests provide a useful means to investigate the evolution of the microstructure at a wide range of temperature and to improve the material behavior model. Shear tests can be performed by direct shear loading (e.g. torsion of thin-walled tubular samples), or appropriate specimen design to convert a tensile or compressive load into shear (e.g. simple shear tests). The simple shear tests are straightforward and designed to obtained very large deformation. However, many of these shear tests are concerned only with the elastic response of the material. It is becoming increasingly important to capture a plastic response of the material. Plastic deformation is significantly more complex and is known to depend more heavily on the strain rate, temperature, deformation, etc. Besides, there is not enough work is done on high-temperature shear loading, because of geometrical instability occurred during the plastic deformation. The aim of this study is to design a new shear tensile specimen geometry to convert the tensile load into dominant shear loading under plastic deformation. Design of the specimen geometry is based on FEM. The material used in this paper is AA7075 alloy, tested quasi statically under elevated temperature. Finally, the microstructural changes taking place during

Keywords: AA7075 alloy, dynamic recrystallization, edge effect, large strain, shear tensile test

Procedia PDF Downloads 147
1868 Measurement of Solids Concentration in Hydrocyclone Using ERT: Validation Against CFD

Authors: Vakamalla Teja Reddy, Narasimha Mangadoddy

Abstract:

Hydrocyclones are used to separate particles into different size fractions in the mineral processing, chemical and metallurgical industries. High speed video imaging, Laser Doppler Anemometry (LDA), X-ray and Gamma ray tomography are previously used to measure the two-phase flow characteristics in the cyclone. However, investigation of solids flow characteristics inside the cyclone is often impeded by the nature of the process due to slurry opaqueness and solid metal wall vessels. In this work, a dual-plane high speed Electrical resistance tomography (ERT) is used to measure hydrocyclone internal flow dynamics in situ. Experiments are carried out in 3 inch hydrocyclone for feed solid concentrations varying in the range of 0-50%. ERT data analysis through the optimized FEM mesh size and reconstruction algorithms on air-core and solid concentration tomograms is assessed. Results are presented in terms of the air-core diameter and solids volume fraction contours using Maxwell’s equation for various hydrocyclone operational parameters. It is confirmed by ERT that the air core occupied area and wall solids conductivity levels decreases with increasing the feed solids concentration. Algebraic slip mixture based multi-phase computational fluid dynamics (CFD) model is used to predict the air-core size and the solid concentrations in the hydrocyclone. Validation of air-core size and mean solid volume fractions by ERT measurements with the CFD simulations is attempted.

Keywords: air-core, electrical resistance tomography, hydrocyclone, multi-phase CFD

Procedia PDF Downloads 379
1867 Land Use Sensitivity Map for the Extreme Flood Events in the Kelantan River Basin

Authors: Nader Saadatkhah, Jafar Rahnamarad, Shattri Mansor, Zailani Khuzaimah, Arnis Asmat, Nor Aizam Adnan, Siti Noradzah Adam

Abstract:

Kelantan river basin as a flood prone area at the east coast of the peninsular Malaysia has suffered several flood and mudflow events in the recent years. The current research attempted to assess the land cover changes impact in the Kelantan river basin focused on the runoff contributions from different land cover classes and the potential impact of land cover changes on runoff generation. In this regards, the hydrological regional modeling of rainfall induced runoff event as the improved transient rainfall infiltration and grid based regional model (Improved-TRIGRS) was employed to compute rate of infiltration, and subsequently changes in the discharge volume in this study. The effects of land use changes on peak flow and runoff volume was investigated using storm rainfall events during the last three decades.

Keywords: improved-TRIGRS model, land cover changes, Kelantan river basin, flood event

Procedia PDF Downloads 412
1866 Application of Public Access Two-Dimensional Hydrodynamic and Distributed Hydrological Models for Flood Forecasting in Ungauged Basins

Authors: Ahmad Shayeq Azizi, Yuji Toda

Abstract:

In Afghanistan, floods are the most frequent and recurrent events among other natural disasters. On the other hand, lack of monitoring data is a severe problem, which increases the difficulty of making the appropriate flood countermeasures of flood forecasting. This study is carried out to simulate the flood inundation in Harirud River Basin by application of distributed hydrological model, Integrated Flood Analysis System (IFAS) and 2D hydrodynamic model, International River Interface Cooperative (iRIC) based on satellite rainfall combined with historical peak discharge and global accessed data. The results of the simulation can predict the inundation area, depth and velocity, and the hardware countermeasures such as the impact of levee installation can be discussed by using the present method. The methodology proposed in this study is suitable for the area where hydrological and geographical data including river survey data are poorly observed.

Keywords: distributed hydrological model, flood inundation, hydrodynamic model, ungauged basins

Procedia PDF Downloads 166
1865 Unified Power Quality Conditioner Presentation and Dimensioning

Authors: Abderrahmane Kechich, Othmane Abdelkhalek

Abstract:

Static converters behave as nonlinear loads that inject harmonic currents into the grid and increase the consumption of the inactive power. On the other hand, the increased use of sensitive equipment requires the application of sinusoidal voltages. As a result, the electrical power quality control has become a major concern in the field of power electronics. In this context, the active power conditioner (UPQC) was developed. It combines both serial and parallel structures; the series filter can protect sensitive loads and compensate for voltage disturbances such as voltage harmonics, voltage dips or flicker when the shunt filter compensates for current disturbances such as current harmonics, reactive currents and imbalance. This double feature is that it is one of the most appropriate devices. Calculating parameters is an important step and in the same time it’s not easy for that reason several researchers based on trial and error method for calculating parameters but this method is not easy for beginners researchers especially what about the controller’s parameters, for that reason this paper gives a mathematical way to calculate of almost all of UPQC parameters away from trial and error method. This paper gives also a new approach for calculating of PI regulators parameters for purpose to have a stable UPQC able to compensate for disturbances acting on the waveform of line voltage and load current in order to improve the electrical power quality.

