Search results for: 3D finite element analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 29490

Search results for: 3D finite element analysis

28290 Integral Domains and Their Algebras: Topological Aspects

Authors: Shai Sarussi

Abstract:

Let S be an integral domain with field of fractions F and let A be an F-algebra. An S-subalgebra R of A is called S-nice if R∩F = S and the localization of R with respect to S \{0} is A. Denoting by W the set of all S-nice subalgebras of A, and defining a notion of open sets on W, one can view W as a T0-Alexandroff space. Thus, the algebraic structure of W can be viewed from the point of view of topology. It is shown that every nonempty open subset of W has a maximal element in it, which is also a maximal element of W. Moreover, a supremum of an irreducible subset of W always exists. As a notable connection with valuation theory, one considers the case in which S is a valuation domain and A is an algebraic field extension of F; if S is indecomposed in A, then W is an irreducible topological space, and W contains a greatest element.

Keywords: integral domains, Alexandroff topology, prime spectrum of a ring, valuation domains

Procedia PDF Downloads 123
28289 Finite Element Analysis of Raft Foundation on Various Soil Types under Earthquake Loading

Authors: Qassun S. Mohammed Shafiqu, Murtadha A. Abdulrasool

Abstract:

The design of shallow foundations to withstand different dynamic loads has given considerable attention in recent years. Dynamic loads may be due to the earthquakes, pile driving, blasting, water waves, and machine vibrations. But, predicting the behavior of shallow foundations during earthquakes remains a difficult task for geotechnical engineers. A database for dynamic and static parameters for different soils in seismic active zones in Iraq is prepared which has been collected from geophysical and geotechnical investigation works. Then, analysis of a typical 3-D soil-raft foundation system under earthquake loading is carried out using the database. And a parametric study has been carried out taking into consideration the influence of some parameters on the dynamic behavior of the raft foundation, such as raft stiffness, damping ratio as well as the influence of the earthquake acceleration-time records. The results of the parametric study show that the settlement caused by the earthquake can be decreased by about 72% with increasing the thickness from 0.5 m to 1.5 m. But, it has been noticed that reduction in the maximum bending moment by about 82% was predicted by decreasing the raft thickness from 1.5 m to 0.5 m in all sites model. Also, it has been observed that the maximum lateral displacement, the maximum vertical settlement and the maximum bending moment for damping ratio 0% is about 14%, 20%, and 18% higher than that for damping ratio 7.5%, respectively for all sites model.

Keywords: shallow foundation, seismic behavior, raft thickness, damping ratio

Procedia PDF Downloads 144
28288 Stability Design by Geometrical Nonlinear Analysis Using Equivalent Geometric Imperfections

Authors: S. Fominow, C. Dobert

Abstract:

The present article describes the research that deals with the development of equivalent geometric imperfections for the stability design of steel members considering lateral-torsional buckling. The application of these equivalent imperfections takes into account the stiffness-reducing effects due to inelasticity and residual stresses, which lead to a reduction of the load carrying capacity of slender members and structures. This allows the application of a simplified design method, that is performed in three steps. Application of equivalent geometric imperfections, determination of internal forces using geometrical non-linear analysis (GNIA) and verification of the cross-section resistance at the most unfavourable location. All three verification steps are closely related and influence the results. The derivation of the equivalent imperfections was carried out in several steps. First, reference lateral-torsional buckling resistances for various rolled I-sections, slenderness grades, load shapes and steel grades were determined. This was done either with geometric and material non-linear analysis with geometrical imperfections and residual stresses (GMNIA) or for standard cases based on the equivalent member method. With the aim of obtaining identical lateral-torsional buckling resistances as the reference resistances from the application of the design method, the required sizes for equivalent imperfections were derived. For this purpose, a program based on the FEM method has been developed. Based on these results, several proposals for the specification of equivalent geometric imperfections have been developed. These differ in the shape of the applied equivalent geometric imperfection, the model of the cross-sectional resistance and the steel grade. The proposed design methods allow a wide range of applications and a reliable calculation of the lateral-torsional buckling resistances, as comparisons between the calculated resistances and the reference resistances have shown.

Keywords: equivalent geometric imperfections, GMNIA, lateral-torsional buckling, non-linear finite element analysis

Procedia PDF Downloads 151
28287 Turbulent Flow in Corrugated Pipes with Helical Grooves

Authors: P. Mendes, H. Stel, R. E. M. Morales

Abstract:

This article presents a numerical and experimental study of turbulent flow in corrugated pipes with helically “d-type" grooves, for Reynolds numbers between 7500 and 100,000. The ANSYS-CFX software is used to solve the RANS equations with the BSL two equation turbulence model, through the element-based finite-volume method approach. Different groove widths and helix angles are considered. Numerical results are validated with experimental pressure drop measurements for the friction factor. A correlation for the friction factor is also proposed considering the geometric parameters and Reynolds numbers evaluated.

