Search results for: size control
3721 Comparative Study of Heat Transfer Capacity Limits of Heat Pipes
Authors: H. Shokouhmand, A. Ghanami
Abstract:
Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section.In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity.Keywords: heat pipe, HVAC system, grooved Heat pipe, heat pipe limits
Procedia PDF Downloads 4213720 Consumption and Diffusion Based Model of Tissue Organoid Development
Authors: Elena Petersen, Inna Kornienko, Svetlana Guryeva, Sergey Simakov
Abstract:
In vitro organoid cultivation requires the simultaneous provision of necessary vascularization and nutrients perfusion of cells during organoid development. However, many aspects of this problem are still unsolved. The functionality of vascular network intergrowth is limited during early stages of organoid development since a function of the vascular network initiated on final stages of in vitro organoid cultivation. Therefore, a microchannel network should be created in early stages of organoid cultivation in hydrogel matrix aimed to conduct and maintain minimally required the level of nutrients perfusion for all cells in the expanding organoid. The network configuration should be designed properly in order to exclude hypoxic and necrotic zones in expanding organoid at all stages of its cultivation. In vitro vascularization is currently the main issue within the field of tissue engineering. As perfusion and oxygen transport have direct effects on cell viability and differentiation, researchers are currently limited only to tissues of few millimeters in thickness. These limitations are imposed by mass transfer and are defined by the balance between the metabolic demand of the cellular components in the system and the size of the scaffold. Current approaches include growth factor delivery, channeled scaffolds, perfusion bioreactors, microfluidics, cell co-cultures, cell functionalization, modular assembly, and in vivo systems. These approaches may improve cell viability or generate capillary-like structures within a tissue construct. Thus, there is a fundamental disconnect between defining the metabolic needs of tissue through quantitative measurements of oxygen and nutrient diffusion and the potential ease of integration into host vasculature for future in vivo implantation. A model is proposed for growth prognosis of the organoid perfusion based on joint simulations of general nutrient diffusion, nutrient diffusion to the hydrogel matrix through the contact surfaces and microchannels walls, nutrient consumption by the cells of expanding organoid, including biomatrix contraction during tissue development, which is associated with changed consumption rate of growing organoid cells. The model allows computing effective microchannel network design giving minimally required the level of nutrients concentration in all parts of growing organoid. It can be used for preliminary planning of microchannel network design and simulations of nutrients supply rate depending on the stage of organoid development.Keywords: 3D model, consumption model, diffusion, spheroid, tissue organoid
Procedia PDF Downloads 3083719 Application of GPRS in Water Quality Monitoring System
Authors: V. Ayishwarya Bharathi, S. M. Hasker, J. Indhu, M. Mohamed Azarudeen, G. Gowthami, R. Vinoth Rajan, N. Vijayarangan
Abstract:
Identification of water quality conditions in a river system based on limited observations is an essential task for meeting the goals of environmental management. The traditional method of water quality testing is to collect samples manually and then send to laboratory for analysis. However, it has been unable to meet the demands of water quality monitoring today. So a set of automatic measurement and reporting system of water quality has been developed. In this project specifies Water quality parameters collected by multi-parameter water quality probe are transmitted to data processing and monitoring center through GPRS wireless communication network of mobile. The multi parameter sensor is directly placed above the water level. The monitoring center consists of GPRS and micro-controller which monitor the data. The collected data can be monitor at any instant of time. In the pollution control board they will monitor the water quality sensor data in computer using Visual Basic Software. The system collects, transmits and processes water quality parameters automatically, so production efficiency and economy benefit are improved greatly. GPRS technology can achieve well within the complex environment of poor water quality non-monitored, and more specifically applicable to the collection point, data transmission automatically generate the field of water analysis equipment data transmission and monitoring.Keywords: multiparameter sensor, GPRS, visual basic software, RS232
Procedia PDF Downloads 4123718 Non-Perturbative Vacuum Polarization Effects in One- and Two-Dimensional Supercritical Dirac-Coulomb System
Authors: Andrey Davydov, Konstantin Sveshnikov, Yulia Voronina
Abstract:
There is now a lot of interest to the non-perturbative QED-effects, caused by diving of discrete levels into the negative continuum in the supercritical static or adiabatically slowly varying Coulomb fields, that are created by the localized extended sources with Z > Z_cr. Such effects have attracted a considerable amount of theoretical and experimental activity, since in 3+1 QED for Z > Z_cr,1 ≈ 170 a non-perturbative reconstruction of the vacuum state is predicted, which should be accompanied by a number of nontrivial effects, including the vacuum positron emission. Similar in essence effects should be expected also in both 2+1 D (planar graphene-based hetero-structures) and 1+1 D (one-dimensional ‘hydrogen ion’). This report is devoted to the study of such essentially non-perturbative vacuum effects for the supercritical Dirac-Coulomb systems in 1+1D and 2+1D, with the main attention drawn to the vacuum polarization energy. Although the most of works considers the vacuum charge density as the main polarization observable, vacuum energy turns out to be not less informative and in many respects complementary to the vacuum density. Moreover, the main non-perturbative effects, which appear in vacuum polarization for supercritical fields due to the levels diving into the lower continuum, show up in the behavior of vacuum energy even more clear, demonstrating explicitly their possible role in the supercritical region. Both in 1+1D and 2+1D, we explore firstly the renormalized vacuum density in the supercritical region using the Wichmann-Kroll method. Thereafter, taking into account the results for the vacuum density, we formulate the renormalization procedure for the vacuum energy. To evaluate the latter explicitly, an original technique, based on a special combination of analytical methods, computer algebra tools and numerical calculations, is applied. It is shown that, for a wide range of the external source parameters (the charge Z and size R), in the supercritical region the renormalized vacuum energy could significantly deviate from the perturbative quadratic growth up to pronouncedly decreasing behavior with jumps by (-2 x mc^2), which occur each time, when the next discrete level dives into the negative continuum. In the considered range of variation of Z and R, the vacuum energy behaves like ~ -Z^2/R in 1+1D and ~ -Z^3/R in 2+1D, exceeding deeply negative values. Such behavior confirms the assumption of the neutral vacuum transmutation into the charged one, and thereby of the spontaneous positron emission, accompanying the emergence of the next vacuum shell due to the total charge conservation. To the end, we also note that the methods, developed for the vacuum energy evaluation in 2+1 D, with minimal complements could be carried over to the three-dimensional case, where the vacuum energy is expected to be ~ -Z^4/R and so could be competitive with the classical electrostatic energy of the Coulomb source.Keywords: non-perturbative QED-effects, one- and two-dimensional Dirac-Coulomb systems, supercritical fields, vacuum polarization