Keywords: UPQC, Shunt active filer, series active filer, PI controller, PWM control, dual-loop control

Procedia PDF Downloads 403
1864 Bio-Heat Transfer in Various Transcutaneous Stimulation Models

Authors: Trevor E. Davis, Isaac Cassar, Yi-Kai Lo, Wentai Liu

Abstract:

This study models the use of transcutaneous electrical nerve stimulation on skin with a disk electrode in order to simulate tissue damage. The current density distribution above a disk electrode is known to be a dynamic and non-uniform quantity that is intensified at the edges of the disk. The non-uniformity is subject to change through using various electrode geometries or stimulation methods. One of these methods known as edge-retarded stimulation has shown to reduce this edge enhancement. Though progress has been made in modeling the behavior of a disk electrode, little has been done to test the validity of these models in simulating the actual heat transfer from the electrode. This simulation uses finite element software to couple the injection of current from a disk electrode to heat transfer described by the Pennesbioheat transfer equation. An example application of this model is studying an experimental form of stimulation, known as edge-retarded stimulation. The edge-retarded stimulation method will reduce the current density at the edges of the electrode. It is hypothesized that reducing the current density edge enhancement effect will, in turn, reduce temperature change and tissue damage at the edges of these electrodes. This study tests this hypothesis as a demonstration of the capabilities of this model. The edge-retarded stimulation proved to be safer after this simulation. It is shown that temperature change and the fraction of tissue necrosis is much greater in the square wave stimulation. These results bring implications for changes of procedures in transcutaneous electrical nerve stimulation and transcutaneous spinal cord stimulation as well.

Keywords: bioheat transfer, electrode, neuroprosthetics, TENS, transcutaneous stimulation

Procedia PDF Downloads 240
1863 Effect of Hydraulic Residence Time on Aromatic Petrochemical Wastewater Treatment Using Pilot-Scale Submerged Membrane Bioreactor

Authors: Fatemeh Yousefi, Narges Fallah, Mohsen Kian, Mehrzad Pakzadeh

Abstract:

The petrochemical complex releases wastewater, which is rich in organic pollutants and could not be treated easily. Treatment of the wastewater from a petrochemical industry has been investigated using a submerged membrane bioreactor (MBR). For this purpose, a pilot-scale submerged MBR with a flat-sheet ultrafiltration membrane was used for treatment of petrochemical wastewater according to Bandar Imam Petrochemical complex (BIPC) Aromatic plant. The testing system ran continuously (24-h) over 6 months. Trials on different membrane fluxes and hydraulic retention time (HRT) were conducted and the performance evaluation of the system was done. During the 167 days operation of the MBR at hydraulic retention time (HRT) of 18, 12, 6, and 3 and at an infinite sludge retention time (SRT), the MBR effluent quality consistently met the requirement for discharge to the environment. A fluxes of 6.51 and 13.02 L m-2 h-1 (LMH) was sustainable and HRT of 6 and 12 h corresponding to these fluxes were applicable. Membrane permeability could be fully recovered after cleaning. In addition, there was no foaming issue in the process. It was concluded that it was feasible to treat the wastewater using submersed MBR technology.

Keywords: membrane bioreactor (MBR), petrochemical wastewater, COD removal, biological treatment

Procedia PDF Downloads 520
1862 On the Optimality Assessment of Nano-Particle Size Spectrometry and Its Association to the Entropy Concept

Authors: A. Shaygani, R. Saifi, M. S. Saidi, M. Sani

Abstract:

Particle size distribution, the most important characteristics of aerosols, is obtained through electrical characterization techniques. The dynamics of charged nano-particles under the influence of electric field in electrical mobility spectrometer (EMS) reveals the size distribution of these particles. The accuracy of this measurement is influenced by flow conditions, geometry, electric field and particle charging process, therefore by the transfer function (transfer matrix) of the instrument. In this work, a wire-cylinder corona charger was designed and the combined field-diffusion charging process of injected poly-disperse aerosol particles was numerically simulated as a prerequisite for the study of a multi-channel EMS. The result, a cloud of particles with non-uniform charge distribution, was introduced to the EMS. The flow pattern and electric field in the EMS were simulated using computational fluid dynamics (CFD) to obtain particle trajectories in the device and therefore to calculate the reported signal by each electrometer. According to the output signals (resulted from bombardment of particles and transferring their charges as currents), we proposed a modification to the size of detecting rings (which are connected to electrometers) in order to evaluate particle size distributions more accurately. Based on the capability of the system to transfer information contents about size distribution of the injected particles, we proposed a benchmark for the assessment of optimality of the design. This method applies the concept of Von Neumann entropy and borrows the definition of entropy from information theory (Shannon entropy) to measure optimality. Entropy, according to the Shannon entropy, is the ''average amount of information contained in an event, sample or character extracted from a data stream''. Evaluating the responses (signals) which were obtained via various configurations of detecting rings, the best configuration which gave the best predictions about the size distributions of injected particles, was the modified configuration. It was also the one that had the maximum amount of entropy. A reasonable consistency was also observed between the accuracy of the predictions and the entropy content of each configuration. In this method, entropy is extracted from the transfer matrix of the instrument for each configuration. Ultimately, various clouds of particles were introduced to the simulations and predicted size distributions were compared to the exact size distributions.