Keywords: turbulent flow, corrugated pipe, helical, numerical, experimental, friction factor, correlation

Procedia PDF Downloads 476
28286 Rehabilitation of Orthotropic Steel Deck Bridges Using a Modified Ortho-Composite Deck System

Authors: Mozhdeh Shirinzadeh, Richard Stroetmann

Abstract:

Orthotropic steel deck bridge consists of a deck plate, longitudinal stiffeners under the deck plate, cross beams and the main longitudinal girders. Due to the several advantages, Orthotropic Steel Deck (OSD) systems have been utilized in many bridges worldwide. The significant feature of this structural system is its high load-bearing capacity while having relatively low dead weight. In addition, cost efficiency and the ability of rapid field erection have made the orthotropic steel deck a popular type of bridge worldwide. However, OSD bridges are highly susceptible to fatigue damage. A large number of welded joints can be regarded as the main weakness of this system. This problem is, in particular, evident in the bridges which were built before 1994 when the fatigue design criteria had not been introduced in the bridge design codes. Recently, an Orthotropic-composite slab (OCS) for road bridges has been experimentally and numerically evaluated and developed at Technische Universität Dresden as a part of AIF-FOSTA research project P1265. The results of the project have provided a solid foundation for the design and analysis of Orthotropic-composite decks with dowel strips as a durable alternative to conventional steel or reinforced concrete decks. In continuation, while using the achievements of that project, the application of a modified Ortho-composite deck for an existing typical OSD bridge is investigated. Composite action is obtained by using rows of dowel strips in a clothoid (CL) shape. Regarding Eurocode criteria for different fatigue detail categories of an OSD bridge, the effect of the proposed modification approach is assessed. Moreover, a numerical parametric study is carried out utilizing finite element software to determine the impact of different variables, such as the size and arrangement of dowel strips, the application of transverse or longitudinal rows of dowel strips, and local wheel loads. For the verification of the simulation technique, experimental results of a segment of an OCS deck are used conducted in project P1265. Fatigue assessment is performed based on the last draft of Eurocode 1993-2 (2024) for the most probable detail categories (Hot-Spots) that have been reported in the previous statistical studies. Then, an analytical comparison is provided between the typical orthotropic steel deck and the modified Ortho-composite deck bridge in terms of fatigue issues and durability. The load-bearing capacity of the bridge, the critical deflections, and the composite behavior are also evaluated and compared. Results give a comprehensive overview of the efficiency of the rehabilitation method considering the required design service life of the bridge. Moreover, the proposed approach is assessed with regard to the construction method, details and practical aspects, as well as the economic point of view.

Keywords: composite action, fatigue, finite element method, steel deck, bridge

Procedia PDF Downloads 73
28285 Experimental and Numerical Evaluation of a Shaft Failure Behaviour Using Three-Point Bending Test

Authors: Bernd Engel, Sara Salman Hassan Al-Maeeni

Abstract:

A substantial amount of natural resources are nowadays consumed at a growing rate, as humans all over the world used materials obtained from the Earth. Machinery manufacturing industry is one of the major resource consumers on a global scale. Even though the incessant finding out of the new material, metals, and resources, it is urgent for the industry to develop methods to use the Earth's resources intelligently and more sustainable than before. Re-engineering of machine tools regarding design and failure analysis is an approach whereby out-of-date machines are upgraded and returned to useful life. To ensure the reliable future performance of the used machine components, it is essential to investigate the machine component failure through the material, design, and surface examinations. This paper presents an experimental approach aimed at inspecting the shaft of the rotary draw bending machine as a case to study. The testing methodology, which is based on the principle of the three-point bending test, allows assessing the shaft elastic behavior under loading. Furthermore, the shaft elastic characteristics include the maximum linear deflection, and maximum bending stress was determined by using an analytical approach and finite element (FE) analysis approach. In the end, the results were compared with the ones obtained by the experimental approach. In conclusion, it is seen that the measured bending deflection and bending stress were well close to the permissible design value. Therefore, the shaft can work in the second life cycle. However, based on previous surface tests conducted, the shaft needs surface treatments include re-carburizing and refining processes to ensure the reliable surface performance.

Keywords: deflection, FE analysis, shaft, stress, three-point bending

Procedia PDF Downloads 151
28284 Comparative Study of Arch Bridges with Varying Rise to Span Ratio

Authors: Tauhidur Rahman, Arnab Kumar Sinha

Abstract:

This paper presents a comparative study of Arch bridges based on their varying rise to span ratio. The comparison is done between different steel Arch bridges which have variable span length and rise to span ratio keeping the same support condition. The aim of our present study is to select the optimum value of rise to span ratio of Arch bridge as the cost of the Arch bridge increases with the increasing of the rise. In order to fulfill the objective, several rise to span ratio have been considered for same span of Arch bridge and various structural parameters such as Bending moment, shear force etc have been calculated for different model. A comparative study has been done for several Arch bridges finally to select the optimum rise to span ratio of the Arch bridges. In the present study, Finite Element model for medium to long span, with different rise to span ratio have been modeled and are analyzed with the help of a Computational Software named MIDAS Civil to evaluate the results such as Bending moments, Shear force, displacements, Stresses, influence line diagrams, critical loads. In the present study, 60 models of Arch bridges for 80 to 120 m span with different rise to span ratio has been thoroughly investigated.