Procedia PDF Downloads 2023717 Quinazoline Analogue as a Pet Tracer for Imaging PDE10A: Radiosynthesis and Biological Evaluation
Authors: Anjani Kumar Tiwari, Neelam Kumari, Anil Mishra
Abstract:
The family of phosphodiesterases (PDEs) plays a critical role in control of the level, localization, and duration of intracellular 3’-5’-cyclic adenosine monophosphate (cAMP) and 3’-5’-cyclic guanosine monophosphate (cGMP) signals by specifically hydrolyzing these cyclic nucleotides. As the involvement of cyclic nucleotide second messengers in cell signaling and homeostasis is established, the regulation of these pathways in the brain by various PDE isoforms is an area of considerable interest, as they are involved in nearly all brain functions and in the etiology of neuropsychiatric diseases. The PDE10A isoform, isolated from different species and characterized regarding structure and function, has received much attention in recent years, particularly in the context of schizophrenia and Huntington’s disease, which are both related to a role of PDE10A in the regulation of striatal dopaminergic neurotransmission. Quinazoline analogue 1-(4-methoxyphenyl)-6,7-dimethoxyquinazoline, was evaluated as specific PET marker for phosphodiesterase (PDE) 10A. Here, we report the radiosynthesis of [11C]2 and the in vitro and in vivo evaluation of [11C]2 as a potential positron emission tomography (PET) radiotracer for imaging PDE10A in the central nervous system (CNS). The radiosynthesis of [11C]2 was achieved by O-methylation of the corresponding des-methyl precursor with [11C]methyl iodide. [11C]2 was obtained with ∼50% radiochemical yield. PET imaging studies in rat brain displayed initial specific uptake with very rapid clearance of [11C]2 from brain. Though [11C]2 is not an ideal radioligand for clinical imaging of PDE10A in the CNS. Modified analogue of quinazoline having a higher potency for inhibiting PDE10A and improved pharmacokinetic properties will be necessary for imaging this enzyme with PET.Keywords: PDE10A, PET, radiotracer, quinazoline
Procedia PDF Downloads 1863716 Wind Energy Loss Phenomenon Over Volumized Building Envelope with Porous Air Portals
Authors: Ying-chang Yu, Yuan-lung Lo
Abstract:
More and more building envelopes consist of the construction of balconies, canopies, handrails, sun-shading, vertical planters or gardens, maintenance platforms, display devices, lightings, ornaments, and also the most commonly seen double skin system. These components form a uniform but three-dimensional disturbance structure and create a complex surface wind field in front of the actual watertight building interface. The distorted wind behavior would affect the façade performance and building ventilation. Comparing with sole windscreen walls, these three-dimensional structures perform like distributed air portal assembly, and each portal generates air turbulence and consume wind pressure and energy simultaneously. In this study, we attempted to compare the behavior of 2D porous windscreens without internal construction, porous tubular portal windscreens, porous tapered portal windscreens, and porous coned portal windscreens. The wind energy reduction phenomenon is then compared to the different distributed air portals. The experiments are conducted in a physical wind tunnel with 1:25 in scale to simulate the three-dimensional structure of a real building envelope. The experimental airflow was set up to smooth flow. The specimen is designed as a plane with a distributed tubular structure behind, and the control group uses different tubular shapes but the same fluid volume to observe the wind damping phenomenon of various geometries.Keywords: volumized building envelope, porous air portal, wind damping, wind tunnel test, wind energy loss
Procedia PDF Downloads 1333715 Next-Gen Solutions: How Generative AI Will Reshape Businesses
Authors: Aishwarya Rai
Abstract:
This study explores the transformative influence of generative AI on startups, businesses, and industries. We will explore how large businesses can benefit in the area of customer operations, where AI-powered chatbots can improve self-service and agent effectiveness, greatly increasing efficiency. In marketing and sales, generative AI could transform businesses by automating content development, data utilization, and personalization, resulting in a substantial increase in marketing and sales productivity. In software engineering-focused startups, generative AI can streamline activities, significantly impacting coding processes and work experiences. It can be extremely useful in product R&D for market analysis, virtual design, simulations, and test preparation, altering old workflows and increasing efficiency. Zooming into the retail and CPG industry, industry findings suggest a 1-2% increase in annual revenues, equating to $400 billion to $660 billion. By automating customer service, marketing, sales, and supply chain management, generative AI can streamline operations, optimizing personalized offerings and presenting itself as a disruptive force. While celebrating economic potential, we acknowledge challenges like external inference and adversarial attacks. Human involvement remains crucial for quality control and security in the era of generative AI-driven transformative innovation. This talk provides a comprehensive exploration of generative AI's pivotal role in reshaping businesses, recognizing its strategic impact on customer interactions, productivity, and operational efficiency.Keywords: generative AI, digital transformation, LLM, artificial intelligence, startups, businesses
Procedia PDF Downloads 763714 Comprehensive Multi-Omics Study Highlights Osteopontin/SPP1 in Ovarian Aging Control
Authors: Chia-Jung Li, Li-Te Lin, Kuan-Hao Tsui
Abstract:
The study identifies SPP1 as a potential gene associated with ovarian aging, revealing a significant decline in its expression in aged ovaries. SPP1, also known as osteopontin (OPN), is a multifunctional glycoprotein involved with regulatory proteins and pro-inflammatory immune chemokines. However, its genetic links to ovarian aging have not been extensively explored. Spatial transcriptomic analyses were conducted on ovaries from young and aged female mice, along with a sample from a 73-year-old individual. Additionally, single-cell RNA sequencing analysis was performed to identify associations between SPP1 and key genes. The study focused on crucial genes, including ITGAV, ITGB1, CD44, MMP3, and FN1, with a particular emphasis on the correlation between SPP1 and ITGB1. The findings indicate a significant decline in SPP1 expression in aged ovaries, which was consistent in the 73-year-old sample. Single-cell RNA sequencing unveiled associations between SPP1 and key genes, emphasizing a strong co-expression correlation between SPP1 and ITGB1. While the study provides valuable insights, further research is necessary to understand the broader implications and potential applications of SPP1 in ovarian aging. Translating these findings to clinical settings requires careful consideration. The identification of SPP1 as a gene implicated in ovarian aging opens new avenues for advancing precision medicine and refining treatment strategies for conditions related to ovarian aging.Keywords: SPP1, ovarian aging, spatial transcriptomic, single-cell RNA sequencing
Procedia PDF Downloads 363713 The Effects of Zinc Oxide Nanoparticles Loaded with Indole-3-Acetic Acid and Indole-3-Butyric Acid on in vitro Rooting of Apple Microcuttings