Keywords: aerosol nano-particle, CFD, electrical mobility spectrometer, von neumann entropy

Procedia PDF Downloads 343
1861 A Technology of Hot Stamping and Welding of Carbon Reinforced Plastic Sheets Using High Electric Resistance

Authors: Tomofumi Kubota, Mitsuhiro Okayasu

Abstract:

In recent years, environmental problems and energy problems typified by global warming are intensifying, and transportation devices are required to reduce the weight of structural materials from the viewpoint of strengthening fuel efficiency regulations and energy saving. Carbon fiber reinforced plastic (CFRP) used in this research is attracting attention as a structural material to replace metallic materials. Among them, thermoplastic CFRP is expected to expand its application range in terms of recyclability and cost. High formability and weldability of the unidirectional CFRP sheets conducted by a proposed hot stamping process were proposed, in which the carbon fiber reinforced plastic sheets are heated by a designed technique. In this case, the CFRP sheets are heated by the high electric voltage applied through carbon fibers. In addition, the electric voltage was controlled by the area ratio of exposed carbon fiber on the sample surfaces. The lower exposed carbon fiber on the sample surface makes high electric resistance leading to the high sample temperature. In this case, the CFRP sheets can be heated to more than 150 °C. With the sample heating, the stamping and welding technologies can be carried out. By changing the sample temperature, the suitable stamping condition can be detected. Moreover, the proper welding connection of the CFRP sheets was proposed. In this study, we propose a fusion bonding technique using thermoplasticity, high current flow, and heating caused by electrical resistance. This technology uses the principle of resistance spot welding. In particular, the relationship between the carbon fiber exposure rate and the electrical resistance value that affect the bonding strength is investigated. In this approach, the mechanical connection using rivet is also conducted to make a comparison of the severity of welding. The change of connecting strength is reflected by the fracture mechanism. The low and high connecting strength are obtained for the separation of two CFRP sheets and fractured inside the CFRP sheet, respectively. In addition to the two fracture modes, micro-cracks in CFRP are also detected. This approach also includes mechanical connections using rivets to compare the severity of the welds. The change in bond strength is reflected by the destruction mechanism. Low and high bond strengths were obtained to separate the two CFRP sheets, each broken inside the CFRP sheets. In addition to the two failure modes, micro cracks in CFRP are also detected. In this research, from the relationship between the surface carbon fiber ratio and the electrical resistance value, it was found that different carbon fiber ratios had similar electrical resistance values. Therefore, we investigated which of carbon fiber and resin is more influential to bonding strength. As a result, the lower the carbon fiber ratio, the higher the bonding strength. And this is 50% better than the conventional average strength. This can be evaluated by observing whether the fracture mode is interface fracture or internal fracture.

Keywords: CFRP, hot stamping, weliding, deforamtion, mechanical property

Procedia PDF Downloads 125
1860 Metallurgy of Friction Welding of Porous Stainless Steel-Solid Iron Billets

Authors: S. D. El Wakil

Abstract:

The research work reported here was aimed at investigating the feasibility of joining high-porosity stainless steel discs and wrought iron bars by friction welding. The sound friction-welded joints were then subjected to a metallurgical investigation and an analysis of failure resulting from tensile loading. Discs having 50 mm diameter and 10 mm thickness were produced by loose sintering of stainless steel powder at a temperature of 1350 oC in an argon atmosphere for one hour. Minor machining was then carried out to control the dimensions of the discs, and the density of each disc could then be determined. The level of porosity was calculated and was found to be about 40% in all of those discs. Solid wrought iron bars were also machined to facilitate tensile testing of the joints produced by friction welding. Using our previously gained experience, the porous stainless steel disc and the wrought iron tube were successfully friction welded. SEM was employed to examine the fracture surface after a tensile test of the joint in order to determine the type of failure. It revealed that the failure did not occur in the joint, but rather in the in the porous metal in the area adjacent to the joint. The load carrying capacity was actually determined by the strength of the porous metal and not by that of the welded joint. Macroscopic and microscopic metallographic examinations were also performed and showed that the welded joint involved a dense heat-affected zone where the porous metal underwent densification at elevated temperature, explaining and supporting the findings of the SEM study.

Keywords: fracture of friction-welded joints, metallurgy of friction welding, solid-porous structures, strength of joints

Procedia PDF Downloads 232
1859 Effect of Submerged Water Jet's Cross Section Shapes on Mixing Length

Authors: Mohsen Solimani Babarsad, Mohammad Rastgoo, Payam Taheri

Abstract:

One of the important applications of hydraulic jets is used for discharge industrial, agricultural and urban wastewater into the rivers or other ambient water to reduce negative effects of pollutant water. Submerged jets due to turbulent condition can mix large amount of dense pollutant water with ambient flow. This study is conducted to investigate the distribution and length of the mixing zone in hydraulic jet's flow field with change in cross section shapes of nozzle. Toward this end, three shapes of cross section (square, circle and rectangular) and three saline densities current with different concentration are considered in a flume with 600 cm as long, 100 cm as high and 150 cm in width. Various discharges were used to evaluate mixing length for a wide range of densimetric Froude numbers, Frd, from 100 to 550 that is defined at the nozzle. Consequently, the circular nozzle, in comparison with other sections, has a densimetric Froude number 11% higher than square nozzle and 26% higher than rectangular nozzle.