Keywords: arch bridge, analysis, comparative study, rise to span ratio

Procedia PDF Downloads 523
28283 Development of Anterior Lumbar Interbody Fusion (ALIF) Peek Cage Based on the Korean Lumbar Anatomical Information

Authors: Chang Soo Chon, Cheol Woong Ko, Han Sung Kim

Abstract:

The aim of this study is to develop an anterior lumbar interbody fusion (ALIF) PEEK cage suitable for Korean people. In this study, CT images were obtained from Korean male (173cm, 71kg) and 3D Korean lumbar models were reconstructed based on the CT images to investigate anatomical characteristics. Major design parameters of anterior lumbar interbody fusion (ALIF) PEEK Cage were selected using the morphological measurement information of the Korean Lumbar models. Through finite element analysis and mechanical tests, the developed ALIF PEEK Cage prototype was compared with the Fidji Cage (Zimmer.Inc, USA) and it was found that the ALIF prototype showed similar and/or superior mechanical performance compared to the FidJi Cage. Also, clinical validation for the ALIF PEEK Cage prototype was carried out to check predictable troubles in surgical operations. Finally, it is considered that the convenience and stability of the prototype was clinically verified.

Keywords: inter-body anterior fusion, ALIF cage, PEEK, Korean lumbar, CT image, animal test

Procedia PDF Downloads 513
28282 Study of the Stability of Underground Mines by Numerical Method: The Mine Chaabet El Hamra, Algeria

Authors: Nakache Radouane, M. Boukelloul, M. Fredj

Abstract:

Method room and pillar sizes are key factors for safe mining and their recovery in open-stop mining. This method is advantageous due to its simplicity and requirement of little information to be used. It is probably the most representative method among the total load approach methods although it also remains a safe design method. Using a finite element software (PLAXIS 3D), analyses were carried out with an elasto-plastic model and comparisons were made with methods based on the total load approach. The results were presented as the optimization for improving the ore recovery rate while maintaining a safe working environment.

Keywords: room and pillar, mining, total load approach, elasto-plastic

Procedia PDF Downloads 323
28281 A Novel Combustion Engine, Design and Modeling

Authors: M. A. Effati, M. R. Hojjati, M. Razmdideh

Abstract:

Nowadays, engine developments have focused on internal combustion engine design call for increased engine power, reduced engine size and improved fuel economy, simultaneously. In this paper, a novel design for combustion engine is proposed. Two combustion chambers were designed in two sides of cylinder. Piston was designed in a way that two sides of piston would transfer heat energy due to combustion to linear motion. This motion would convert to rotary motion through the designed mechanism connected to connecting rod. Connecting rod operation was analyzed to evaluate applied stress in 3000, 4500 and 6000 rpm. Boundary conditions including generated pressure in each side of cylinder in these 3 situations was calculated.

Keywords: combustion engine, design, finite element method, modeling

Procedia PDF Downloads 507
28280 Analysis of Nonlinear Pulse Propagation Characteristics in Semiconductor Optical Amplifier for Different Input Pulse Shapes

Authors: Suchi Barua, Narottam Das, Sven Nordholm, Mohammad Razaghi

Abstract:

This paper presents nonlinear pulse propagation characteristics for different input optical pulse shapes with various input pulse energy levels in semiconductor optical amplifiers. For simulation of nonlinear pulse propagation, finite-difference beam propagation method is used to solve the nonlinear Schrödinger equation. In this equation, gain spectrum dynamics, gain saturation are taken into account which depends on carrier depletion, carrier heating, spectral-hole burning, group velocity dispersion, self-phase modulation and two photon absorption. From this analysis, we obtained the output waveforms and spectra for different input pulse shapes as well as for different input energies. It shows clearly that the peak position of the output waveforms are shifted toward the leading edge which due to the gain saturation of the SOA for higher input pulse energies. We also analyzed and compared the normalized difference of full-width at half maximum for different input pulse shapes in the SOA.

Keywords: finite-difference beam propagation method, pulse shape, pulse propagation, semiconductor optical amplifier

Procedia PDF Downloads 601
28279 Comparison between Experimental and Numerical Studies of Fully Encased Composite Columns

Authors: Md. Soebur Rahman, Mahbuba Begum, Raquib Ahsan

Abstract:

Composite column is a structural member that uses a combination of structural steel shapes, pipes or tubes with or without reinforcing steel bars and reinforced concrete to provide adequate load carrying capacity to sustain either axial compressive loads alone or a combination of axial loads and bending moments. Composite construction takes the advantages of the speed of construction, light weight and strength of steel, and the higher mass, stiffness, damping properties and economy of reinforced concrete. The most usual types of composite columns are the concrete filled steel tubes and the partially or fully encased steel profiles. Fully encased composite column (FEC) provides compressive strength, stability, stiffness, improved fire proofing and better corrosion protection. This paper reports experimental and numerical investigations of the behaviour of concrete encased steel composite columns subjected to short-term axial load. In this study, eleven short FEC columns with square shaped cross section were constructed and tested to examine the load-deflection behavior. The main variables in the test were considered as concrete compressive strength, cross sectional size and percentage of structural steel. A nonlinear 3-D finite element (FE) model has been developed to analyse the inelastic behaviour of steel, concrete, and longitudinal reinforcement as well as the effect of concrete confinement of the FEC columns. FE models have been validated against the current experimental study conduct in the laboratory and published experimental results under concentric load. It has been observed that FE model is able to predict the experimental behaviour of FEC columns under concentric gravity loads with good accuracy. Good agreement has been achieved between the complete experimental and the numerical load-deflection behaviour in this study. The capacities of each constituent of FEC columns such as structural steel, concrete and rebar's were also determined from the numerical study. Concrete is observed to provide around 57% of the total axial capacity of the column whereas the steel I-sections contributes to the rest of the capacity as well as ductility of the overall system. The nonlinear FE model developed in this study is also used to explore the effect of concrete strength and percentage of structural steel on the behaviour of FEC columns under concentric loads. The axial capacity of FEC columns has been found to increase significantly by increasing the strength of concrete.

Keywords: composite, columns, experimental, finite element, fully encased, strength

Procedia PDF Downloads 286
28278 A Nonstandard Finite Difference Method for Weather Derivatives Pricing Model

Authors: Clarinda Vitorino Nhangumbe, Fredericks Ebrahim, Betuel Canhanga

Abstract:

The price of an option weather derivatives can be approximated as a solution of the two-dimensional convection-diffusion dominant partial differential equation derived from the Ornstein-Uhlenbeck process, where one variable represents the weather dynamics and the other variable represent the underlying weather index. With appropriate financial boundary conditions, the solution of the pricing equation is approximated using a nonstandard finite difference method. It is shown that the proposed numerical scheme preserves positivity as well as stability and consistency. In order to illustrate the accuracy of the method, the numerical results are compared with other methods. The model is tested for real weather data.

Keywords: nonstandard finite differences, Ornstein-Uhlenbeck process, partial differential equations approach, weather derivatives

Procedia PDF Downloads 96
28277 Numerical Analysis of Mandible Fracture Stabilization System

Authors: Piotr Wadolowski, Grzegorz Krzesinski, Piotr Gutowski

Abstract:

The aim of the presented work is to recognize the impact of mini-plate application approach on the stress and displacement within the stabilization devices and surrounding bones. The mini-plate osteosynthesis technique is widely used by craniofacial surgeons as an improved replacement of wire connection approach. Many different types of metal plates and screws are used to the physical connection of fractured bones. Below investigation is based on a clinical observation of patient hospitalized with mini-plate stabilization system. Analysis was conducted on a solid mandible geometry, which was modeled basis on the computed tomography scan of the hospitalized patient. In order to achieve most realistic connected system behavior, the cortical and cancellous bone layers were assumed. The temporomandibular joint was simplified to the elastic element to allow physiological movement of loaded bone. The muscles of mastication system were reduced to three pairs, modeled as shell structures. Finite element grid was created by the ANSYS software, where hexahedral and tetrahedral variants of SOLID185 element were used. A set of nonlinear contact conditions were applied on connecting devices and bone common surfaces. Properties of particular contact pair depend on screw - mini-plate connection type and possible gaps between fractured bone around osteosynthesis region. Some of the investigated cases contain prestress introduced to the mini-plate during the application, what responds the initial bending of the connecting device to fit the retromolar fossa region. Assumed bone fracture occurs within the mandible angle zone. Due to the significant deformation of the connecting plate in some of the assembly cases the elastic-plastic model of titanium alloy was assumed. The bone tissues were covered by the orthotropic material. As a loading were used the gauge force of magnitude of 100N applied in three different locations. Conducted analysis shows significant impact of mini-plate application methodology on the stress distribution within the miniplate. Prestress effect introduces additional loading, which leads to locally exceed the titanium alloy yield limit. Stress in surrounding bone increases rapidly around the screws application region, exceeding assumed bone yield limit, what indicate the local bone destruction. Approach with the doubled mini-plate shows increased stress within the connector due to the too rigid connection, where the main path of loading leads through the mini-plates instead of plates and connected bones. Clinical observations confirm more frequent plate destruction of stiffer connections. Some of them could be an effect of decreased low cyclic fatigue capability caused by the overloading. The executed analysis prove that the mini-plate system provides sufficient support to mandible fracture treatment, however, many applicable solutions shifts the entire system to the allowable material limits. The results show that connector application with the initial loading needs to be carefully established due to the small material capability tolerances. Comparison to the clinical observations allows optimizing entire connection to prevent future incidents.