Authors: Shabnam Alizadeh, Hatice Dumanoglu
Abstract:
Plant tissue culture is a substantial plant propagation technique for mass clonal production throughout the year, regardless of time in fruit species. However, the rooting achievement must be enhanced in the difficult-to-root genotypes. Classical auxin applications in clonal propagation of these genotypes are inadequate to solve the rooting problem. Nanoparticles having different physical and chemical properties from bulk material could enhance the rooting success of controlled release of these substances when loaded with auxin due to their ability to reach the active substance up to the target cells as a carrier system.The purpose of this study is to investigate the effects of zinc oxide nanoparticles loaded with indole-3-acetic acid (IAA-nZnO) and indole-3-butyric acid (IBA-nZnO) on in vitro rooting of microcuttings in a difficult-to-root apple genotype (Malus domestica Borkh.). Rooting treatments consisted of IBA or IAA at concentrations of 0.5, 1.0, 2.0, 3.0 mg/L; nZnO, IAA-nZnO and IBA-nZnO at doses of 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 mg/L were used. All components were added to the Murashige and Skoog (MS) basal medium at strength ½ with 2% sucrose and 0.7% agar before autoclaving. In the study, no rooting occurred in control and nZnO applications. Especially, 1.0 mg/L and 2.0 mg/L IBA-nZnO nanoparticle applications (containing 0.5 mg/L and 0.9 mg/L IBA), respectively with rooting rates of 40.3% and 70.4%, rooting levels of 2.0±0.4 and 2.3±0.4, 2.6±0.7 and 2.5±0.6 average root numbers and 20.4±1.6 mm and 20.2±3.4 mm average root lengths put forward as effective applications.Keywords: Auxin, Malus, nanotechnology, zinc oxide nanoparticles
Procedia PDF Downloads 1443712 Carbon Capture and Storage in Geological Formation, its Legal, Regulatory Imperatives and Opportunities in India
Authors: Kalbende Krunal Ramesh
Abstract:
The Carbon Capture and Storage Technology (CCS) provides a veritable platform to bridge the gap between the seemingly irreconcilable twin global challenges of ensuring a secure, reliable and diversified energy supply and mitigating climate change by reducing atmospheric emissions of carbon dioxide. Making its proper regulatory policy and making it flexible for the government and private company by law to regulate, also exploring the opportunity in this sector is the main aim of this paper. India's total annual emissions was 1725 Mt CO2 in 2011, which comprises of 6% of total global emission. It is very important to control the greenhouse gas emission for the environment protection. This paper discusses the various regulatory policy and technology adopted by some of the countries for successful using CCS technology. The brief geology of sedimentary basins in India is studied, ranging from the category I to category IV and deep water and potential for mature technology in CCS is reviewed. Areas not suitable for CO2 storage using presently mature technologies were over viewed. CSS and Clean development mechanism was developed for India, considering the various aspects from research and development, project appraisal, approval and validation, implementation, monitoring and verification, carbon credit issued, cap and trade system and its storage potential. The opportunities in oil and gas operations, power sector, transport sector is discussed briefly.Keywords: carbon credit issued, cap and trade system, carbon capture and storage technology, greenhouse gas
Procedia PDF Downloads 4333711 Chemical Fabrication of Gold Nanorings: Controlled Reduction and Optical Tuning for Nanomedicine Applications
Authors: Mehrnaz Mostafavi, Jalaledin Ghanavi
Abstract:
This research investigates the production of nanoring structures through a chemical reduction approach, exploring gradual reduction processes assisted by reductant agents, leading to the formation of these specialized nanorings. The study focuses on the controlled reduction of metal atoms within these agents, crucial for shaping these nanoring structures over time. The paper commences by highlighting the wide-ranging applications of metal nanostructures across fields like Nanomedicine, Nanobiotechnology, and advanced spectroscopy methods such as Surface Enhanced Raman Spectroscopy (SERS) and Surface Enhanced Infrared Absorption Spectroscopy (SEIRA). Particularly, gold nanoparticles, especially in the nanoring configuration, have gained significant attention due to their distinctive properties, offering accessible spaces suitable for sensing and spectroscopic applications. The methodology involves utilizing human serum albumin as a reducing agent to create gold nanoparticles through a chemical reduction process. This process involves the transfer of electrons from albumin's carboxylic groups, converting them into carbonyl, while AuCl4− acquires electrons to form gold nanoparticles. Various characterization techniques like Ultraviolet–visible spectroscopy (UV-Vis), Atomic-force microscopy (AFM), and Transmission electron microscopy (TEM) were employed to examine and validate the creation and properties of the gold nanoparticles and nanorings. The findings suggest that precise and gradual reduction processes, in conjunction with optimal pH conditions, play a pivotal role in generating nanoring structures. Experiments manipulating optical properties revealed distinct responses in the visible and infrared spectrums, demonstrating the tunability of these nanorings. Detailed examinations of the morphology confirmed the formation of gold nanorings, elucidating their size, distribution, and structural characteristics. These nanorings, characterized by an empty volume enclosed by uniform walls, exhibit promising potential in the realms of Nanomedicine and Nanobiotechnology. In summary, this study presents a chemical synthesis approach using organic reducing agents to produce gold nanorings. The results underscore the significance of controlled and gradual reduction processes in crafting nanoring structures with unique optical traits, offering considerable value across diverse nanotechnological applications.Keywords: nanoring structures, chemical reduction approach, gold nanoparticles, spectroscopy methods, nano medicine applications
Procedia PDF Downloads 1363710 Structure-Based Virtual Screening and in Silico Toxicity Test of Compounds against Mycobacterium tuberculosis 7,8-Diaminopelargonic Acid Aminotransferase (MtbBioA)
Authors: Junie B. Billones, Maria Constancia O. Carrillo, Voltaire G. Organo, Stephani Joy Y. Macalino, Inno A. Emnacen, Jamie Bernadette A. Sy
Abstract:
One of the major interferences in the Philippines’ tuberculosis control program is the widespread prevalence of Mtb strains that are resistant to known drugs, such as the MDR-TB (Multi Drug Resistant Tuberculosis) and XDR-TB (Extensively Drug Resistant Tuberculosis). Therefore, there is a pressing need to search for novel Mtb drug targets in order to be able to combat these drug resistant strains. The enzyme 7,8-diaminopelargonic acid aminotransferase enzyme, or more commonly known as BioA, is one such ideal target, as it is known that humans do not possess this enzyme. BioA primarily plays a key role in Mtb’s lipid biosynthesis pathway; more specifically in the synthesis of the enzyme cofactor biotin. In this study, structure-based pharmacophore screening, docking, and ADMET evaluation of compounds obtained from the DrugBank chemical database were performed against the MtbBioA enzyme. Results of the screening, docking, ADMET, and TOPKAT calculations revealed that out of the 6,516 compounds in the library, only 7 compounds indicated more favorable binding energies as compared to the enzyme’s known inhibitor, amiclenomycin (ACM), as well as good solubility and toxicity properties. Moreover, out of these 7 compounds, Molecule 6 exhibited the best solubility and toxicity properties. In the future, these lead compounds may then be subjected to bioactivity assays in vitro or in vivo for further evaluation of its therapeutic efficacy.Keywords: 7, 8-diaminopelargonic acid aminotransferase, BioA, pharmacophore, molecular docking, ADMET, TOPKAT