Keywords: hydraulic jet, mixing zone, densimetric Froude number, nozzle

Procedia PDF Downloads 363
1858 Surface Modified Thermoplastic Polyurethane and Poly(Vinylidene Fluoride) Nanofiber Based Flexible Triboelectric Nanogenerator and Wearable Bio-Sensor

Authors: Sk Shamim Hasan Abir, Karen Lozano, Mohammed Jasim Uddin

Abstract:

Over the last few years, nanofiber-based triboelectric nanogenerator (TENG) has caught great attention among researchers all over the world due to its inherent capability of converting mechanical energy to usable electrical energy. In this study, poly(vinylidene fluoride) (PVDF) and thermoplastic polyurethane (TPU) nanofiber prepared by Forcespinning® (FS) technique were used to fabricate TENG for self-charging energy storage device and biomechanical body motion sensor. The surface of the TPU nanofiber was modified by uniform deposition of thin gold film to enhance the frictional properties; yielded 254 V open-circuit voltage (Voc) and 86 µA short circuit current (Isc), which were 2.12 and 1.87 times greater in contrast to bare PVDF-TPU TENG. Moreover, the as-fabricated PVDF-TPU/Au TENG was tested against variable capacitors and resistive load, and the results showed that with a 3.2 x 2.5 cm2 active contact area, it can quick charge up to 7.64 V within 30 seconds using a 1.0 µF capacitor and generate significant 2.54 mW power, enough to light 75 commercial LEDs (1.5 V each) by the hand tapping motion at 4 Hz (240 beats per minutes (bpm)) load frequency. Furthermore, the TENG was attached to different body parts to capture distinctive electrical signals for various body movements, elucidated the prospective usability of our prepared nanofiber-based TENG in wearable body motion sensor application.

Keywords: biomotion sensor, forcespinning, nanofibers, triboelectric nanogenerator

Procedia PDF Downloads 102
1857 Mapping Thermal Properties Using Resistivity, Lithology and Thermal Conductivity Measurements

Authors: Riccardo Pasquali, Keith Harlin, Mark Muller

Abstract:

The ShallowTherm project is focussed on developing and applying a methodology for extrapolating relatively sparsely sampled thermal conductivity measurements across Ireland using mapped Litho-Electrical (LE) units. The primary data used consist of electrical resistivities derived from the Geological Survey Ireland Tellus airborne electromagnetic dataset, GIS-based maps of Irish geology, and rock thermal conductivities derived from both the current Irish Ground Thermal Properties (IGTP) database and a new programme of sampling and laboratory measurement. The workflow has been developed across three case-study areas that sample a range of different calcareous, arenaceous, argillaceous, and volcanic lithologies. Statistical analysis of resistivity data from individual geological formations has been assessed and integrated with detailed lithological descriptions to define distinct LE units. Thermal conductivity measurements from core and hand samples have been acquired for every geological formation within each study area. The variability and consistency of thermal conductivity measurements within each LE unit is examined with the aim of defining a characteristic thermal conductivity (or range of thermal conductivities) for each LE unit. Mapping of LE units, coupled with characteristic thermal conductivities, provides a method of defining thermal conductivity properties at a regional scale and facilitating the design of ground source heat pump closed-loop collectors.

Keywords: thermal conductivity, ground source heat pumps, resistivity, heat exchange, shallow geothermal, Ireland

Procedia PDF Downloads 183
1856 Study of Cathodic Protection for Trunk Pipeline of Al-Garraf Oil Field

Authors: Maysoon Khalil Askar

Abstract:

The delineation of possible areas of corrosion along the external face of an underground oil pipeline in Trunk line of Al- Garraf oil field was investigated using the horizontal electrical resistivity profiling technique and study the contribution of pH, Moisture Content in Soil and Presence chlorides, sulfates and total dissolve salts in soil and water. The test sites represent a physical and chemical properties of soils. The hydrogen-ion concentration of soil and groundwater range from 7.2 to 9.6, and the resistivity values of the soil along the pipeline were obtained using the YH302B model resistivity meter having values between 1588 and 720 Ohm-cm. the chloride concentration in soil and groundwater is high (more than 1000 ppm), total soulable salt is more than 5000 ppm, and sulphate range from 0.17% and 0.98% in soil and more than 600 ppm in groundwater. The soil is poor aeration, the soil texture is fine (clay and silt soil), the water content is high (the groundwater is close to surface), the chloride and sulphate is high in the soil and groundwater, the total soulable salt is high in ground water and finally the soil electric resistivity is low that the soil is very corrosive and there is the possibility of the pipeline failure. These methods applied in the study are quick, economic and efficient for detecting along buried pipelines which need to be protected. Routine electrical geophysical investigations along buried oil pipelines should be undertaken for the early detection and prevention of pipeline failure with its attendant environmental, human and economic consequences.

Keywords: soil resistivity, corrosion, cathodic protection, chloride concentration, water content

Procedia PDF Downloads 438
1855 Pre-Treatment of Anodic Inoculum with Nitroethane to Improve Performance of a Microbial Fuel Cell

Authors: Rajesh P.P., Md. Tabish Noori, Makarand M. Ghangrekar

Abstract:

Methanogenic substrate loss is reported to be a major bottleneck in microbial fuel cell which significantly reduces the power production capacity and coulombic efficiency (CE) of microbial fuel cell (MFC). Nitroethane is found to be a potent inhibitor of hydrogenotrophic methanogens in rumen fermentation process. Influence of nitroethane pre-treated sewage sludge inoculum on suppressing the methanogenic activity and enhancing the electrogenesis in MFC was evaluated. MFC inoculated with nitroethane pre-treated anodic inoculum demonstrated a maximum operating voltage of 541 mV, with coulombic efficiency and sustainable volumetric power density of 39.85 % and 14.63 W/m3 respectively. Linear sweep voltammetry indicated a higher electron discharge on the anode surface due to enhancement of electrogenic activity while suppressing methanogenic activity. A 63 % reduction in specific methanogenic activity was observed in anaerobic sludge pre-treated with nitroethane; emphasizing significance of this pretreatment for suppressing methanogenesis and its utility for enhancing electricity generation in MFC.

