Search results for: weighted fuzzy goal programming
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5067

Search results for: weighted fuzzy goal programming

3897 Robust Variogram Fitting Using Non-Linear Rank-Based Estimators

Authors: Hazem M. Al-Mofleh, John E. Daniels, Joseph W. McKean

Abstract:

In this paper numerous robust fitting procedures are considered in estimating spatial variograms. In spatial statistics, the conventional variogram fitting procedure (non-linear weighted least squares) suffers from the same outlier problem that has plagued this method from its inception. Even a 3-parameter model, like the variogram, can be adversely affected by a single outlier. This paper uses the Hogg-Type adaptive procedures to select an optimal score function for a rank-based estimator for these non-linear models. Numeric examples and simulation studies will demonstrate the robustness, utility, efficiency, and validity of these estimates.

Keywords: asymptotic relative efficiency, non-linear rank-based, rank estimates, variogram

Procedia PDF Downloads 431
3896 Multimedia Container for Autonomous Car

Authors: Janusz Bobulski, Mariusz Kubanek

Abstract:

The main goal of the research is to develop a multimedia container structure containing three types of images: RGB, lidar and infrared, properly calibrated to each other. An additional goal is to develop program libraries for creating and saving this type of file and for restoring it. It will also be necessary to develop a method of data synchronization from lidar and RGB cameras as well as infrared. This type of file could be used in autonomous vehicles, which would certainly facilitate data processing by the intelligent autonomous vehicle management system. Autonomous cars are increasingly breaking into our consciousness. No one seems to have any doubts that self-driving cars are the future of motoring. Manufacturers promise that moving the first of them to showrooms is the prospect of the next few years. Many experts believe that creating a network of communicating autonomous cars will be able to completely eliminate accidents. However, to make this possible, it is necessary to develop effective methods of detection of objects around the moving vehicle. In bad weather conditions, this task is difficult on the basis of the RGB(red, green, blue) image. Therefore, in such situations, you should be supported by information from other sources, such as lidar or infrared cameras. The problem is the different data formats that individual types of devices return. In addition to these differences, there is a problem with the synchronization of these data and the formatting of this data. The goal of the project is to develop a file structure that could be containing a different type of data. This type of file is calling a multimedia container. A multimedia container is a container that contains many data streams, which allows you to store complete multimedia material in one file. Among the data streams located in such a container should be indicated streams of images, films, sounds, subtitles, as well as additional information, i.e., metadata. This type of file could be used in autonomous vehicles, which would certainly facilitate data processing by the intelligent autonomous vehicle management system. As shown by preliminary studies, the use of combining RGB and InfraRed images with Lidar data allows for easier data analysis. Thanks to this application, it will be possible to display the distance to the object in a color photo. Such information can be very useful for drivers and for systems in autonomous cars.

Keywords: an autonomous car, image processing, lidar, obstacle detection

Procedia PDF Downloads 225
3895 GIS Pavement Maintenance Selection Strategy

Authors: Mekdelawit Teferi Alamirew

Abstract:

As a practical tool, the Geographical information system (GIS) was used for data integration, collection, management, analysis, and output presentation in pavement mangement systems . There are many GIS techniques to improve the maintenance activities like Dynamic segmentation and weighted overlay analysis which considers Multi Criteria Decision Making process. The results indicated that the developed MPI model works sufficiently and yields adequate output for providing accurate decisions. Hence considering multi criteria to prioritize the pavement sections for maintenance, as a result of the fact that GIS maps can express position, extent, and severity of pavement distress features more effectively than manual approaches, lastly the paper also offers digitized distress maps that can help agencies in their decision-making processes.

Keywords: pavement, flexible, maintenance, index

Procedia PDF Downloads 62
3894 Job Shop Scheduling: Classification, Constraints and Objective Functions

Authors: Majid Abdolrazzagh-Nezhad, Salwani Abdullah

Abstract:

The job-shop scheduling problem (JSSP) is an important decision facing those involved in the fields of industry, economics and management. This problem is a class of combinational optimization problem known as the NP-hard problem. JSSPs deal with a set of machines and a set of jobs with various predetermined routes through the machines, where the objective is to assemble a schedule of jobs that minimizes certain criteria such as makespan, maximum lateness, and total weighted tardiness. Over the past several decades, interest in meta-heuristic approaches to address JSSPs has increased due to the ability of these approaches to generate solutions which are better than those generated from heuristics alone. This article provides the classification, constraints and objective functions imposed on JSSPs that are available in the literature.

Keywords: job-shop scheduling, classification, constraints, objective functions

Procedia PDF Downloads 444
3893 Carbonation and Mechanical Performance of Reactive Magnesia Based Formulations

Authors: Cise Unluer

Abstract:

Reactive MgO hydrates to form brucite (Mg(OH)2, magnesium hydroxide), which can then react with CO2 and additional water to form a range of strength providing hydrated magnesium carbonates (HMCs) within cement-based formulations. The presented work focuses on the use of reactive MgO in a range of concrete mixes, where it carbonates by absorbing CO2 and gains strength accordingly. The main goal involves maximizing the amount of CO2 absorbed within construction products, thereby reducing the overall environmental impact of the designed formulations. Microstructural analyses including scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermogravimetry/differential thermal analysis (TG/DTA) are used in addition to porosity, permeability and unconfined compressive strength (UCS) testing to understand the performance mechanisms. XRD Reference Intensity Ratio (RIR), acid digestion and TG/DTA are utilized to quantify the amount of CO2 sequestered, with the goal of achieving 100% carbonation through careful mix design, leading to a range of carbon neutral products with high strengths. As a result, samples stronger than those containing Portland cement (PC) were produced, revealing the link between the mechanical performance and microstructural development of the developed formulations with the amount of CO2 sequestered.