Keywords: mandible fracture, mini-plate connection, numerical analysis, osteosynthesis

Procedia PDF Downloads 269
28276 Modeling, Analysis and Control of a Smart Composite Structure

Authors: Nader H. Ghareeb, Mohamed S. Gaith, Sayed M. Soleimani

Abstract:

In modern engineering, weight optimization has a priority during the design of structures. However, optimizing the weight can result in lower stiffness and less internal damping, causing the structure to become excessively prone to vibration. To overcome this problem, active or smart materials are implemented. The coupled electromechanical properties of smart materials, used in the form of piezoelectric ceramics in this work, make these materials well-suited for being implemented as distributed sensors and actuators to control the structural response. The smart structure proposed in this paper is composed of a cantilevered steel beam, an adhesive or bonding layer, and a piezoelectric actuator. The static deflection of the structure is derived as function of the piezoelectric voltage, and the outcome is compared to theoretical and experimental results from literature. The relation between the voltage and the piezoelectric moment at both ends of the actuator is also investigated and a reduced finite element model of the smart structure is created and verified. Finally, a linear controller is implemented and its ability to attenuate the vibration due to the first natural frequency is demonstrated.

Keywords: active linear control, lyapunov stability theorem, piezoelectricity, smart structure, static deflection

Procedia PDF Downloads 382
28275 Reentrant Spin-Glass State Formation in Polycrystalline Er₂NiSi₃

Authors: Santanu Pakhira, Chandan Mazumdar, R. Ranganathan, Maxim Avdeev

Abstract:

Magnetically frustrated systems are of great interest and one of the most adorable topics for the researcher of condensed matter physics, due to their various interesting properties, viz. ground state degeneracy, finite entropy at zero temperature, lowering of ordering temperature, etc. Ternary intermetallics with the composition RE₂TX₃ (RE = rare-earth element, T= d electron transition metal and X= p electron element) crystallize in hexagonal AlB₂ type crystal structure (space group P6/mmm). In a hexagonal crystal structure with the antiferromagnetic interaction between the moments, the center moment is geometrically frustrated. Magnetic frustration along with disorder arrangements of non-magnetic ions are the building blocks for metastable spin-glass ground state formation for most of the compounds of this stoichiometry. The newly synthesized compound Er₂NiSi₃ compound forms in single phase in AlB₂ type structure with space group P6/mmm. The compound orders antiferromagnetically below 5.4 K and spin freezing of the frustrated magnetic moments occurs below 3 K for the compound. The compound shows magnetic relaxation behavior and magnetic memory effect below its freezing temperature. Neutron diffraction patterns for temperatures below the spin freezing temperature have been analyzed using FULLPROF software package. Diffuse magnetic scattering at low temperatures yields spin glass state formation for the compound.

Keywords: antiferromagnetism, magnetic frustration, spin-glass, neutron diffraction

Procedia PDF Downloads 256
28274 [Keynote Talk]: Analysis of One Dimensional Advection Diffusion Model Using Finite Difference Method

Authors: Vijay Kumar Kukreja, Ravneet Kaur

Abstract:

In this paper, one dimensional advection diffusion model is analyzed using finite difference method based on Crank-Nicolson scheme. A practical problem of filter cake washing of chemical engineering is analyzed. The model is converted into dimensionless form. For the grid Ω × ω = [0, 1] × [0, T], the Crank-Nicolson spatial derivative scheme is used in space domain and forward difference scheme is used in time domain. The scheme is found to be unconditionally convergent, stable, first order accurate in time and second order accurate in space domain. For a test problem, numerical results are compared with the analytical ones for different values of parameter.

Keywords: Crank-Nicolson scheme, Lax-Richtmyer theorem, stability, consistency, Peclet number, Greschgorin circle

Procedia PDF Downloads 219
28273 Solving Stochastic Eigenvalue Problem of Wick Type

Authors: Hassan Manouzi, Taous-Meriem Laleg-Kirati

Abstract:

In this paper we study mathematically the eigenvalue problem for stochastic elliptic partial differential equation of Wick type. Using the Wick-product and the Wiener-Ito chaos expansion, the stochastic eigenvalue problem is reformulated as a system of an eigenvalue problem for a deterministic partial differential equation and elliptic partial differential equations by using the Fredholm alternative. To reduce the computational complexity of this system, we shall use a decomposition-coordination method. Once this approximation is performed, the statistics of the numerical solution can be easily evaluated.