Keywords: coulombic efficiency, methanogenesis inhibition, microbial fuel cell, nitroethane

Procedia PDF Downloads 318
1854 Interval Functional Electrical Stimulation Cycling and Nutritional Counseling Improves Lean Mass to Fat Mass Ratio and Decreases Cardiometabolic Disease Risk in Individuals with Spinal Cord Injury

Authors: David Dolbow, Daniel Credeur, Mujtaba Rahimi, Dobrivoje Stokic, Jennifer Lemacks, Andrew Courtner

Abstract:

Introduction: Obesity is at epidemic proportions in the spinal cord injury (SCI) population (66-75%), as individuals who suffer from paralysis undergo a dramatic decrease in muscle mass and a dramatic increase in adipose deposition. Obesity is a major public health concern which includes a doubling of the risk of heart disease, stroke and type II diabetes mellitus. It has been demonstrated that physical activity, and especially HIIT, can promote a healthy body composition and decrease the risk cardiometabolic disease in the able-bodied population. However, SCI typically limits voluntary exercise to the arms, but a high prevalence of shoulder pain in persons with chronic SCI (60-90%) can cause increased arm exercise to be problematic. Functional electrical stimulation (FES) cycling has proven to be a safe and effective way to exercise paralyzed leg muscles in clinical and home settings, saving the often overworked arms. Yet, HIIT-FES cycling had not been investigated prior to the current study. The purpose of this study was to investigate the body composition changes with combined HIIT-FES cycling and nutritional counseling on individuals with SCI. Design: A matched (level of injury, time since injury, body mass index) and controlled trail. Setting: University exercise performance laboratory. Subjects: Ten individuals with chronic SCI (C5-T9) ASIA impairment classification (A & B) were divided into the treatment group (n=5) for 30 minutes of HIIT-FES cycling 3 times per week for 8 weeks and nutritional counseling over the phone for 30 minutes once per week for 8 weeks and the control group (n=5) who received nutritional counseling only. Results: There was a statistically significant difference between the HIIT-FES group and the control group in mean body fat percentage change (-1.14 to +0.24) respectively, p = .030). There was also a statistically significant difference between the HIIT-FES and control groups in mean change in legs lean mass (+0.78 kg to -1.5 kg) respectively, p = 0.004. There was a nominal decrease in weight, BMI, total fat mass and a nominal increase in total lean mass for the HIIT-FES group over the control group. However, these changes were not found to be statistically significant. Additionally, there was a nominal decrease in the mean blood glucose levels for both groups 101.8 to 97.8 mg/dl for the HIIT-FES group and 94.6 to 93 mg/dl for the Nutrition only group, however, neither were found to be statistically significant. Conclusion: HIIT-FES cycling combined with nutritional counseling can provide healthful body composition changes including decreased body fat percentage in just 8 weeks. Future study recommendations include a greater number of participants, a primer electrical stimulation exercise program to better ready participants for HIIT-FES cycling and a greater volume of training above 30 minutes, 3 times per week for 8 weeks.

Keywords: body composition, functional electrical stimulation cycling, high-intensity interval training, spinal cord injury

Procedia PDF Downloads 116
1853 Problems Associated with Fibre-Reinforced Composites Ultrasonically-Assisted Drilling

Authors: Sikiru Oluwarotimi Ismail, Hom Nath Dhakal, Anish Roy, Dong Wang, Ivan Popov

Abstract:

The ultrasonically-assisted drilling (UAD) is a non-traditional technique which involves the superimposition of a high frequency and low amplitude vibration, usually greater than 18kHz and less than 20µm respectively, on a drill bit along the feed direction. UAD has remarkable advantages over the conventional drilling (CD), especially the high drilling-force reduction. Force reduction improves the quality of the drilled holes, reduces power consumption rate and cost of production. Nevertheless, in addition to the setbacks of UAD including expensiveness of set-up, unpredicted results and chipping effects, this paper presents the problems of insignificant force reduction and poor surface quality during UAD of hemp fibre-reinforced composites (HFRCs), a natural composite, with polycaprolactone (PCL) matrix. The experimental results obtained depict that HFRCs/PCL samples have more burnt chip-materials attached on the drilled holes during UAD than CD. This effect produced a very high surface roughness (Ra), up to 13µm. In a bid to reduce these challenges, different drilling parameters (feed rates and cutting speeds, frequencies and amplitudes for UAD), conditions (dry machining and airflow cooling) and diameters of drill bits (3mm and 6mm of high speed steel), as well as HFRCs/PCL samples of various fibre aspect ratios, including 0 (neat), 19, 26, 30 and 38 have been used. However, the setbacks still persisted. Evidently, the benefits of UAD are not obtainable for the drilling of the HFRCs/PCL laminates. These problems occurred due to the 60 °C melting temperature of PCL, quite lower than 56-90.2 °C and 265–290.8 °C composite-tool interface temperature during CD and UAD respectively.