Keywords: carbonation, compressive strength, reactive MgO cement, sustainability

Procedia PDF Downloads 180
3892 Multimodal Biometric Cryptography Based Authentication in Cloud Environment to Enhance Information Security

Authors: D. Pugazhenthi, B. Sree Vidya

Abstract:

Cloud computing is one of the emerging technologies that enables end users to use the services of cloud on ‘pay per usage’ strategy. This technology grows in a fast pace and so is its security threat. One among the various services provided by cloud is storage. In this service, security plays a vital factor for both authenticating legitimate users and protection of information. This paper brings in efficient ways of authenticating users as well as securing information on the cloud. Initial phase proposed in this paper deals with an authentication technique using multi-factor and multi-dimensional authentication system with multi-level security. Unique identification and slow intrusive formulates an advanced reliability on user-behaviour based biometrics than conventional means of password authentication. By biometric systems, the accounts are accessed only by a legitimate user and not by a nonentity. The biometric templates employed here do not include single trait but multiple, viz., iris and finger prints. The coordinating stage of the authentication system functions on Ensemble Support Vector Machine (SVM) and optimization by assembling weights of base SVMs for SVM ensemble after individual SVM of ensemble is trained by the Artificial Fish Swarm Algorithm (AFSA). Thus it helps in generating a user-specific secure cryptographic key of the multimodal biometric template by fusion process. Data security problem is averted and enhanced security architecture is proposed using encryption and decryption system with double key cryptography based on Fuzzy Neural Network (FNN) for data storing and retrieval in cloud computing . The proposing scheme aims to protect the records from hackers by arresting the breaking of cipher text to original text. This improves the authentication performance that the proposed double cryptographic key scheme is capable of providing better user authentication and better security which distinguish between the genuine and fake users. Thus, there are three important modules in this proposed work such as 1) Feature extraction, 2) Multimodal biometric template generation and 3) Cryptographic key generation. The extraction of the feature and texture properties from the respective fingerprint and iris images has been done initially. Finally, with the help of fuzzy neural network and symmetric cryptography algorithm, the technique of double key encryption technique has been developed. As the proposed approach is based on neural networks, it has the advantage of not being decrypted by the hacker even though the data were hacked already. The results prove that authentication process is optimal and stored information is secured.

Keywords: artificial fish swarm algorithm (AFSA), biometric authentication, decryption, encryption, fingerprint, fusion, fuzzy neural network (FNN), iris, multi-modal, support vector machine classification

Procedia PDF Downloads 259
3891 Tool for Determining the Similarity between Two Web Applications

Authors: Doru Anastasiu Popescu, Raducanu Dragos Ionut

Abstract:

In this paper the presentation of a tool which measures the similarity between two websites is made. The websites are compound only from webpages created with HTML. The tool uses three ways of calculating the similarity between two websites based on certain results already published. The first way compares all the webpages within a website, the second way compares a webpage with all the pages within the second website and the third way compares two webpages. Java programming language and technologies such as spring, Jsoup, log4j were used for the implementation of the tool.

Keywords: Java, Jsoup, HTM, spring

Procedia PDF Downloads 385
3890 On Periodic Integer-Valued Moving Average Models

Authors: Aries Nawel, Bentarzi Mohamed

Abstract:

This paper deals with the study of some probabilistic and statistical properties of a Periodic Integer-Valued Moving Average Model (PINMA_{S}(q)). The closed forms of the mean, the second moment and the periodic autocovariance function are obtained. Furthermore, the time reversibility of the model is discussed in details. Moreover, the estimation of the underlying parameters are obtained by the Yule-Walker method, the Conditional Least Square method (CLS) and the Weighted Conditional Least Square method (WCLS). A simulation study is carried out to evaluate the performance of the estimation method. Moreover, an application on real data set is provided.

Keywords: periodic integer-valued moving average, periodically correlated process, time reversibility, count data

Procedia PDF Downloads 202
3889 Closest Possible Neighbor of a Different Class: Explaining a Model Using a Neighbor Migrating Generator

Authors: Hassan Eshkiki, Benjamin Mora

Abstract:

The Neighbor Migrating Generator is a simple and efficient approach to finding the closest potential neighbor(s) with a different label for a given instance and so without the need to calibrate any kernel settings at all. This allows determining and explaining the most important features that will influence an AI model. It can be used to either migrate a specific sample to the class decision boundary of the original model within a close neighborhood of that sample or identify global features that can help localising neighbor classes. The proposed technique works by minimizing a loss function that is divided into two components which are independently weighted according to three parameters α, β, and ω, α being self-adjusting. Results show that this approach is superior to past techniques when detecting the smallest changes in the feature space and may also point out issues in models like over-fitting.

Keywords: explainable AI, EX AI, feature importance, counterfactual explanations

Procedia PDF Downloads 192
3888 Role of Alternative Dispute Resolution (ADR) in Advancing UN-SDG 16 and Pathways to Justice in Kenya: Opportunities and Challenges

Authors: Thomas Njuguna Kibutu

Abstract:

The ability to access justice is an important facet of securing peaceful, just, and inclusive societies, as recognized by Goal 16 of the 2030 Agenda for Sustainable Development. Goal 16 calls for peace, justice, and strong institutions to promote the rule of law and access to justice at a global level. More specifically, Target 16.3 of the Goal aims to promote the rule of law at the national and international levels and ensure equal access to justice for all. On the other hand, it is now widely recognized that Alternative Dispute Resolution (hereafter, ADR) represents an efficient mechanism for resolving disputes outside the adversarial conventional court system of litigation or prosecution. ADR processes include but are not limited to negotiation, reconciliation, mediation, arbitration, and traditional conflict resolution. ADR has a number of advantages, including being flexible, cost-efficient, time-effective, and confidential, and giving the parties more control over the process and the results, thus promoting restorative justice. The methodology of this paper is a desktop review of books, journal articles, reports and government documents., among others. The paper recognizes that ADR represents a cornerstone of Africa’s, and more specifically, Kenya’s, efforts to promote inclusive, accountable, and effective institutions and achieve the objectives of goal 16. In Kenya, and not unlike many African countries, there has been an outcry over the backlog of cases that are yet to be resolved in the courts and the statistics have shown that the numbers keep on rising. While ADR mechanisms have played a major role in reducing these numbers, access to justice in the country remains a big challenge, especially to the subaltern. There is, therefore, a need to analyze the opportunities and challenges facing the application of ADR mechanisms as tools for accessing justice in Kenya and further discuss various ways in which we can overcome these challenges to make ADR an effective alternative to dispute resolution. The paper argues that by embracing ADR across various sectors and addressing existing shortcomings, Kenya can, over time, realize its vision of a more just and equitable society. This paper discusses the opportunities and challenges of the application of ADR in Kenya with a view to sharing the lessons and challenges with the wider African continent. The paper concludes that ADR mechanisms can provide critical pathways to justice in Kenya and the African continent in general but come with distinct challenges. The paper thus calls for concerted efforts of respective stakeholders to overcome these challenges.