Keywords: eigenvalue problem, Wick product, SPDEs, finite element, Wiener-Ito chaos expansion

Procedia PDF Downloads 353
28272 Prediction of Fracture Aperture in Fragmented Rocks

Authors: Hossein Agheshlui, Stephan Matthai

Abstract:

In fractured rock masses open fractures tend to act as the main pathways of fluid flow. The permeability of a rock fracture depends on its aperture. The change of aperture with stress can cause a many-orders-of-magnitude change in the hydraulic conductivity at moderate compressive stress levels. In this study, the change of aperture in fragmented rocks is investigated using finite element analysis. A full 3D mechanical model of a simplified version of an outcrop analog is created and studied. A constant initial aperture value is applied to all fractures. Different far field stresses are applied and the change of aperture is monitored considering the block to block interaction. The fragmented rock layer is assumed to be sandwiched between softer layers. Frictional contact forces are defined at the layer boundaries as well as among contacting rock blocks. For a given in situ stress, the blocks slide and contact each other, resulting in new aperture distributions. A map of changed aperture is produced after applying the in situ stress and compared to the initial apertures. Subsequently, the permeability of the system before and after the stress application is compared.

Keywords: fractured rocks, mechanical model, aperture change due to stress, frictional interface

Procedia PDF Downloads 410
28271 Structural Behavior of Non-Prismatic Mono-Symmetric Beam

Authors: Nandini B. Nagaraju, Punya D. Gowda, S. Aishwarya, Benjamin Rohit

Abstract:

This paper attempts to understand the structural behavior of non-prismatic channel beams subjected to bending through finite element (FE) analysis. The present study aims at shedding some light on how tapered channel beams behave by studying the effect of taper ratio on structural behavior. As a weight reduction is always desired in aerospace structures beams are tapered in order to obtain highest structural efficiency. FE analysis has been performed to study the effect of taper ratio on linear deflection, lateral torsional buckling, non-linear parameters, stresses and dynamic parameters. Taper ratio tends to affect the mechanics of tapered beams innocuously and adversely. Consequently, it becomes important to understand and document the mechanics of channel tapered beams. Channel beams generally have low torsional rigidity due to the off-shear loading. The effect of loading type and location of applied load have been studied for flange taper, web taper and symmetric taper for different conditions. Among these, as the taper ratio is increased, the torsional angular deflection increases but begins to decrease when the beam is web tapered and symmetrically tapered for a mid web loaded beam. But when loaded through the shear center, an increase in the torsional angular deflection can be observed with increase in taper ratio. It should be considered which parameter is tapered to obtain the highest efficiency.

Keywords: channel beams, tapered beams, lateral torsional bucking, shear centre

Procedia PDF Downloads 437
28270 Comparison of the Effect of Strand Diameters, Providing Beam to Column Connection

Authors: Mustafa Kaya

Abstract:

In this study, the effect of pre-stressed strand diameters, providing the beam-to-column connections, was investigated from both experimental, and analytical aspects. In the experimental studies, the strength and stiffness, the capacities of the precast specimens were compared. The precast specimen with strands of 15.24 mm reached an equal strength of the reference specimen. Parallel results were obtained during the analytical studies from the aspects of strength, and behavior, but in terms of stiffness, it was seen that the initial stiffness of the analytical models was lower than that of the tested specimen.

Keywords: post-tensioned connections, beam to column connections, finite element method, strand diameter

Procedia PDF Downloads 327
28269 EHD Effect on the Dynamic Characteristics of a Journal Bearing Lubricated with Couple Stress Fluids

Authors: B. Chetti, W. A. Crosby

Abstract:

This paper presents a numerical analysis for the dynamic performance of a finite journal bearing lubricated with couple stress fluid taking into account the effect of the deformation of the bearing liner. The modified Reynolds equation has been solved by using finite difference technique. The dynamic characteristics in terms of stiffness coefficients, damping coefficients, critical mass and whirl ratio are evaluated for different values of eccentricity ratio and elastic coefficient for a journal bearing lubricated with a couple stress fluids and a Newtonian fluid. The results show that the dynamic characteristics of journal bearings lubricated with couple stress fluids are improved compared to journal bearings lubricated with Newtonian fluids.

Keywords: journal bearing, elastohydrodynamic, stability, couple stress

Procedia PDF Downloads 359
28268 Steady State Rolling and Dynamic Response of a Tire at Low Frequency

Authors: Md Monir Hossain, Anne Staples, Kuya Takami, Tomonari Furukawa

Abstract:

Tire noise has a significant impact on ride quality and vehicle interior comfort, even at low frequency. Reduction of tire noise is especially important due to strict state and federal environmental regulations. The primary sources of tire noise are the low frequency structure-borne noise and the noise that originates from the release of trapped air between the tire tread and road surface during each revolution of the tire. The frequency response of the tire changes at low and high frequency. At low frequency, the tension and bending moment become dominant, while the internal structure and local deformation become dominant at higher frequencies. Here, we analyze tire response in terms of deformation and rolling velocity at low revolution frequency. An Abaqus FEA finite element model is used to calculate the static and dynamic response of a rolling tire under different rolling conditions. The natural frequencies and mode shapes of a deformed tire are calculated with the FEA package where the subspace-based steady state dynamic analysis calculates dynamic response of tire subjected to harmonic excitation. The analysis was conducted on the dynamic response at the road (contact point of tire and road surface) and side nodes of a static and rolling tire when the tire was excited with 200 N vertical load for a frequency ranging from 20 to 200 Hz. The results show that frequency has little effect on tire deformation up to 80 Hz. But between 80 and 200 Hz, the radial and lateral components of displacement of the road and side nodes exhibited significant oscillation. For the static analysis, the fluctuation was sharp and frequent and decreased with frequency. In contrast, the fluctuation was periodic in nature for the dynamic response of the rolling tire. In addition to the dynamic analysis, a steady state rolling analysis was also performed on the tire traveling at ground velocity with a constant angular motion. The purpose of the computation was to demonstrate the effect of rotating motion on deformation and rolling velocity with respect to a fixed Newtonian reference point. The analysis showed a significant variation in deformation and rolling velocity due to centrifugal and Coriolis acceleration with respect to a fixed Newtonian point on ground.