Keywords: force reduction, hemp fibre-reinforced composites, ultrasonically-assisted drilling, surface quality

Procedia PDF Downloads 438
1852 Study of Composite Materials for Aisha Containment Chamber

Authors: G. Costa, F. Noto, L. Celona, F. Chines, G. Ciavola, G. Cuttone, S. Gammino, O. Leonardi, S. Marletta, G. Torrisi

Abstract:

The ion sources for accelerators devoted to medical applications must provide intense ion beams, with high reproducibility, stability and brightness. AISHa (Advanced Ion Source for Hadron-therapy) is a compact ECRIS whose hybrid magnetic system consists of a permanent Halbach-type hexapole magnet and a set of independently energized superconducting coils. These coils will be enclosed in a compact cryostat with two cryocoolers for LHe-free operation. The AISHa ion source has been designed by taking into account the typical requirements of hospital-based facilities, where the minimization of the mean time between failures (MTBF) is a key point together with the maintenance operations which should be fast and easy. It is intended to be a multipurpose device, operating at 18 GHz, in order to achieve higher plasma densities. It should provide enough versatility for future needs of the hadron therapy, including the ability to run at larger microwave power to produce different species and highly charged ion beams. The source is potentially interesting for any hadrontherapy center using heavy ions. In the paper, we designed an innovative solution for the plasma containment chamber that allows us to solve our isolation and structural problems. We analyzed the materials chosen for our aim (glass fibers and carbon fibers) and we illustrated the all process (spinning, curing and machining) of the assembly of our chamber. The glass fibers and carbon fibers are used to reinforce polymer matrices and give rise to structural composites and composites by molding.

Keywords: hadron-therapy, carbon fiber, glass fiber, vacuum-bag, ECR, ion source

Procedia PDF Downloads 210
1851 Production of Biocomposites Using Chars Obtained by Co-Pyrolysis of Olive Pomace with Plastic Wastes

Authors: Esra Yel, Tabriz Aslanov, Merve Sogancioglu, Suheyla Kocaman, Gulnare Ahmetli

Abstract:

The disposal of waste plastics has become a major worldwide environmental problem. Pyrolysis of waste plastics is one of the routes to waste minimization and recycling that has been gaining interest. In pyrolysis, the pyrolysed material is separated into gas, liquid (both are fuel) and solid (char) products. All fractions have utilities and economical value depending upon their characteristics. The first objective of this study is to determine the co-pyrolysis product fractions of waste HDPE- (high density polyethylene) and LDPE (low density polyethylene)-olive pomace (OP) and to determine the qualities of the solid product char. Chars obtained at 700 °C pyrolysis were used in biocomposite preparation as additive. As the second objective, the effects of char on biocomposite quality were investigated. Pyrolysis runs were performed at temperature 700 °C with heating rates of 5 °C/min. Biocomposites were prepared by mixing of chars with bisphenol-F type epoxy resin in various wt%. Biocomposite properties were determined by measuring electrical conductivity, surface hardness, Young’s modulus and tensile strength of the composites. The best electrical conductivity results were obtained with HDPE-OP char. For HDPE-OP char and LDPE-OP char, compared to neat epoxy, the tensile strength values of the composites increased by 102% and 78%, respectively, at 10% char dose. The hardness measurements showed similar results to the tensile tests, since there is a correlation between the hardness and the tensile strength.

Keywords: biocomposite, char, olive pomace, pyrolysis

Procedia PDF Downloads 251
1850 Challenges and Insights by Electrical Characterization of Large Area Graphene Layers

Authors: Marcus Klein, Martina GrießBach, Richard Kupke

Abstract:

The current advances in the research and manufacturing of large area graphene layers are promising towards the introduction of this exciting material in the display industry and other applications that benefit from excellent electrical and optical characteristics. New production technologies in the fabrication of flexible displays, touch screens or printed electronics apply graphene layers on non-metal substrates and bring new challenges to the required metrology. Traditional measurement concepts of layer thickness, sheet resistance, and layer uniformity, are difficult to apply to graphene production processes and are often harmful to the product layer. New non-contact sensor concepts are required to adapt to the challenges and even the foreseeable inline production of large area graphene. Dedicated non-contact measurement sensors are a pioneering method to leverage these issues in a large variety of applications, while significantly lowering the costs of development and process setup. Transferred and printed graphene layers can be characterized with high accuracy in a huge measurement range using a very high resolution. Large area graphene mappings are applied for process optimization and for efficient quality control for transfer, doping, annealing and stacking processes. Examples of doped, defected and excellent Graphene are presented as quality images and implications for manufacturers are explained.

Keywords: graphene, doping and defect testing, non-contact sheet resistance measurement, inline metrology

Procedia PDF Downloads 307
1849 Effects of Phase and Morphology on the Electrochemical and Electrochromic Performances of Tungsten Oxide and Tungsten-Molybdenum Oxide Nanostructures

Authors: Jinjoo Jung, Hayeon Won, Doyeong Jeong, Do Hyung Kim

Abstract:

We present the electrochemical and electrochromic performance of the novel crystalline tungsten oxide and tungsten-molybdenum oxide nanostructures synthesized by utilizing solvo-thermal method with hexacarbonyl tungsten, hexacarbonyl molybdenum, and ethyl alcohol. The morphology and phase of the prepared products were highly dependent on the synthesis conditions such as synthesis and annealing temperature, synthesis time, and precursor ratio. The tungsten oxide nanostructures (TCNs) have urchin-like or spherical nanostructure with different phase of W18O49 and WO3. The morphology of tungsten-molybdenum oxide nanostructures (TMONs) is basically similar to that of TCNs. However, the morphology and phase of TMONs are more diverse and are strongly dependent on the composition ratios of W/Mo in the precursor. The electrochemical properties depending on their morphologies and phases of TCNs and TMONs are compared using cyclic voltammetry and galvanostatic charge/discharge tests. The relationship between the electrochromic performance and phase structures/morphologies of nanostructured TCNs and TMONs are systematically investigated.