Keywords: mediation, arbitration, negotiation, reconsiliation, Traditional conflict resolution, sustainable development

Procedia PDF Downloads 29
3887 Survey of the Role of Contextualism in the Designing of Cultural Constructions Based on Rapoport Views

Authors: E. Zarei, M. Bazaei, A. Seifi, A. Keshavarzi

Abstract:

Amos Rapoport, based on his anthropology approach, believed that the space origins from the human body and influences on human body mutually. As a holistic approach in architecture, Contextualism describes a collection of views in philosophy which emphasize the context in which an action, utterance, or expression occurs, and argues that, in some important respect, the action, utterance, or expression can only be understood relative to that context. In this approach, the main goal – studying the role of cultural component in the Contextualism construction shaping up, based on Amos Rapoport’s anthropology approach- has being done by descriptive- analytic method. The results of the research indicate that in the field of Contextualism designing, referring to the cultural aspects are as necessary as the physical dimensions of a construction. Rapoport believes that the shape of a construction is influenced by cultural aspects and he suggests a kind of mutual interaction between human and environment that should be considered in housing. The mail goal of contextual architecture is to establish an interaction between environment, human and culture. According to this approach, a desirable design should be in harmony with this approach.

Keywords: Amos Rapoport, anthropology, contextual architecture, culture

Procedia PDF Downloads 400
3886 Comparative Study of Water Quality Parameters in the Proximity of Various Landfills Sites in India

Authors: Abhishek N. Srivastava, Rahul Singh, Sumedha Chakma

Abstract:

The rapid urbanization in the developing countries is generating an enormous amount of waste leading to the creation of unregulated landfill sites at various places at its disposal. The liquid waste, known as leachate, produced from these landfills sites is severely affecting the surrounding water quality. The water quality in the proximity areas of the landfill is found affected by various physico-chemical parameters of leachate such as pH, alkalinity, total hardness, conductivity, chloride, total dissolved solids (TDS), total suspended solids (TSS), sulphate, nitrate, phosphate, fluoride, sodium and potassium, biological parameters such as biochemical oxygen demand (BOD), chemical oxygen demand (COD), Faecal coliform, and heavy metals such as cadmium (Cd), lead (Pb), iron (Fe), mercury (Hg), arsenic (As), cobalt (Co), manganese (Mn), zinc (Zn), copper (Cu), chromium (Cr), nickel (Ni). However, all these parameters are distributive in leachate that produced according to the nature of waste being dumped at various landfill sites, therefore, it becomes very difficult to predict the main responsible parameter of leachate for water quality contamination. The present study is endeavour the comparative analysis of the physical, chemical and biological parameters of various landfills in India viz. Okhla landfill, Ghazipur landfill, Bhalswa ladfill in NCR Delhi, Deonar landfill in Mumbai, Dhapa landfill in Kolkata and Kodungayaiyur landfill, Perungudi landfill in Chennai. The statistical analysis of the parameters was carried out using the Statistical Packages for the Social Sciences (SPSS) and LandSim 2.5 model to simulate the long term effect of various parameters on different time scale. Further, the uncertainties characterization of various input parameters has also been analysed using fuzzy alpha cut (FAC) technique to check the sensitivity of various water quality parameters at the proximity of numerous landfill sites. Finally, the study would help to suggest the best method for the prevention of pollution migration from the landfill sites on priority basis.

Keywords: landfill leachate, water quality, LandSim, fuzzy alpha cut

Procedia PDF Downloads 125
3885 Encephalon-An Implementation of a Handwritten Mathematical Expression Solver

Authors: Shreeyam, Ranjan Kumar Sah, Shivangi

Abstract:

Recognizing and solving handwritten mathematical expressions can be a challenging task, particularly when certain characters are segmented and classified. This project proposes a solution that uses Convolutional Neural Network (CNN) and image processing techniques to accurately solve various types of equations, including arithmetic, quadratic, and trigonometric equations, as well as logical operations like logical AND, OR, NOT, NAND, XOR, and NOR. The proposed solution also provides a graphical solution, allowing users to visualize equations and their solutions. In addition to equation solving, the platform, called CNNCalc, offers a comprehensive learning experience for students. It provides educational content, a quiz platform, and a coding platform for practicing programming skills in different languages like C, Python, and Java. This all-in-one solution makes the learning process engaging and enjoyable for students. The proposed methodology includes horizontal compact projection analysis and survey for segmentation and binarization, as well as connected component analysis and integrated connected component analysis for character classification. The compact projection algorithm compresses the horizontal projections to remove noise and obtain a clearer image, contributing to the accuracy of character segmentation. Experimental results demonstrate the effectiveness of the proposed solution in solving a wide range of mathematical equations. CNNCalc provides a powerful and user-friendly platform for solving equations, learning, and practicing programming skills. With its comprehensive features and accurate results, CNNCalc is poised to revolutionize the way students learn and solve mathematical equations. The platform utilizes a custom-designed Convolutional Neural Network (CNN) with image processing techniques to accurately recognize and classify symbols within handwritten equations. The compact projection algorithm effectively removes noise from horizontal projections, leading to clearer images and improved character segmentation. Experimental results demonstrate the accuracy and effectiveness of the proposed solution in solving a wide range of equations, including arithmetic, quadratic, trigonometric, and logical operations. CNNCalc features a user-friendly interface with a graphical representation of equations being solved, making it an interactive and engaging learning experience for users. The platform also includes tutorials, testing capabilities, and programming features in languages such as C, Python, and Java. Users can track their progress and work towards improving their skills. CNNCalc is poised to revolutionize the way students learn and solve mathematical equations with its comprehensive features and accurate results.