Procedia PDF Downloads 4583709 Mathematical Modelling of Ultrasound Pre-Treatment in Microwave Dried Strawberry (Fragaria L.) Slices
Authors: Hilal Uslu, Salih Eroglu, Betul Ozkan, Ozcan Bulantekin, Alper Kuscu
Abstract:
In this study, the strawberry (Fragaria L.) fruits, which were pretreated with ultrasound (US), were worked on in the microwave by using 90W power. Then mathematical modelling was applied to dried fruits by using different experimental thin layer models. The sliced fruits were subjected to ultrasound treatment at a frequency of 40 kHz for 10, 20, and 30 minutes, in an ultrasonic water bath, with a ratio of 1:4 to fruit/water. They are then dried in the microwave (90W). The drying process continued until the product moisture was below 10%. By analyzing the moisture change of the products at a certain time, eight different thin-layer drying models, (Newton, page, modified page, Midilli, Henderson and Pabis, logarithmic, two-term, Wang and Singh) were tested for verification of experimental data. MATLAB R2015a statistical program was used for the modelling, and the best suitable model was determined with R²adj (coefficient of determination of compatibility), and root mean square error (RMSE) values. According to analysis, the drying model that best describes the drying behavior for both drying conditions was determined as the Midilli model by high R²adj and low RMSE values. Control, 10, 20, and 30 min US for groups R²adj and RMSE values was established as respectively; 0,9997- 0,005298; 0,9998- 0,004735; 0,9995- 0,007031; 0,9917-0,02773. In addition, effective diffusion coefficients were calculated for each group and were determined as 3,80x 10⁻⁸, 3,71 x 10⁻⁸, 3,26 x10⁻⁸ ve 3,5 x 10⁻⁸ m/s, respectively.Keywords: mathematical modelling, microwave drying, strawberry, ultrasound
Procedia PDF Downloads 1533708 The Isolation and Performance Evaluation of Yeast (Saccharomyces cerevisiae) from Raffia Palm (Raphia hookeri) Wine Used at Different Concentrations for Proofing of Bread Dough
Authors: Elizabeth Chinyere Amadi
Abstract:
Yeast (sacchoromyces cerevisiae) was isolated from the fermenting sap of raffia palm (Raphia hookeri) wine. Different concerntrations of the yeast isolate were used to produce bread samples – B, C, D, E, F containing (2, 3, 4, 5, 6) g of yeast isolate respectively, other ingredients were kept constant. Sample A, containing 2g of commercial baker yeast served as control. The proof heights, weights, volumes and specific volume of the dough and bread samples were determined. The bread samples were also subjected to sensory evaluation using a 9–point hedonic scale. Results showed that proof height increased with increased concentration of the yeast isolate; that is direct proportion. Sample B with the least concentration of the yeast isolate had the least loaf height and volume of 2.80c m and 200 cm³ respectively but exhibited the highest loaf weight of 205.50g. However, Sample A, (commercial bakers’ yeast) had the highest loaf height and volume of 5.00 cm and 400 cm³ respectively. The sensory evaluation results showed sample D compared favorably with sample A in all the organoleptic attributes-(appearance, taste, crumb texture, crust colour and overall acceptability) tested for (P< 0.05). It was recommended that 4g compressed yeast isolate per 100g flour could be used to proof dough as a substitute for commercial bakers’ yeast and produce acceptable bread loaves.Keywords: isolation of yeast, performance evaluation of yeast, Raffia palm wine, used at different concentrations, proofing of bread dough
Procedia PDF Downloads 3183707 Economic Analysis, Growth and Yield of Grafting Tomato Varieties for Solanum torvum as a Rootstock
Authors: Evy Latifah, Eko Widaryanto, M. Dawam Maghfoer, Arifin
Abstract:
Tomato (Lycopersicon esculentum Mill.) is potential vegetables to develop, because it has high economic value and has the potential to be exported. There is a decrease in tomato productivity due to unfavorable growth conditions such as bacterial wilt, fusarium wilt, high humidity, high temperature and inappropriate production technology. Grafting technology is one alternative technology. In addition to being able to control the disease in the soil, grafting is also able to increase the growth and yield of production. Besides, it is also necessary to know the economic benefits if using grafting technology. A promising eggplant rootstock for tomato grafting is Solanum torvum. S. torvum is selected as a rootstock with high compatibility. The purpose of this research is to know the effect of grafting several varieties of tomatoes with Solanum torvum as a rootstock. The experiment was conducted in Agricultural Extension Center Pare. Experimental Garden of Pare Kediri sub-district from July to early December 2016. The materials used were tomato Cervo varieties, Karina, Timoty, and Solanum torvum. Economic analysis, growth, and yield including plant height, number of leaves, percentage of disease and tomato production were used as performance measures. The study showed that grafting tomato Timoty scion with Solanum torvum as rootstock had higher production. Financially, grafting tomato Timoty and Cervo scion had higher profit about. 28,6% and 16,3% compared to Timoty and Cervo variety treatment without grafting.Keywords: grafting technology, economic analysis, growth, yield of tomato, Solanum torvum
Procedia PDF Downloads 2363706 Response of Insulin Resistance Indicators to Aerobic Exercise at Different Intensities in Obese College Students
Authors: Long-Shan Wu, Ming-Chen Ko, Chien-Chang Ho, Po-Fu Lee, Li-Yun Chen, Ching-Yu Tseng
Abstract:
The purpose of this study was to determine whether progressive aerobic exercise intensity effects the changes in insulin resistance indicators among obese college students in Taiwan. Forty-eight obese subjects [body mass index (BMI) ≧ 27 kg/m2, aged 18-26 years old] were randomized into four equal groups (n = 12): light-intensity training group (LITG): 40-50% of their heart rate reserve (HRR); middle-intensity training group (MITG): 50-70% of their HRR; high-intensity training group (HITG): 70-80% of their HRR, and control group (CG). The aerobic exercise training program was performed 60 minutes per day on a treadmill three days/week in a training period of 12 weeks. All subjects’ anthropometric data, blood biochemical parameters, and health-related physical fitness components were measured at baseline and after 12 weeks. At baseline, all insulin resistance indicators did not differ significantly among the four groups (p > 0.05). After 12-week exercise intervention, the HITG had significantly more changes in insulin level than the MITG, LITG, and CG. Our findings suggested that a short-term aerobic exercise program can play an important role in improving insulin resistance indicators; either middle-intensity training significantly increases the insulin level, but the high-intensity exercise training program effectively improves obese college students’ insulin resistance.Keywords: aerobic training, exercise intensity, insulin resistance, obesity
Procedia PDF Downloads 2953705 Development of a Reduced Multicomponent Jet Fuel Surrogate for Computational Fluid Dynamics Application
Authors: Muhammad Zaman Shakir, Mingfa Yao, Zohaib Iqbal
Abstract:
This study proposed four Jet fuel surrogate (S1, S2 S3, and 4) with careful selection of seven large hydrocarbon fuel components, ranging from C₉-C₁₆ of higher molecular weight and higher boiling point, adapting the standard molecular distribution size of the actual jet fuel. The surrogate was composed of seven components, including n-propyl cyclohexane (C₉H₁₈), n- propylbenzene (C₉H₁₂), n-undecane (C₁₁H₂₄), n- dodecane (C₁₂H₂₆), n-tetradecane (C₁₄H₃₀), n-hexadecane (C₁₆H₃₄) and iso-cetane (iC₁₆H₃₄). The skeletal jet fuel surrogate reaction mechanism was developed by two approaches, firstly based on a decoupling methodology by describing the C₄ -C₁₆ skeletal mechanism for the oxidation of heavy hydrocarbons and a detailed H₂ /CO/C₁ mechanism for prediction of oxidation of small hydrocarbons. The combined skeletal jet fuel surrogate mechanism was compressed into 128 species, and 355 reactions and thereby can be used in computational fluid dynamics (CFD) simulation. The extensive validation was performed for individual single-component including ignition delay time, species concentrations profile and laminar flame speed based on various fundamental experiments under wide operating conditions, and for their blended mixture, among all the surrogate, S1 has been extensively validated against the experimental data in a shock tube, rapid compression machine, jet-stirred reactor, counterflow flame, and premixed laminar flame over wide ranges of temperature (700-1700 K), pressure (8-50 atm), and equivalence ratio (0.5-2.0) to capture the properties target fuel Jet-A, while the rest of three surrogate S2, S3 and S4 has been validated for Shock Tube ignition delay time only to capture the ignition characteristic of target fuel S-8 & GTL, IPK and RP-3 respectively. Based on the newly proposed HyChem model, another four surrogate with similar components and composition, was developed and parallel validations data was used as followed for previously developed surrogate but at high-temperature condition only. After testing the mechanism prediction performance of surrogates developed by the decoupling methodology, the comparison was done with the results of surrogates developed by the HyChem model. It was observed that all of four proposed surrogates in this study showed good agreement with the experimental measurements and the study comes to this conclusion that like the decoupling methodology HyChem model also has a great potential for the development of oxidation mechanism for heavy alkanes because of applicability, simplicity, and compactness.Keywords: computational fluid dynamics, decoupling methodology Hychem, jet fuel, surrogate, skeletal mechanism
Procedia PDF Downloads 1373704 The Impact of Enhanced Recovery after Surgery (ERAS) Protocols on Anesthesia Management in High-Risk Surgical Patients
Authors: Rebar Mohammed Hussein
Abstract:
Enhanced Recovery After Surgery (ERAS) protocols have transformed perioperative care, aiming to reduce surgical stress, optimize pain management, and accelerate recovery. This study evaluates the impact of ERAS on anesthesia management in high-risk surgical patients, focusing on opioid-sparing techniques and multimodal analgesia. A retrospective analysis was conducted on patients undergoing major surgeries within an ERAS program, comparing outcomes with a historical cohort receiving standard care. Key metrics included postoperative pain scores, opioid consumption, length of hospital stay, and complication rates. Results indicated that the implementation of ERAS protocols significantly reduced postoperative opioid use by 40% and improved pain management outcomes, with 70% of patients reporting satisfactory pain control on postoperative day one. Additionally, patients in the ERAS group experienced a 30% reduction in length of stay and a 20% decrease in complication rates. These findings underscore the importance of integrating ERAS principles into anesthesia practice, particularly for high-risk patients, to enhance recovery, improve patient satisfaction, and reduce healthcare costs. Future directions include prospective studies to further refine anesthesia techniques within ERAS frameworks and explore their applicability across various surgical specialties.Keywords: ERAS protocols, high-risk surgical patients, anesthesia management, recovery
Procedia PDF Downloads 263703 High Rise Building Vibration Control Using Tuned Mass Damper
Authors: T. Vikneshvaran, A. Aminudin, U. Alyaa Hashim, Waziralilah N. Fathiah, D. Shakirah Shukor
Abstract:
This paper presents the experimental study conducted on a structure of three-floor height building model. Most vibrations are undesirable and can cause damages to the buildings, machines and people all around us. The vibration wave from earthquakes, construction and winds have high potential to bring damage to the buildings. Excessive vibrations can result in structural and machinery failures. This failure is related to the human life and environment around it. The effect of vibration which causes failure and damage to the high rise buildings can be controlled in real life by implementing tuned mass damper (TMD) into the structure of the buildings. This research aims to study the effect and performance improvement achieved by applying TMD into the building structure. A structure model of three degrees of freedom (3DOF) is designed to demonstrate the performance of TMD to the designed model. The model designed is the physical representation of actual building structure in real life. It is constructed at a reduced scale and will be used for the experiment. Thus, the result obtained will be more accurate to compared with the real life effect. Based on the result from experimental study, by applying TMD to the structure model, the forces of vibration and the displacement mode of the building reduced. Thus, the reduced in vibration of the building helps to maintain the good condition of the building.Keywords: degrees-of-freedom, displacement mode, natural frequency, tuned mass damper
Procedia PDF Downloads 3403702 Modified Polysaccharide as Emulsifier in Oil-in-Water Emulsions
Authors: Tatiana Marques Pessanha, Aurora Perez-Gramatges, Regina Sandra Veiga Nascimento
Abstract:
Emulsions are commonly used in applications involving oil/water dispersions, where handling of interfaces becomes a crucial aspect. The use of emulsion technology has greatly evolved in the last decades to suit the most diverse uses, ranging from cosmetic products and biomedical adjuvants to complex industrial fluids. The stability of these emulsions is influenced by factors such as the amount of oil, size of droplets and emulsifiers used. While commercial surfactants are typically used as emulsifiers to reduce interfacial tension, and therefore increase emulsion stability, these organic amphiphilic compounds are often toxic and expensive. A suitable alternative for emulsifiers can be obtained from the chemical modification of polysaccharides. Our group has been working on modification of polysaccharides to be used as additives in a variety of fluid formulations. In particular, we have obtained promising results using chitosan, a natural and biodegradable polymer that can be easily modified due to the presence of amine groups in its chemical structure. In this way, it is possible to increase both the hydrophobic and hydrophilic character, which renders a water-soluble, amphiphilic polymer that can behave as an emulsifier. The aim of this work was the synthesis of chitosan derivatives structurally modified to act as surfactants in stable oil-in-water. The synthesis of chitosan derivatives occurred in two steps, the first being the hydrophobic modification with the insertion of long hydrocarbon chains, while the second step consisted in the cationization of the amino groups. All products were characterized by infrared spectroscopy (FTIR) and carbon magnetic resonance (13C-NMR) to evaluate the cationization and hydrofobization degrees. These modified polysaccharides were used to formulate oil-in water (O:W) emulsions with different oil/water ratios (i.e 25:75, 35:65, 60:40) using mineral paraffinic oil. The formulations were characterized according to the type of emulsion, density and rheology measurements, as well as emulsion stability at high temperatures. All emulsion formulations were stable for at least 30 days, at room temperature (25°C), and in the case of the high oil content emulsion (60:40), the formulation was also stable at temperatures up to 100°C. Emulsion density was in the range of 0.90-0.87 s.g. The rheological study showed a viscoelastic behaviour in all formulations at room temperature, which is in agreement with the high stability showed by the emulsions, since the polymer acts not only reducing interfacial tension, but also forming an elastic membrane at the oil/water interface that guarantees its integrity. The results obtained in this work are a strong evidence of the possibility of using chemically modified polysaccharides as environmentally friendly alternatives to commercial surfactants in the stabilization of oil-in water formulations.Keywords: emulsion, polymer, polysaccharide, stability, chemical modification
Procedia PDF Downloads 3533701 Adverse Effects of Natural Pesticides on Human and Animals: An Experimental Analysis
Authors: Abdel-Tawab H. Mossa
Abstract:
Synthetic pesticides are widely used in large-scale worldwide for control pests in agriculture and public health sectors in both developed and developing countries. Although the positive role of pesticides, they have many adverse toxic effects on humans, animals, and the ecosystem. Therefore, in the last few years, scientists have been searching for new active compounds from natural resources as an alternative to synthetic pesticides. Currently, many commercial natural pesticides are available commercially worldwide. These products are recommended for uses in organic farmers and considered as safe pesticides. This paper focuses on the adverse effects of natural pesticides on mammals. Available commercial pesticides in the market contain essential oils (e.g. pepper, cinnamon, and garlic), plant extracts, microorganism (e.g. bacteria, fungi or their toxin), mineral oils and some active compounds from natural recourses e.g. spinosad, neem, pyrethrum, rotenone, abamectin and other active compounds from essential oils (EOs). Some EOs components, e.g., thujone, pulegone, and thymol have high acute toxicity (LD50) is 87.5, 150 and 980 mg/kg. B.wt on mice, respectively. Natural pesticides such as spinosad, pyrethrum, neem, abamectin, and others have toxicological effects to mammals and ecosystem. These compounds were found to cause hematotoxicity, hepato-renal toxicity, biochemical alteration, reproductive toxicity, genotoxicity, and mutagenicity. It caused adverse effects on the ecosystem. Therefore, natural pesticides in general not safe and have high acute toxicity and can induce adverse effects at long-term exposure.Keywords: natural pesticides, toxicity, safety, genotoxicity, ecosystem, biochemical
Procedia PDF Downloads 1723700 Zn-, Mg- and Ni-Al-NO₃ Layered Double Hydroxides Intercalated by Nitrate Anions for Treatment of Textile Wastewater
Authors: Fatima Zahra Mahjoubi, Abderrahim Khalidi, Mohamed Abdennouri, Omar Cherkaoui, Noureddine Barka
Abstract:
Industrial effluents are one of the major causes of environmental pollution, especially effluents discharged from various dyestuff manufactures, plastic, and paper making industries. These effluents can give rise to certain hazards and environmental problems for their highly colored suspended organic solid. Dye effluents are not only aesthetic pollutants, but coloration of water by the dyes may affect photochemical activities in aquatic systems by reducing light penetration. It has been also reported that several commonly used dyes are carcinogenic and mutagenic for aquatic organisms. Therefore, removing dyes from effluents is of significant importance. Many adsorbent materials have been prepared in the removal of dyes from wastewater, including anionic clay or layered double hydroxyde. The zinc/aluminium (Zn-AlNO₃), magnesium/aluminium (Mg-AlNO₃) and nickel/aluminium (Ni-AlNO₃) layered double hydroxides (LDHs) were successfully synthesized via coprecipitation method. Samples were characterized by XRD, FTIR, TGA/DTA, TEM and pHPZC analysis. XRD patterns showed a basal spacing increase in the order of Zn-AlNO₃ (8.85Å)> Mg-AlNO₃ (7.95Å)> Ni-AlNO₃ (7.82Å). FTIR spectrum confirmed the presence of nitrate anions in the LDHs interlayer. The TEM images indicated that the Zn-AlNO3 presents circular to shaped particles with an average particle size of approximately 30 to 40 nm. Small plates assigned to sheets with hexagonal form were observed in the case of Mg-AlNO₃. Ni-AlNO₃ display nanostructured sphere in diameter between 5 and 10 nm. The LDHs were used as adsorbents for the removal of methyl orange (MO), as a model dye and for the treatment of an effluent generated by a textile factory. Adsorption experiments for MO were carried out as function of solution pH, contact time and initial dye concentration. Maximum adsorption was occurred at acidic solution pH. Kinetic data were tested using pseudo-first-order and pseudo-second-order kinetic models. The best fit was obtained with the pseudo-second-order kinetic model. Equilibrium data were correlated to Langmuir and Freundlich isotherm models. The best conditions for color and COD removal from textile effluent sample were obtained at lower values of pH. Total color removal was obtained with Mg-AlNO₃ and Ni-AlNO₃ LDHs. Reduction of COD to limits authorized by Moroccan standards was obtained with 0.5g/l LDHs dose.Keywords: chemical oxygen demand, color removal, layered double hydroxides, textile wastewater treatment
Procedia PDF Downloads 3543699 Awareness and Access to Rapid Diagnostic Tests of HIV, Malaria and Tuberculosis among Rural Pregnant Women of Savannakhet Province, Lao PDR
Authors: Vanphanom Sychareun, Viengnakhone Vongxay, Kongmany Chaleunvong, Pascale Hancart Petitet
Abstract:
Background: Lao PDR still has challenges in preventing and managing health against risk of emerging and re-emerging diseases, particularly HIV/AIDS, tuberculosis and malaria among pregnant women. Community-based intervention for mothers requires more evidences on awareness of such diseases and access to rapid diagnostic tests. The study aims to determine the awareness of pregnant women regarding HIV, TB and Malaria, the access to rapid diagnostic test of such diseases among pregnant women of local community and their factors related. Method: This is a cross sectional study using quantitative approach to explore the awareness of pregnant women on HIV/AIDS/TB and Malaria in Savannakhet province, Lao PDR in three remote districts (Phin, Thapangthong and Atsaphone) of Savannakhet province. The study targeted group was pregnant women at the community level. Sample size for primary data collection of pregnant women was 189. Face-to-face administered questionnaires were applied. Descriptive and inferential statistics were applied to determine the associated factors with awareness of pregnant women on HIV/AIDS/TB and Malaria. This study is under the HEALTH project/ Expertise France. Result: Most of our participants were pregnant at 28 – 42 weeks (50.3%); ranged 4 – 38 weeks. Mean age of pregnant women was 24.3 years old (range: 14 - 48 years old); 15.9% of whom were at age below 19 years. Around 94.2% of respondents works were farming, 54.5% were illiterate, 74.0% were Mon-Kmer ethnic, and 60% had income lower than average. Only 56.6% that have access