Keywords: electrochemical, electrochromic, tungsten oxide, tungsten-molybdenum oxide

Procedia PDF Downloads 590
1848 Fault Analysis of Induction Machine Using Finite Element Method (FEM)

Authors: Wiem Zaabi, Yemna Bensalem, Hafedh Trabelsi

Abstract:

The paper presents a finite element (FE) based efficient analysis procedure for induction machine (IM). The FE formulation approaches are proposed to achieve this goal: the magnetostatic and the non-linear transient time stepped formulations. The study based on finite element models offers much more information on the phenomena characterizing the operation of electrical machines than the classical analytical models. This explains the increase of the interest for the finite element investigations in electrical machines. Based on finite element models, this paper studies the influence of the stator and the rotor faults on the behavior of the IM. In this work, a simple dynamic model for an IM with inter-turn winding fault and a broken bar fault is presented. This fault model is used to study the IM under various fault conditions and severity. The simulation results are conducted to validate the fault model for different levels of fault severity. The comparison of the results obtained by simulation tests allowed verifying the precision of the proposed FEM model. This paper presents a technical method based on Fast Fourier Transform (FFT) analysis of stator current and electromagnetic torque to detect the faults of broken rotor bar. The technique used and the obtained results show clearly the possibility of extracting signatures to detect and locate faults.

Keywords: Finite element Method (FEM), Induction motor (IM), short-circuit fault, broken rotor bar, Fast Fourier Transform (FFT) analysis

Procedia PDF Downloads 301
1847 Use of Quasi-3D Inversion of VES Data Based on Lateral Constraints to Characterize the Aquifer and Mining Sites of an Area Located in the North-East of Figuil, North Cameroon

Authors: Fofie Kokea Ariane Darolle, Gouet Daniel Hervé, Koumetio Fidèle, Yemele David

Abstract:

The electrical resistivity method is successfully used in this paper in order to have a clearer picture of the subsurface of the North-East ofFiguil in northern Cameroon. It is worth noting that this method is most often used when the objective of the study is to image the shallow subsoils by considering them as a set of stratified ground layers. The problem to be solved is very often environmental, and in this case, it is necessary to perform an inversion of the data in order to have a complete and accurate picture of the parameters of the said layers. In the case of this work, thirty-three (33) Schlumberger VES have been carried out on an irregular grid to investigate the subsurface of the study area. The 1D inversion applied as a preliminary modeling tool and in correlation with the mechanical drillings results indicates a complex subsurface lithology distribution mainly consisting of marbles and schists. Moreover, the quasi-3D inversion with lateral constraint shows that the misfit between the observed field data and the model response is quite good and acceptable with a value low than 10%. The method also reveals existence of two water bearing in the considered area. The first is the schist or weathering aquifer (unsuitable), and the other is the marble or the fracturing aquifer (suitable). The final quasi 3D inversion results and geological models indicate proper sites for groundwaters prospecting and for mining exploitation, thus allowing the economic development of the study area.

Keywords: electrical resistivity method, 1D inversion, quasi 3D inversion, groundwaters, mining

Procedia PDF Downloads 156
1846 Partnering With Key Stakeholders for Successful Implementation of Inhaled Analgesia for Specific Emergency Department Presentations

Authors: Sarah Hazelwood, Janice Hay

Abstract:

Methoxyflurane is an inhaled analgesic administered via a disposable inhaler, which has been used in Australia for 40 years for the management of pain in children & adults. However, there is a lack of data for methoxyflurane as a frontline analgesic medication within the emergency department (ED). This study will investigate the usefulness of methoxyflurane in a private inner-city ED. The study concluded that the inclusion of all key stakeholders in the prescribing, administering & use of this new process led to comprehensive uptake & vastly positive outcomes for consumer & health professionals. Method: A 12-week prospective pilot study was completed utilizing patients presenting to the ED in pain (numeric pain rating score > 4) that fit the requirement of methoxyflurane use (as outlined in the Australian Prescriber information package). Nurses completed a formatted spreadsheet for each interaction where methoxyflurane was used. Patient demographics, day, time, initial numeric pain score, analgesic response time, the reason for use, staff concern (free text), & patient feedback (free text), & discharge time was documented. When clinical concern was raised, the researcher retrieved & reviewed patient notes. Results: 140 methoxyflurane inhalers were used. 60% of patients were 31 years of age & over (n=82) with 16% aged 70+. The gender split; 51% male: 49% female. Trauma-related pain (57%) saw the highest use of administration, with the evening hours (1500-2259) seeing the greatest numbers used (39%). Tuesday, Thursday & Sunday shared the highest daily use throughout the study. A minimum numerical pain score of 4/10 (n=13, 9%), with the ranges of 5 - 7/10 (moderate pain) being given by almost 50% of patients. Only 3 instances of pain scores increased post use of methoxyflurane (all other entries showed pain score < initial rating). Patients & staff noted obvious analgesic response within 3 minutes (n= 96, 81%, of administration). Nurses documented a change in patient vital signs for 4 of the 15 patient-related concerns; the remaining concerns were due to “gagging” on the taste, or “having a coughing episode”; one patient tried to leave the department before the procedure was attended (very euphoric state). Upon review of the staff concerns – no adverse events occurred & return to therapeutic vitals occurred within 10 minutes. Length of stay for patients was compared with similar presentations (such as dislocated shoulder or ankle fracture) & saw an average 40-minute decrease in time to discharge. Methoxyflurane treatment was rated “positively” by > 80% of patients – with remaining feedback related to mild & transient concerns. Staff similarly noted a positive response to methoxyflurane as an analgesic & as an added tool for frontline analgesic purposes. Conclusion: Methoxyflurane should be used on suitable patient presentations requiring immediate, short term pain relief. As a highly portable, non-narcotic avenue to treat pain this study showed obvious therapeutic benefit, positive feedback, & a shorter length of stay in the ED. By partnering with key stake holders, this study determined methoxyflurane use decreased work load, decreased wait time to analgesia, and increased patient satisfaction.