Keywords: AL, ML, hand written equation solver, maths, computer, CNNCalc, convolutional neural networks

Procedia PDF Downloads 122
3884 An Improved OCR Algorithm on Appearance Recognition of Electronic Components Based on Self-adaptation of Multifont Template

Authors: Zhu-Qing Jia, Tao Lin, Tong Zhou

Abstract:

The recognition method of Optical Character Recognition has been expensively utilized, while it is rare to be employed specifically in recognition of electronic components. This paper suggests a high-effective algorithm on appearance identification of integrated circuit components based on the existing methods of character recognition, and analyze the pros and cons.

Keywords: optical character recognition, fuzzy page identification, mutual correlation matrix, confidence self-adaptation

Procedia PDF Downloads 540
3883 Ending the Gender Gap in Educational Leadership: A U.S. Goal for a Balanced Administration by 2030

Authors: S. Dodd

Abstract:

This presentation examines the gender gap in leadership positions at colleges and universities within the United States. Despite the fact that women now outnumber men in earning doctorate degrees, women continue to hold far fewer positions of educational leadership, and still, earn less money than men do at every level. Considering the lack of female representation in positions of leadership, there are clearly outside variables preventing women from attaining these positions, despite their educational attainment. Following this study, the American Council on Education (ACE) set a goal to achieve an equal percentage of females holding college presidency positions by the year 2030. This goal is particularly ambitious, especially when considering the gender disparity at all ranks in higher education. Men still hold nearly 70% of all full professorships at degree-granting institutions. Even when women are equally represented in numbers, men typically hold a higher rank and are more likely to be tenured. Across all four-year colleges and universities in the United States, men earn more money than women at every rank and in every discipline. There are over twice as many men than women represented on governing boards, who help formed and uphold campus policies. The fact that the low percentage of female presidents has remained static for many years deepens the challenge for the ACE. Although emphasizing the need to create greater opportunities for women in educational administration is admirable, it is difficult to simplify the social forces that create and uphold the status quo of male leadership. When aiming to ensure 'women' hold 50% of all college presidency positions, it is important to consider how the intersections of race, social class, and other factors also correlate with lower job status. This presentation explores how gendered notions of leadership begin in a child’s early years and are carried into future careers, and how these conceptualizations impact the creation and upholding of educational policies at every academic level. Current research that emphasizes the importance establishing a bottom-up approach to a gender equity infrastructure for children early in their educational careers will be discussed. A top-down approach starting with female college presidents is incomplete and insufficient if the mindsets of the youth who will one day be entering those institutions of higher education are not also taken into consideration. Although ACE has established this lofty goal for female college presidencies by the year 2030, a road map for this will ensue, has not yet been provided. The talent pool of women who are educated and experienced for such positions is vast, but acknowledging the social barriers existing for women in these positions will be crucial to making the changes necessary for these leadership opportunities to be long lasting and successful.

Keywords: equity, higher education, leadership, women

Procedia PDF Downloads 178
3882 Spatial Distribution of Heavy Metals in Khark Island-Iran Using Geographic Information System

Authors: Abbas Hani, Maryam Jassasizadeh

Abstract:

The concentrations of Cd, Pb, and Ni were determined from 40 soil samples collected in surface soils of Khark Island. Geostatistic methods and GIS were used to identify heavy metal sources and their spatial pattern. Principal component analysis coupled with correlation between heavy metals showed that level of mentioned heavy metal was lower than the standard level. Then the data obtained from the soil analyzing were studied for the purposes of normal distribution. The best way of interior finding for cadmium and nickel was ordinary kriging and the best way of interpolation of lead was inverse distance weighted. The result of this study help us to understand heavy metals distribution and make decision for remediation of soil pollution.

Keywords: geostatistics, ordinary kriging, heavy metals, GIS, Khark

Procedia PDF Downloads 167
3881 Producing Graphical User Interface from Activity Diagrams

Authors: Ebitisam K. Elberkawi, Mohamed M. Elammari

Abstract:

Graphical User Interface (GUI) is essential to programming, as is any other characteristic or feature, due to the fact that GUI components provide the fundamental interaction between the user and the program. Thus, we must give more interest to GUI during building and development of systems. Also, we must give a greater attention to the user who is the basic corner in the dealing with the GUI. This paper introduces an approach for designing GUI from one of the models of business workflows which describe the workflow behavior of a system, specifically through activity diagrams (AD).