Keywords: natural frequency, rotational motion, steady state rolling, subspace-based steady state dynamic analysis

Procedia PDF Downloads 361
28267 Prediction and Optimization of Machining Induced Residual Stresses in End Milling of AISI 1045 Steel

Authors: Wajid Ali Khan

Abstract:

Extensive experimentation and numerical investigation are performed to predict the machining-induced residual stresses in the end milling of AISI 1045 steel, and an optimization code has been developed using the particle swarm optimization technique. Experiments were conducted using a single factor at a time and design of experiments approach. Regression analysis was done, and a mathematical model of the cutting process was developed, thus predicting the machining-induced residual stress with reasonable accuracy. The mathematical model served as the objective function to be optimized using particle swarm optimization. The relationship between the different cutting parameters and the output variables, force, and residual stresses has been studied. The combined effect of the process parameters, speed, feed, and depth of cut was examined, and it is understood that 85% of the variation of these variables can be attributed to these machining parameters under research. A 3D finite element model is developed to predict the cutting forces and the machining-induced residual stresses in end milling operation. The results were validated experimentally and against the Johnson-cook model available in the literature.

Keywords: residual stresses, end milling, 1045 steel, optimization

Procedia PDF Downloads 99
28266 Material Flow Modeling in Friction Stir Welding of AA6061-T6 Alloy and Study of the Effect of Process Parameters

Authors: B. SahaRoy, T. Medhi, S. C. Saha

Abstract:

To understand the friction stir welding process, it is very important to know the nature of the material flow in and around the tool. The process is a combination of both thermal as well as mechanical work i.e it is a coupled thermo-mechanical process. Numerical simulations are very much essential in order to obtain a complete knowledge of the process as well as the physics underlying it. In the present work a model based approach is adopted in order to study material flow. A thermo-mechanical based CFD model is developed using a Finite Element package, Comsol Multiphysics. The fluid flow analysis is done. The model simultaneously predicts shear strain fields, shear strain rates and shear stress over the entire workpiece for the given conditions. The flow fields generated by the streamline plot give an idea of the material flow. The variation of dynamic viscosity, velocity field and shear strain fields with various welding parameters is studied. Finally the result obtained from the above mentioned conditions is discussed elaborately and concluded.

Keywords: AA6061-T6, CFD modelling, friction stir welding, material flow

Procedia PDF Downloads 518
28265 Overhead Lines Induced Transient Overvoltage Analysis Using Finite Difference Time Domain Method

Authors: Abdi Ammar, Ouazir Youcef, Laissaoui Abdelmalek

Abstract:

In this work, an approach based on transmission lines theory is presented. It is exploited for the calculation of overvoltage created by direct impacts of lightning waves on a guard cable of an overhead high-voltage line. First, we show the theoretical developments leading to the propagation equation, its discretization by finite difference time domain method (FDTD), and the resulting linear algebraic equations, followed by the calculation of the linear parameters of the line. The second step consists of solving the transmission lines system of equations by the FDTD method. This enabled us to determine the spatio-temporal evolution of the induced overvoltage.

Keywords: lightning surge, transient overvoltage, eddy current, FDTD, electromagnetic compatibility, ground wire

Procedia PDF Downloads 79
28264 Finite Element Method (FEM) Simulation, design and 3D Print of Novel Highly Integrated PV-TEG Device with Improved Solar Energy Harvest Efficiency

Authors: Jaden Lu, Olivia Lu

Abstract:

Despite the remarkable advancement of solar cell technology, the challenge of optimizing total solar energy harvest efficiency persists, primarily due to significant heat loss. This excess heat not only diminishes solar panel output efficiency but also curtails its operational lifespan. A promising approach to address this issue is the conversion of surplus heat into electricity. In recent years, there is growing interest in the use of thermoelectric generators (TEG) as a potential solution. The integration of efficient TEG devices holds the promise of augmenting overall energy harvest efficiency while prolonging the longevity of solar panels. While certain research groups have proposed the integration of solar cells and TEG devices, a substantial gap between conceptualization and practical implementation remains, largely attributed to low thermal energy conversion efficiency of TEG devices. To bridge this gap and meet the requisites of practical application, a feasible strategy involves the incorporation of a substantial number of p-n junctions within a confined unit volume. However, the manufacturing of high-density TEG p-n junctions presents a formidable challenge. The prevalent solution often leads to large device sizes to accommodate enough p-n junctions, consequently complicating integration with solar cells. Recently, the adoption of 3D printing technology has emerged as a promising solution to address this challenge by fabricating high-density p-n arrays. Despite this, further developmental efforts are necessary. Presently, the primary focus is on the 3D printing of vertically layered TEG devices, wherein p-n junction density remains constrained by spatial limitations and the constraints of 3D printing techniques. This study proposes a novel device configuration featuring horizontally arrayed p-n junctions of Bi2Te3. The structural design of the device is subjected to simulation through the Finite Element Method (FEM) within COMSOL Multiphysics software. Various device configurations are simulated to identify optimal device structure. Based on the simulation results, a new TEG device is fabricated utilizing 3D Selective laser melting (SLM) printing technology. Fusion 360 facilitates the translation of the COMSOL device structure into a 3D print file. The horizontal design offers a unique advantage, enabling the fabrication of densely packed, three-dimensional p-n junction arrays. The fabrication process entails printing a singular row of horizontal p-n junctions using the 3D SLM printing technique in a single layer. Subsequently, successive rows of p-n junction arrays are printed within the same layer, interconnected by thermally conductive copper. This sequence is replicated across multiple layers, separated by thermal insulating glass. This integration created in a highly compact three-dimensional TEG device with high density p-n junctions. The fabricated TEG device is then attached to the bottom of the solar cell using thermal glue. The whole device is characterized, with output data closely matching with COMSOL simulation results. Future research endeavors will encompass the refinement of thermoelectric materials. This includes the advancement of high-resolution 3D printing techniques tailored to diverse thermoelectric materials, along with the optimization of material microstructures such as porosity and doping. The objective is to achieve an optimal and highly integrated PV-TEG device that can substantially increase the solar energy harvest efficiency.

Keywords: thermoelectric, finite element method, 3d print, energy conversion

Procedia PDF Downloads 64
28263 Analytical Study Of Holographic Polymer Dispersed Liquid Crystals Using Finite Difference Time Domain Method

Authors: N. R. Mohamad, H. Ono, H. Haroon, A. Salleh, N. M. Z. Hashim

Abstract:

In this research, we have studied and analyzed the modulation of light and liquid crystal in HPDLCs using Finite Domain Time Difference (FDTD) method. HPDLCs are modeled as a mixture of polymer and liquid crystals (LCs) that categorized as an anisotropic medium. FDTD method is directly solves Maxwell’s equation with less approximation, so this method can analyze more flexible and general approach for the arbitrary anisotropic media. As the results from FDTD simulation, the highest diffraction efficiency occurred at ±19 degrees (Bragg angle) using p polarization incident beam to Bragg grating, Q > 10 when the pitch is 1µm. Therefore, the liquid crystal is assumed to be aligned parallel to the grating constant vector during these parameters.

Keywords: birefringence, diffraction efficiency, finite domain time difference, nematic liquid crystals

Procedia PDF Downloads 455
28262 An Analytical Study on Rotational Capacity of Beam-Column Joints in Unit Modular Frames

Authors: Kyung-Suk Choi, Hyung-Joon Kim

Abstract:

Modular structural systems are constructed using a method that they are assembled with prefabricated unit modular frames on-site. This provides a benefit that can significantly reduce building construction time. Their structural design is usually carried out under the assumption that the load-carrying mechanism is similar to that of a traditional steel moment-resisting system. However, both systems are different in terms of beam-column connection details which may strongly influence the lateral structural behavior. Specially, the presence of access holes in a beam-column joint of a unit modular frame could cause undesirable failure during strong earthquakes. Therefore, this study carried out finite element analyses (FEM) of unit modular frames to investigate the cyclic behavior of beam-column joints with the structural influence of access holes. Analysis results show that the unit modular frames present stable cyclic response with large deformation capacities, and their joints are classified into semi-rigid connections.

Keywords: unit modular frame, steel moment connection, nonlinear analytical model, moment-rotation relation

Procedia PDF Downloads 609
28261 Cubic Trigonometric B-Spline Approach to Numerical Solution of Wave Equation

Authors: Shazalina Mat Zin, Ahmad Abd. Majid, Ahmad Izani Md. Ismail, Muhammad Abbas

Abstract:

The generalized wave equation models various problems in sciences and engineering. In this paper, a new three-time level implicit approach based on cubic trigonometric B-spline for the approximate solution of wave equation is developed. The usual finite difference approach is used to discretize the time derivative while cubic trigonometric B-spline is applied as an interpolating function in the space dimension. Von Neumann stability analysis is used to analyze the proposed method. Two problems are discussed to exhibit the feasibility and capability of the method. The absolute errors and maximum error are computed to assess the performance of the proposed method. The results were found to be in good agreement with known solutions and with existing schemes in literature.

Keywords: collocation method, cubic trigonometric B-spline, finite difference, wave equation

Procedia PDF Downloads 535