Keywords: analgesia, benefits, emergency, methoxyflurane

Procedia PDF Downloads 123
1845 Analysis of Erosion Quantity on Application of Conservation Techniques in Ci Liwung Hulu Watershed

Authors: Zaenal Mutaqin

Abstract:

The level of erosion that occurs in the upsteam watersheed will lead to limited infiltrattion, land degradation and river trivialisation and estuaries in the body. One of the watesheed that has been degraded caused by using land is the DA Ci Liwung Upstream. The high degradation that occurs in the DA Ci Liwung upstream is indicated by the hugher rate of erosion on the region, especially in the area of agriculture. In this case, agriculture cultivation intent to the agricultural land that has been applied conservation techniques. This study is applied to determine the quantity of erosion by reviewing Hidrologic Response Unit (HRU) in agricuktural cultivation land which is contained in DA Ci Liwung upstream by using the Soil and Water Assessmen Tool (SWAT). Conservation techniques applied are terracing, agroforestry and gulud terrace. It was concluded that agroforestry conservation techniques show the best value of erosion (lowest) compared with other conservation techniques with the contribution of erosion of 25.22 tonnes/ha/year. The results of the calibration between the discharge flow models with the observation that R²=0.9014 and NS=0.79 indicates that this model is acceptable and feasible applied to the Ci Liwung Hulu watershed.

Keywords: conservation, erosion, SWAT analysis, watersheed

Procedia PDF Downloads 293
1844 Energy Potential of Salinity Gradient Mixing: Case Study of Mixing Energies of Rivers of Goa with the Arabian Sea

Authors: Arijit Chakraborty, Anirban Roy

Abstract:

The Indian peninsula is strategically located in the Asian subcontinent with the Himalayas to the North and Oceans surrounding the other three directions with annual monsoons which takes care of water supply to the rivers. The total river water discharge into the Bay of Bengal and the Arabian Sea is 628 km³/year and 274 km³/year, respectively. Thus huge volumes of fresh water meet saline water, and this mixing of two streams of dissimilar salinity gives rise to tremendous mixing energies which can be harvested for various purposes like energy generation using pressure retarded osmosis or reverse electrodialysis. The present paper concentrates on analyzing the energy of mixing for the rivers in Goa. Goa has 10 rivers of various sizes all which meet the Arabian Sea. In the present work, the 8 rivers and their salinity (NaCl concentrations) have been analyzed along with their seasonal fluctuations. Next, a Gibbs free energy formulation has been implemented to analyze the energy of mixing of the selected rivers. The highest and lowest energies according to the seasonal fluctuations have been evaluated, and this provides two important insights into (i) amount of energy that can be harvested and (ii) decision on the location of such systems.

Keywords: Gibbs energy, mixing energy, salinity gradient energy, thermodynamics

Procedia PDF Downloads 211
1843 Verification and Application of Finite Element Model Developed for Flood Routing in Rivers

Authors: A. L. Qureshi, A. A. Mahessar, A. Baloch

Abstract:

Flood wave propagation in river channel flow can be enunciated by nonlinear equations of motion for unsteady flow. However, it is difficult to find analytical solution of these complex non-linear equations. Hence, verification of the numerical model should be carried out against field data and numerical predictions. This paper presents the verification of developed finite element model applying for unsteady flow in the open channels. The results of a proposed model indicate a good matching with both Preissmann scheme and HEC-RAS model for a river reach of 29 km at both sites (15 km from upstream and at downstream end) for discharge hydrographs. It also has an agreeable comparison with the Preissemann scheme for the flow depth (stage) hydrographs. The proposed model has also been applying to forecast daily discharges at 400 km downstream from Sukkur barrage, which demonstrates accurate model predictions with observed daily discharges. Hence, this model may be utilized for predicting and issuing flood warnings about flood hazardous in advance.

Keywords: finite element method, Preissmann scheme, HEC-RAS, flood forecasting, Indus river

Procedia PDF Downloads 504
1842 Amine Hardeners with Carbon Nanotubes Dispersing Ability for Epoxy Coating Systems

Authors: Szymon Kugler, Krzysztof Kowalczyk, Tadeusz Spychaj

Abstract:

An addition of carbon nanotubes (CNT) can simultaneously improve many features of epoxy coatings, i.e. electrical, mechanical, functional and thermal. Unfortunately, this nanofiller negatively affects visual properties of the coatings, such as transparency and gloss. The main reason for the low visual performance of CNT-modified epoxy coatings is the lack of compatibility between CNT and popular amine curing agents, although epoxy resins based on bisphenol A are indisputable good CNT dispersants. This is a serious obstacle in utilization of the coatings in advanced applications, demanding both high transparency and electrical conductivity. The aim of performed investigations was to find amine curing agents exhibiting affinity for CNT, and ensuring good performance of epoxy coatings with them. Commercially available CNT was dispersed in epoxy resin, as well as in different aliphatic, cycloaliphatic and aromatic amines, using one of two dispergation methods: ultrasonic or mechanical. The CNT dispersions were subsequently used in the preparation of epoxy coating compositions and coatings on a transparent substrate. It was found that amine derivative of bio-based cardanol, as well as modified o-tolylbiguanide exhibit significant CNT, dispersing properties, resulting in improved transparent/electroconductive performance of epoxy coatings. In one of prepared coating systems just 0.025 wt.% (250 ppm) of CNT was enough to obtain coatings with semi conductive properties, 83% of transparency as well as perfect chemical resistance to methyl-ethyl ketone and improved thermal stability. Additionally, a theory of the influence of amine chemical structure on CNT dispersing properties was proposed.

Keywords: bio-based cardanol, carbon nanotubes, epoxy coatings, tolylbiguanide

Procedia PDF Downloads 211