Keywords: activity diagram, graphical user interface, GUI components, program

Procedia PDF Downloads 464
3880 Association of Genetically Proxied Cholesterol-Lowering Drug Targets and Head and Neck Cancer Survival: A Mendelian Randomization Analysis

Authors: Danni Cheng

Abstract:

Background: Preclinical and epidemiological studies have reported potential protective effects of low-density lipoprotein cholesterol (LDL-C) lowering drugs on head and neck squamous cell cancer (HNSCC) survival, but the causality was not consistent. Genetic variants associated with LDL-C lowering drug targets can predict the effects of their therapeutic inhibition on disease outcomes. Objective: We aimed to evaluate the causal association of genetically proxied cholesterol-lowering drug targets and circulating lipid traits with cancer survival in HNSCC patients stratified by human papillomavirus (HPV) status using two-sample Mendelian randomization (MR) analyses. Method: Single-nucleotide polymorphisms (SNPs) in gene region of LDL-C lowering drug targets (HMGCR, NPC1L1, CETP, PCSK9, and LDLR) associated with LDL-C levels in genome-wide association study (GWAS) from the Global Lipids Genetics Consortium (GLGC) were used to proxy LDL-C lowering drug action. SNPs proxy circulating lipids (LDL-C, HDL-C, total cholesterol, triglycerides, apoprotein A and apoprotein B) were also derived from the GLGC data. Genetic associations of these SNPs and cancer survivals were derived from 1,120 HPV-positive oropharyngeal squamous cell carcinoma (OPSCC) and 2,570 non-HPV-driven HNSCC patients in VOYAGER program. We estimated the causal associations of LDL-C lowering drugs and circulating lipids with HNSCC survival using the inverse-variance weighted method. Results: Genetically proxied HMGCR inhibition was significantly associated with worse overall survival (OS) in non-HPV-drive HNSCC patients (inverse variance-weighted hazard ratio (HR IVW), 2.64[95%CI,1.28-5.43]; P = 0.01) but better OS in HPV-positive OPSCC patients (HR IVW,0.11[95%CI,0.02-0.56]; P = 0.01). Estimates for NPC1L1 were strongly associated with worse OS in both total HNSCC (HR IVW,4.17[95%CI,1.06-16.36]; P = 0.04) and non-HPV-driven HNSCC patients (HR IVW,7.33[95%CI,1.63-32.97]; P = 0.01). A similar result was found that genetically proxied PSCK9 inhibitors were significantly associated with poor OS in non-HPV-driven HNSCC (HR IVW,1.56[95%CI,1.02 to 2.39]). Conclusion: Genetically proxied long-term HMGCR inhibition was significantly associated with decreased OS in non-HPV-driven HNSCC and increased OS in HPV-positive OPSCC. While genetically proxied NPC1L1 and PCSK9 had associations with worse OS in total and non-HPV-driven HNSCC patients. Further research is needed to understand whether these drugs have consistent associations with head and neck tumor outcomes.

Keywords: Mendelian randomization analysis, head and neck cancer, cancer survival, cholesterol, statin

Procedia PDF Downloads 99
3879 Wildlife Habitat Corridor Mapping in Urban Environments: A GIS-Based Approach Using Preliminary Category Weightings

Authors: Stefan Peters, Phillip Roetman

Abstract:

The global loss of biodiversity is threatening the benefits nature provides to human populations and has become a more pressing issue than climate change and requires immediate attention. While there have been successful global agreements for environmental protection, such as the Montreal Protocol, these are rare, and we cannot rely on them solely. Thus, it is crucial to take national and local actions to support biodiversity. Australia is one of the 17 countries in the world with a high level of biodiversity, and its cities are vital habitats for endangered species, with more of them found in urban areas than in non-urban ones. However, the protection of biodiversity in metropolitan Adelaide has been inadequate, with over 130 species disappearing since European colonization in 1836. In this research project we conceptualized, developed and implemented a framework for wildlife Habitat Hotspots and Habitat Corridor modelling in an urban context using geographic data and GIS modelling and analysis. We used detailed topographic and other geographic data provided by a local council, including spatial and attributive properties of trees, parcels, water features, vegetated areas, roads, verges, traffic, and census data. Weighted factors considered in our raster-based Habitat Hotspot model include parcel size, parcel shape, population density, canopy cover, habitat quality and proximity to habitats and water features. Weighted factors considered in our raster-based Habitat Corridor model include habitat potential (resulting from the Habitat Hotspot model), verge size, road hierarchy, road widths, human density, and presence of remnant indigenous vegetation species. We developed a GIS model, using Python scripting and ArcGIS-Pro Model-Builder, to establish an automated reproducible and adjustable geoprocessing workflow, adaptable to any study area of interest. Our habitat hotspot and corridor modelling framework allow to determine and map existing habitat hotspots and wildlife habitat corridors. Our research had been applied to the study case of Burnside, a local council in Adelaide, Australia, which encompass an area of 30 km2. We applied end-user expertise-based category weightings to refine our models and optimize the use of our habitat map outputs towards informing local strategic decision-making.

Keywords: biodiversity, GIS modeling, habitat hotspot, wildlife corridor

Procedia PDF Downloads 115
3878 Exploring Socio-Economic Barriers of Green Entrepreneurship in Iran and Their Interactions Using Interpretive Structural Modeling

Authors: Younis Jabarzadeh, Rahim Sarvari, Negar Ahmadi Alghalandis

Abstract:

Entrepreneurship at both individual and organizational level is one of the most driving forces in economic development and leads to growth and competition, job generation and social development. Especially in developing countries, the role of entrepreneurship in economic and social prosperity is more emphasized. But the effect of global economic development on the environment is undeniable, especially in negative ways, and there is a need to rethink current business models and the way entrepreneurs act to introduce new businesses to address and embed environmental issues in order to achieve sustainable development. In this paper, green or sustainable entrepreneurship is addressed in Iran to identify challenges and barriers entrepreneurs in the economic and social sectors face in developing green business solutions. Sustainable or green entrepreneurship has been gaining interest among scholars in recent years and addressing its challenges and barriers need much more attention to fill the gap in the literature and facilitate the way those entrepreneurs are pursuing. This research comprised of two main phases: qualitative and quantitative. At qualitative phase, after a thorough literature review, fuzzy Delphi method is utilized to verify those challenges and barriers by gathering a panel of experts and surveying them. In this phase, several other contextually related factors were added to the list of identified barriers and challenges mentioned in the literature. Then, at the quantitative phase, Interpretive Structural Modeling is applied to construct a network of interactions among those barriers identified at the previous phase. Again, a panel of subject matter experts comprised of academic and industry experts was surveyed. The results of this study can be used by policymakers in both the public and industry sector, to introduce more systematic solutions to eliminate those barriers and help entrepreneurs overcome challenges of sustainable entrepreneurship. It also contributes to the literature as the first research in this type which deals with the barriers of sustainable entrepreneurship and explores their interaction.