to ANC, 39.1% started the access to ANC during the first trimester and only 19.6% had visited the ANC for at least four times. Almost pregnant women (and 92.1% and 93.1%) had low to moderate knowledge of HIV and TB respectively, while three-fourth of pregnant women (74.6%) had low to moderate knowledge of malaria. Slightly higher than half of participants (53.4% and 52.9%) had easy access to HIV and TB respectively ; while 72.5% had easy access to malaria. Majority of participants knew where to get tested for malaria (73.5%) and TB (54.5%), but 73.5% did not know where to get tested for HIV. Very few pregnant women (1.6%, 2.1% and 8.5%) experienced having tested for HIV/TB/malaria. respectively. Factors associated with awareness on HIV were occupation as staff, business (OR:5.9; 95% CI:1.2-28.1), upper secondary education (OR: 14.6; 95% CI:3.1-69.2); Mone-Khmer ethnic (OR: 0.4, 95% CI: 0.2-0.8); and attending ANC more than 4 times (OR:4.1, 95%:1.7-9.7). Factors associated with awareness on TB were occupation as staff, business (OR:2.4; 95% CI: 0.7-8.0), upper secondary education (OR: 6.2; 95% CI: 1.9-20.5); Mone-Khmer ethnic (OR: 0.5, 95% CI:0.3-0.9); attending ANC more than 4 times (OR:2.8, 95%:1.2-6.4). Factors associated with awareness on malaria were upper secondary education (OR: 18.1; 95% CI: 2.3-142.9); Mone-Khmer ethnic (OR: 0.2, 95% CI:0.1-0.4); attending ANC more than 4 times (OR:3.6, 95%:1.5-8.8). Conclusion: A very low awareness on HIV, TB and malaria among pregnant women in rural community of Savannakhet triggers the requirement of comprehensive public health intervention on awareness and access to prevention against emerging diseases for all pregnant women. Future intervention should focus on providing more knowledge to pregnant women during ANC and encouraging them to attend ANC more than 4 times.Keywords: pregnant women, HIV, tuberculosis, malaria, awareness, Laos
Procedia PDF Downloads 873698 Evolution of Web Development Progress in Modern Information Technology
Authors: Abdul Basit Kiani
Abstract:
Web development, the art of creating and maintaining websites, has witnessed remarkable advancements. The aim is to provide an overview of some of the cutting-edge developments in the field. Firstly, the rise of responsive web design has revolutionized user experiences across devices. With the increasing prevalence of smartphones and tablets, web developers have adapted to ensure seamless browsing experiences, regardless of screen size. This progress has greatly enhanced accessibility and usability, catering to the diverse needs of users worldwide. Additionally, the evolution of web frameworks and libraries has significantly streamlined the development process. Tools such as React, Angular, and Vue.js have empowered developers to build dynamic and interactive web applications with ease. These frameworks not only enhance efficiency but also bolster scalability, allowing for the creation of complex and feature-rich web solutions. Furthermore, the emergence of progressive web applications (PWAs) has bridged the gap between native mobile apps and web development. PWAs leverage modern web technologies to deliver app-like experiences, including offline functionality, push notifications, and seamless installation. This innovation has transformed the way users interact with websites, blurring the boundaries between traditional web and mobile applications. Moreover, the integration of artificial intelligence (AI) and machine learning (ML) has opened new horizons in web development. Chatbots, intelligent recommendation systems, and personalization algorithms have become integral components of modern websites. These AI-powered features enhance user engagement, provide personalized experiences, and streamline customer support processes, revolutionizing the way businesses interact with their audiences. Lastly, the emphasis on web security and privacy has been a pivotal area of progress. With the increasing incidents of cyber threats, web developers have implemented robust security measures to safeguard user data and ensure secure transactions. Innovations such as HTTPS protocol, two-factor authentication, and advanced encryption techniques have bolstered the overall security of web applications, fostering trust and confidence among users. Hence, recent progress in web development has propelled the industry forward, enabling developers to craft innovative and immersive digital experiences. From responsive design to AI integration and enhanced security, the landscape of web development continues to evolve, promising a future filled with endless possibilities.Keywords: progressive web applications (PWAs), web security, machine learning (ML), web frameworks, advancement responsive web design
Procedia PDF Downloads 543697 The Internet of Things: A Survey of Authentication Mechanisms, and Protocols, for the Shifting Paradigm of Communicating, Entities
Authors: Nazli Hardy
Abstract:
Multidisciplinary application of computer science, interactive database-driven web application, the Internet of Things (IoT) represents a digital ecosystem that has pervasive technological, social, and economic, impact on the human population. It is a long-term technology, and its development is built around the connection of everyday objects, to the Internet. It is estimated that by 2020, with billions of people connected to the Internet, the number of connected devices will exceed 50 billion, and thus IoT represents a paradigm shift in in our current interconnected ecosystem, a communication shift that will unavoidably affect people, businesses, consumers, clients, employees. By nature, in order to provide a cohesive and integrated service, connected devices need to collect, aggregate, store, mine, process personal and personalized data on individuals and corporations in a variety of contexts and environments. A significant factor in this paradigm shift is the necessity for secure and appropriate transmission, processing and storage of the data. Thus, while benefits of the applications appear to be boundless, these same opportunities are bounded by concerns such as trust, privacy, security, loss of control, and related issues. This poster and presentation look at a multi-factor authentication (MFA) mechanisms that need to change from the login-password tuple to an Identity and Access Management (IAM) model, to the more cohesive to Identity Relationship Management (IRM) standard. It also compares and contrasts messaging protocols that are appropriate for the IoT ecosystem.Keywords: Internet of Things (IoT), authentication, protocols, survey
Procedia PDF Downloads 2993696 Design and Optimization of a Mini High Altitude Long Endurance (HALE) Multi-Role Unmanned Aerial Vehicle
Authors: Vishaal Subramanian, Annuatha Vinod Kumar, Santosh Kumar Budankayala, M. Senthil Kumar
Abstract:
This paper discusses the aerodynamic and structural design, simulation and optimization of a mini-High Altitude Long Endurance (HALE) UAV. The applications of this mini HALE UAV vary from aerial topological surveys, quick first aid supply, emergency medical blood transport, search and relief activates to border patrol, surveillance and estimation of forest fire progression. Although classified as a mini UAV according to UVS International, our design is an amalgamation of the features of ‘mini’ and ‘HALE’ categories, combining the light weight of the ‘mini’ and the high altitude ceiling and endurance of the HALE. Designed with the idea of implementation in India, it is in strict compliance with the UAS rules proposed by the office of the Director General of Civil Aviation. The plane can be completely automated or have partial override control and is equipped with an Infra-Red camera and a multi coloured camera with on-board storage or live telemetry, GPS system with Geo Fencing and fail safe measures. An additional of 1.5 kg payload can be attached to three major hard points on the aircraft and can comprise of delicate equipment or releasable payloads. The paper details the design, optimization process and the simulations performed using various software such as Design Foil, XFLR5, Solidworks and Ansys.Keywords: aircraft, endurance, HALE, high altitude, long range, UAV, unmanned aerial vehicle