Keywords: green entrepreneurship, barriers, fuzzy Delphi method, interpretive structural modeling

Procedia PDF Downloads 166
3877 Thermodynamic Trends in Co-Based Alloys via Inelastic Neutron Scattering

Authors: Paul Stonaha, Mariia Romashchenko, Xaio Xu

Abstract:

Magnetic shape memory alloys (MSMAs) are promising technological materials for a range of fields, from biomaterials to energy harvesting. We have performed inelastic neutron scattering on two powder samples of cobalt-based high-entropy MSMAs across a range of temperatures in an effort to compare calculations of thermodynamic properties (entropy, specific heat, etc.) to the measured ones. The measurements were correct for multiphonon scattering and multiple scattering contributions. We present herein the neutron-weighted vibrational density of states. Future work will utilize DFT calculations of the disordered lattice to correct for the neutron weighting and retrieve the true thermodynamical properties.

Keywords: neutron scattering, vibrational dynamics, computational physics, material science

Procedia PDF Downloads 32
3876 A Comparative Assessment of Information Value, Fuzzy Expert System Models for Landslide Susceptibility Mapping of Dharamshala and Surrounding, Himachal Pradesh, India

Authors: Kumari Sweta, Ajanta Goswami, Abhilasha Dixit

Abstract:

Landslide is a geomorphic process that plays an essential role in the evolution of the hill-slope and long-term landscape evolution. But its abrupt nature and the associated catastrophic forces of the process can have undesirable socio-economic impacts, like substantial economic losses, fatalities, ecosystem, geomorphologic and infrastructure disturbances. The estimated fatality rate is approximately 1person /100 sq. Km and the average economic loss is more than 550 crores/year in the Himalayan belt due to landslides. This study presents a comparative performance of a statistical bivariate method and a machine learning technique for landslide susceptibility mapping in and around Dharamshala, Himachal Pradesh. The final produced landslide susceptibility maps (LSMs) with better accuracy could be used for land-use planning to prevent future losses. Dharamshala, a part of North-western Himalaya, is one of the fastest-growing tourism hubs with a total population of 30,764 according to the 2011 census and is amongst one of the hundred Indian cities to be developed as a smart city under PM’s Smart Cities Mission. A total of 209 landslide locations were identified in using high-resolution linear imaging self-scanning (LISS IV) data. The thematic maps of parameters influencing landslide occurrence were generated using remote sensing and other ancillary data in the GIS environment. The landslide causative parameters used in the study are slope angle, slope aspect, elevation, curvature, topographic wetness index, relative relief, distance from lineaments, land use land cover, and geology. LSMs were prepared using information value (Info Val), and Fuzzy Expert System (FES) models. Info Val is a statistical bivariate method, in which information values were calculated as the ratio of the landslide pixels per factor class (Si/Ni) to the total landslide pixel per parameter (S/N). Using this information values all parameters were reclassified and then summed in GIS to obtain the landslide susceptibility index (LSI) map. The FES method is a machine learning technique based on ‘mean and neighbour’ strategy for the construction of fuzzifier (input) and defuzzifier (output) membership function (MF) structure, and the FR method is used for formulating if-then rules. Two types of membership structures were utilized for membership function Bell-Gaussian (BG) and Trapezoidal-Triangular (TT). LSI for BG and TT were obtained applying membership function and if-then rules in MATLAB. The final LSMs were spatially and statistically validated. The validation results showed that in terms of accuracy, Info Val (83.4%) is better than BG (83.0%) and TT (82.6%), whereas, in terms of spatial distribution, BG is best. Hence, considering both statistical and spatial accuracy, BG is the most accurate one.

Keywords: bivariate statistical techniques, BG and TT membership structure, fuzzy expert system, information value method, machine learning technique

Procedia PDF Downloads 127
3875 Pavement Management for a Metropolitan Area: A Case Study of Montreal

Authors: Luis Amador Jimenez, Md. Shohel Amin

Abstract:

Pavement performance models are based on projections of observed traffic loads, which makes uncertain to study funding strategies in the long run if history does not repeat. Neural networks can be used to estimate deterioration rates but the learning rate and momentum have not been properly investigated, in addition, economic evolvement could change traffic flows. This study addresses both issues through a case study for roads of Montreal that simulates traffic for a period of 50 years and deals with the measurement error of the pavement deterioration model. Travel demand models are applied to simulate annual average daily traffic (AADT) every 5 years. Accumulated equivalent single axle loads (ESALs) are calculated from the predicted AADT and locally observed truck distributions combined with truck factors. A back propagation Neural Network (BPN) method with a Generalized Delta Rule (GDR) learning algorithm is applied to estimate pavement deterioration models capable of overcoming measurement errors. Linear programming of lifecycle optimization is applied to identify M&R strategies that ensure good pavement condition while minimizing the budget. It was found that CAD 150 million is the minimum annual budget to good condition for arterial and local roads in Montreal. Montreal drivers prefer the use of public transportation for work and education purposes. Vehicle traffic is expected to double within 50 years, ESALS are expected to double the number of ESALs every 15 years. Roads in the island of Montreal need to undergo a stabilization period for about 25 years, a steady state seems to be reached after.