Procedia PDF Downloads 3973695 Study of Oxidative Stability, Cold Flow Properties and Iodine Value of Macauba Biodiesel Blends
Authors: Acacia A. Salomão, Willian L. Gomes da Silva, Gustavo G. Shimamoto, Matthieu Tubino
Abstract:
Biodiesel physical and chemical properties depend on the raw material composition used in its synthesis. Saturated fatty acid esters confer high oxidative stability, while unsaturated fatty acid esters improve the cold flow properties. In this study, an alternative vegetal source - the macauba kernel oil - was used in the biodiesel synthesis instead of conventional sources. Macauba can be collected from native palm trees and is found in several regions in Brazil. Its oil is a promising source when compared to several other oils commonly obtained from food products, such as soybean, corn or canola oil, due to its specific characteristics. However, the usage of biodiesel made from macauba oil alone is not recommended due to the difficulty of producing macauba in large quantities. For this reason, this project proposes the usage of blends of the macauba oil with conventional oils. These blends were prepared by mixing the macauba biodiesel with biodiesels obtained from soybean, corn, and from residual frying oil, in the following proportions: 20:80, 50:50 e 80:20 (w/w). Three parameters were evaluated, using the standard methods, in order to check the quality of the produced biofuel and its blends: oxidative stability, cold filter plugging point (CFPP), and iodine value. The induction period (IP) expresses the oxidative stability of the biodiesel, the CFPP expresses the lowest temperature in which the biodiesel flows through a filter without plugging the system and the iodine value is a measure of the number of double bonds in a sample. The biodiesels obtained from soybean, residual frying oil and corn presented iodine values higher than 110 g/100 g, low oxidative stability and low CFPP. The IP values obtained from these biodiesels were lower than 8 h, which is below the recommended standard value. On the other hand, the CFPP value was found within the allowed limit (5 ºC is the maximum). Regarding the macauba biodiesel, a low iodine value was observed (31.6 g/100 g), which indicates the presence of high content of saturated fatty acid esters. The presence of saturated fatty acid esters should imply in a high oxidative stability (which was found accordingly, with IP = 64 h), and high CFPP, but curiously the latter was not observed (-3 ºC). This behavior can be explained by looking at the size of the carbon chains, as 65% of this biodiesel is composed by short chain saturated fatty acid esters (less than 14 carbons). The high oxidative stability and the low CFPP of macauba biodiesel are what make this biofuel a promising source. The soybean, corn and residual frying oil biodiesels also have low CFPP, but low oxidative stability. Therefore the blends proposed in this work, if compared to the common biodiesels, maintain the flow properties but present enhanced oxidative stability.Keywords: biodiesel, blends, macauba kernel oil, stability oxidative
Procedia PDF Downloads 5393694 The Implementation of the Lean Six Sigma Production Process in a Telecommunications Company in Brazil
Authors: Carlos Fontanillas
Abstract:
The implementation of the lean six sigma methodology aims to implement practices to systematically improve processes by eliminating defects, making them cheaper. The implementation of projects with the methodology uses a division into five phases: definition, measurement, analysis, implementation, and control. In this process, it is understood that the implementation of said methodology generates benefits to organizations that adhere through the improvement of their processes. In the case of a telecommunications company, it was realized that the implementation of a lean six sigma project contributed to the improvement of the presented process, generating a financial return with the avoided cost. However, such study has limitations such as a specific segment of performance and procedure, i.e., it can not be defined that return under other circumstances will be the same. It is also concluded that lean six sigma projects tend to contribute to improved processes evaluated due to their methodology that is based on statistical analysis and quality management tools and can generate a financial return. It is hoped that the present study can be used to provide a clearer view of the methodology for entrepreneurs who wish to implement process improvement actions in their companies, as well as to provide a foundation for professionals working with lean six sigma projects. After the review of the processes, the completion of the project stages and the monitoring for three months in partnership with the owner of the process to ensure the effectiveness of the actions, the project was completed with the objective reached. There was an average of 60% reduction with the issuance of undue invoices generated after the deactivation and it was possible to extend the project to other companies, which allowed a reduction well above the initially stipulated target.Keywords: quality, process, lean six sigma, organization
Procedia PDF Downloads 1293693 Heat Transfer Enhancement of Structural Concretes Made of Macro-Encapsulated Phase Change Materials
Authors: Ehsan Mohseni, Waiching Tang, Shanyong Wang
Abstract:
Low thermal conductivity of phase change materials (PCMs) affects the thermal performance and energy storage efficiency of latent heat thermal energy storage systems. In the current research, a structural lightweight concrete with function of indoor temperature control was developed using thermal energy storage aggregates (TESA) and nano-titanium (NT). The macro-encapsulated technique was served to incorporate the PCM into the lightweight aggregate through vacuum impregnation. The compressive strength was measured, and the thermal performance of concrete panel was evaluated by using a self-designed environmental chamber. The impact of NT on microstructure was also assessed via scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) tests. The test results indicated that NT was able to increase the compressive strength by filling the micro pores and making the microstructure denser and more homogeneous. In addition, the environmental chamber experiment showed that introduction of NT into TESA improved the heat transfer of composites noticeably. The changes were illustrated by the reduction in peak temperatures in the centre, outside and inside surfaces of concrete panels by the inclusion of NT. It can be concluded that NT particles had the capability to decrease the energy consumption and obtain higher energy storage efficiency by the reduction of indoor temperature.Keywords: heat transfer, macro-encapsulation, microstructure properties, nanoparticles, phase change material
Procedia PDF Downloads 1053692 Improve Heat Pipes Thermal Performance In H-VAC Systems Using CFD Modeling
Authors: A. Ghanami, M.Heydari
Abstract:
Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section. In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator. Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity.used in the abstract.Keywords: Heat pipe, HVAC system, Grooved Heat pipe, Heat pipe limits.
Procedia PDF Downloads 482