Keywords: pavement management system, traffic simulation, backpropagation neural network, performance modeling, measurement errors, linear programming, lifecycle optimization

Procedia PDF Downloads 460
3874 An Adiabatic Quantum Optimization Approach for the Mixed Integer Nonlinear Programming Problem

Authors: Maxwell Henderson, Tristan Cook, Justin Chan Jin Le, Mark Hodson, YoungJung Chang, John Novak, Daniel Padilha, Nishan Kulatilaka, Ansu Bagchi, Sanjoy Ray, John Kelly

Abstract:

We present a method of using adiabatic quantum optimization (AQO) to solve a mixed integer nonlinear programming (MINLP) problem instance. The MINLP problem is a general form of a set of NP-hard optimization problems that are critical to many business applications. It requires optimizing a set of discrete and continuous variables with nonlinear and potentially nonconvex constraints. Obtaining an exact, optimal solution for MINLP problem instances of non-trivial size using classical computation methods is currently intractable. Current leading algorithms leverage heuristic and divide-and-conquer methods to determine approximate solutions. Creating more accurate and efficient algorithms is an active area of research. Quantum computing (QC) has several theoretical benefits compared to classical computing, through which QC algorithms could obtain MINLP solutions that are superior to current algorithms. AQO is a particular form of QC that could offer more near-term benefits compared to other forms of QC, as hardware development is in a more mature state and devices are currently commercially available from D-Wave Systems Inc. It is also designed for optimization problems: it uses an effect called quantum tunneling to explore all lowest points of an energy landscape where classical approaches could become stuck in local minima. Our work used a novel algorithm formulated for AQO to solve a special type of MINLP problem. The research focused on determining: 1) if the problem is possible to solve using AQO, 2) if it can be solved by current hardware, 3) what the currently achievable performance is, 4) what the performance will be on projected future hardware, and 5) when AQO is likely to provide a benefit over classical computing methods. Two different methods, integer range and 1-hot encoding, were investigated for transforming the MINLP problem instance constraints into a mathematical structure that can be embedded directly onto the current D-Wave architecture. For testing and validation a D-Wave 2X device was used, as well as QxBranch’s QxLib software library, which includes a QC simulator based on simulated annealing. Our results indicate that it is mathematically possible to formulate the MINLP problem for AQO, but that currently available hardware is unable to solve problems of useful size. Classical general-purpose simulated annealing is currently able to solve larger problem sizes, but does not scale well and such methods would likely be outperformed in the future by improved AQO hardware with higher qubit connectivity and lower temperatures. If larger AQO devices are able to show improvements that trend in this direction, commercially viable solutions to the MINLP for particular applications could be implemented on hardware projected to be available in 5-10 years. Continued investigation into optimal AQO hardware architectures and novel methods for embedding MINLP problem constraints on to those architectures is needed to realize those commercial benefits.

Keywords: adiabatic quantum optimization, mixed integer nonlinear programming, quantum computing, NP-hard

Procedia PDF Downloads 525
3873 A Comprehensive Methodology for Voice Segmentation of Large Sets of Speech Files Recorded in Naturalistic Environments

Authors: Ana Londral, Burcu Demiray, Marcus Cheetham

Abstract:

Speech recording is a methodology used in many different studies related to cognitive and behaviour research. Modern advances in digital equipment brought the possibility of continuously recording hours of speech in naturalistic environments and building rich sets of sound files. Speech analysis can then extract from these files multiple features for different scopes of research in Language and Communication. However, tools for analysing a large set of sound files and automatically extract relevant features from these files are often inaccessible to researchers that are not familiar with programming languages. Manual analysis is a common alternative, with a high time and efficiency cost. In the analysis of long sound files, the first step is the voice segmentation, i.e. to detect and label segments containing speech. We present a comprehensive methodology aiming to support researchers on voice segmentation, as the first step for data analysis of a big set of sound files. Praat, an open source software, is suggested as a tool to run a voice detection algorithm, label segments and files and extract other quantitative features on a structure of folders containing a large number of sound files. We present the validation of our methodology with a set of 5000 sound files that were collected in the daily life of a group of voluntary participants with age over 65. A smartphone device was used to collect sound using the Electronically Activated Recorder (EAR): an app programmed to record 30-second sound samples that were randomly distributed throughout the day. Results demonstrated that automatic segmentation and labelling of files containing speech segments was 74% faster when compared to a manual analysis performed with two independent coders. Furthermore, the methodology presented allows manual adjustments of voiced segments with visualisation of the sound signal and the automatic extraction of quantitative information on speech. In conclusion, we propose a comprehensive methodology for voice segmentation, to be used by researchers that have to work with large sets of sound files and are not familiar with programming tools.

Keywords: automatic speech analysis, behavior analysis, naturalistic environments, voice segmentation

Procedia PDF Downloads 281
3872 Experiential Learning: A Case Study for Teaching Operating System Using C and Unix

Authors: Shamshuddin K., Nagaraj Vannal, Diwakar Kulkarni, Raghavendra Nakod

Abstract:

In most of the universities and colleges Operating System (OS) course is treated as theoretical and usually taught in a classroom using conventional teaching methods. In this paper we are presenting a new approach of teaching OS through experiential learning, the course is designed to suit the requirement of undergraduate engineering program of Instrumentation Technology. This new approach has benefited us to improve our student’s programming skills, presentation skills and understanding of the operating system concepts.

Keywords: pedagogy, interactive learning, experiential learning, OS, C, UNIX

Procedia PDF Downloads 606
3871 The Role of Goal Orientation on the Structural-Psychological Empowerment Link in the Public Sector

Authors: Beatriz Garcia-Juan, Ana B. Escrig-Tena, Vicente Roca-Puig

Abstract:

The aim of this article is to conduct a theoretical and empirical study in order to examine how the goal orientation (GO) of public employees affects the relationship between the structural and psychological empowerment that they experience at their workplaces. In doing so, we follow structural empowerment (SE) and psychological empowerment (PE) conceptualizations, and relate them to the public administration framework. Moreover, we review arguments from GO theories, and previous related contributions. Empowerment has emerged as an important issue in the public sector organization setting in the wake of mainstream New Public Management (NPM), the new orientation in the public sector that aims to provide a better service for citizens. It is closely linked to the drive to improve organizational effectiveness through the wise use of human resources. Nevertheless, it is necessary to combine structural (managerial) and psychological (individual) approaches in an integrative study of empowerment. SE refers to a set of initiatives that aim the transference of power from managerial positions to the rest of employees. PE is defined as psychological state of competence, self-determination, impact, and meaning that an employee feels at work. Linking these two perspectives will lead to arrive at a broader understanding of the empowerment process. Specifically in the public sector, empirical contributions on this relationship are therefore important, particularly as empowerment is a very useful tool with which to face the challenges of the new public context. There is also a need to examine the moderating variables involved in this relationship, as well as to extend research on work motivation in public management. It is proposed the study of the effect of individual orientations, such as GO. GO concept refers to the individual disposition toward developing or confirming one’s capacity in achievement situations. Employees’ GO may be a key factor at work and in workforce selection processes, since it explains the differences in personal work interests, and in receptiveness to and interpretations of professional development activities. SE practices could affect PE feelings in different ways, depending on employees’ GO, since they perceive and respond differently to such practices, which is likely to yield distinct PE results. The model is tested on a sample of 521 Spanish local authority employees. Hierarchical regression analysis was conducted to test the research hypotheses using SPSS 22 computer software. The results do not confirm the direct link between SE and PE, but show that learning goal orientation has considerable moderating power in this relationship, and its interaction with SE affects employees’ PE levels. Therefore, the combination of SE practices and employees’ high levels of LGO are important factors for creating psychologically empowered staff in public organizations.

Keywords: goal orientation, moderating effect, psychological empowerment, structural empowerment

Procedia PDF Downloads 281
3870 Engineers 'Write' Job Description: Development of English for Specific Purposes (ESP)-Based Instructional Materials for Engineering Students

Authors: Marjorie Miguel

Abstract:

Globalization offers better career opportunities hence demands more competent professionals efficient for the job. With the transformation of the world industry from competition to collaboration coupled with the rapid development in the field of science and technology, engineers need not only to be technically proficient, but also multilingual-skilled: two characteristics that a global engineer possesses. English often serves as the global language between people from different cultures being the medium mostly used in international business. Ironically, most universities worldwide adapt engineering curriculum heavily built around the language of mathematics not realizing that the goal of an engineer is not only to create and design, but more importantly to promote his creations and designs to the general public through effective communication. This premise led to some developments in the teaching process of English subjects in the tertiary level which include the integration of the technical knowledge related to the area of specialization of the students in the English subjects that they are taking. This is also known as English for Specific Purposes. This study focused on the development of English for Specific Purposes-Based Instructional Materials for Engineering Students of Bulacan State University (BulSU). The materials were tailor-made in which the contents and structure were designed to meet the specific needs of the students as well as the industry. Based on the needs analysis, the needs of the students and the industry were determined to make the study descriptive in nature. The major respondents included fifty engineering students and ten professional engineers from selected institutions. The needs analysis was done and the results showed the common writing difficulties of the students and the writing skills needed among the engineers in the industry. The topics in the instructional materials were established after the needs analysis was conducted. Simple statistical treatment including frequency distribution, percentages, mean, standard deviation, and weighted mean were used. The findings showed that the greatest number of the respondents had an average proficiency rating in writing, and the much-needed skills that must be developed by the engineers are directly related to the preparation and presentation of technical reports about their projects, as well as to the different communications they transmit to their colleagues and superiors. The researcher undertook the following phases in the development of the instructional materials: a design phase, development phase, and evaluation phase. Evaluations are given by some college instructors about the instructional materials generally helped in its usefulness and significance making the study beneficial not only as a career enhancer for BulSU engineering students, but also creating the university one of the educational institutions ready for the new millennium.

Keywords: English for specific purposes, instructional materials, needs analysis, write (right) job description

Procedia PDF Downloads 239
3869 Student Motivation as an Important Factor in Teaching and Learning English Language

Authors: Deborah Asibu Abu

Abstract:

Motivation is the process that initiates, guides, and maintains goal-oriented behaviors. It is one of the most important ingredients in teaching and learning yet it does not come by chance; it involves necessary strategies appropriate to achieve a common goal. In learning, the psychological attention of the student is very important. This helps them to imagine whatever is being taught for a simple understanding, nonetheless, many students will be able to imagine how the environment is in social studies or how the bones or plant is, in integrated Science but will find it difficult to imagine what subject-verb agreement or phrases and clauses actually looks like until they are motivated or with the use of TLM’s to stir their interest to learn and forever remember. For students to be able to receive the motivation they need, there must be an effective relationship between the teacher and the student as well as the use of strategies for effectual execution of achievable goals. Every teacher must understand the importance of motivation by applying various kinds of teaching methodology, especially in the English Language as a subject. Hence this paper suggests some important factors necessary for student’s motivation in teaching and learning English Language, it handles what teaching method is, types of motivation, educational curriculum structure of many, what suitable teaching methods can achieve, appropriate teachers’ disposition, learning environment as tool for motivation and some other domestic factors that can also influence student motivation.

Keywords: english language, teacher-student relationship, curriculum structure, learning environment

Procedia PDF Downloads 49
3868 Finding Viable Pollution Routes in an Urban Network under a Predefined Cost

Authors: Dimitra Alexiou, Stefanos Katsavounis, Ria Kalfakakou

Abstract:

In an urban area the determination of transportation routes should be planned so as to minimize the provoked pollution taking into account the cost of such routes. In the sequel these routes are cited as pollution routes. The transportation network is expressed by a weighted graph G= (V, E, D, P) where every vertex represents a location to be served and E contains unordered pairs (edges) of elements in V that indicate a simple road. The distances/cost and a weight that depict the provoked air pollution by a vehicle transition at every road are assigned to each road as well. These are the items of set D and P respectively. Furthermore the investigated pollution routes must not exceed predefined corresponding values concerning the route cost and the route pollution level during the vehicle transition. In this paper we present an algorithm that generates such routes in order that the decision maker selects the most appropriate one.

Keywords: bi-criteria, pollution, shortest paths, computation

Procedia PDF Downloads 374