Search results for: visual go/no go discrimination
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2528

Search results for: visual go/no go discrimination

1358 Caste of Women: An Inquiry into the Differences in Inter-Caste Marriages in an Adivasi Samaj

Authors: Dhiraj Kumar

Abstract:

The paper attempts to argue that the regulation of the rural lower caste woman’s life-world is at the core of the reproduction of hierarchy in an Adivasi samaj (society). It has been established in studies on caste and Adivasi that the two societies are distinct and operate through different structures, norms, rituals, beliefs, etc. This is as opposed to the colonial and certain post-independence anthropology in/of India that collapsed the two into single categories for analysis. However, how the two seemingly different social structures affect each other has attracted little attention. The paper is inspired by an action-research at Gadh-Bansla, an Adivasi village in the Kanker district of Chhattisgarh that houses different caste groups – OBCs and SCs, as well as two different Adivasi groups: Gond and Halba. The action-research, taken place across a year, has worked with six families of the different groups present (i.e., Gond, Halba, OBCs, and SCs) in which inter-caste marriages have taken place. Through in-depth interviews and free association discussions with these six families, the paper presents the ways in which the samaj and caste society have interacted. It has been observed that there is a difference in treatment in marriages between a lower caste woman marrying into an upper caste or Halba household, and an upper caste or Halba woman marrying into a lower caste household. While the upper caste woman is easily accepted into the Adivasi samaj and the husband’s family, the same does not hold true for the lower caste woman. The lower caste woman has to face humiliation through untouchability, fine on the family, or in some cases excommunication of the couple. The paper concludes with a need to use caste as a central analytic to understand gender discrimination even in Adivasi contexts.

Keywords: caste, Adivasi, Samaj, humiliation, woman

Procedia PDF Downloads 157
1357 Automated 3D Segmentation System for Detecting Tumor and Its Heterogeneity in Patients with High Grade Ovarian Epithelial Cancer

Authors: Dimitrios Binas, Marianna Konidari, Charis Bourgioti, Lia Angela Moulopoulou, Theodore Economopoulos, George Matsopoulos

Abstract:

High grade ovarian epithelial cancer (OEC) is fatal gynecological cancer and the poor prognosis of this entity is closely related to considerable intratumoral genetic heterogeneity. By examining imaging data, it is possible to assess the heterogeneity of tumorous tissue. This study proposes a methodology for aligning, segmenting and finally visualizing information from various magnetic resonance imaging series in order to construct 3D models of heterogeneity maps from the same tumor in OEC patients. The proposed system may be used as an adjunct digital tool by health professionals for personalized medicine, as it allows for an easy visual assessment of the heterogeneity of the examined tumor.

Keywords: image segmentation, ovarian epithelial cancer, quantitative characteristics, image registration, tumor visualization

Procedia PDF Downloads 211
1356 The Boundary Element Method in Excel for Teaching Vector Calculus and Simulation

Authors: Stephen Kirkup

Abstract:

This paper discusses the implementation of the boundary element method (BEM) on an Excel spreadsheet and how it can be used in teaching vector calculus and simulation. There are two separate spreadheets, within which Laplace equation is solved by the BEM in two dimensions (LIBEM2) and axisymmetric three dimensions (LBEMA). The main algorithms are implemented in the associated programming language within Excel, Visual Basic for Applications (VBA). The BEM only requires a boundary mesh and hence it is a relatively accessible method. The BEM in the open spreadsheet environment is demonstrated as being useful as an aid to teaching and learning. The application of the BEM implemented on a spreadsheet for educational purposes in introductory vector calculus and simulation is explored. The development of assignment work is discussed, and sample results from student work are given. The spreadsheets were found to be useful tools in developing the students’ understanding of vector calculus and in simulating heat conduction.

Keywords: boundary element method, Laplace’s equation, vector calculus, simulation, education

Procedia PDF Downloads 163
1355 MIOM: A Mixed-Initiative Operational Model for Robots in Urban Search and Rescue

Authors: Mario Gianni, Federico Nardi, Federico Ferri, Filippo Cantucci, Manuel A. Ruiz Garcia, Karthik Pushparaj, Fiora Pirri

Abstract:

In this paper, we describe a Mixed-Initiative Operational Model (MIOM) which directly intervenes on the state of the functionalities embedded into a robot for Urban Search&Rescue (USAR) domain applications. MIOM extends the reasoning capabilities of the vehicle, i.e. mapping, path planning, visual perception and trajectory tracking, with operator knowledge. Especially in USAR scenarios, this coupled initiative has the main advantage of enhancing the overall performance of a rescue mission. In-field experiments with rescue responders have been carried out to evaluate the effectiveness of this operational model.

Keywords: mixed-initiative planning and control, operator control interfaces for rescue robotics, situation awareness, urban search, rescue robotics

Procedia PDF Downloads 374
1354 NANCY: Combining Adversarial Networks with Cycle-Consistency for Robust Multi-Modal Image Registration

Authors: Mirjana Ruppel, Rajendra Persad, Amit Bahl, Sanja Dogramadzi, Chris Melhuish, Lyndon Smith

Abstract:

Multimodal image registration is a profoundly complex task which is why deep learning has been used widely to address it in recent years. However, two main challenges remain: Firstly, the lack of ground truth data calls for an unsupervised learning approach, which leads to the second challenge of defining a feasible loss function that can compare two images of different modalities to judge their level of alignment. To avoid this issue altogether we implement a generative adversarial network consisting of two registration networks GAB, GBA and two discrimination networks DA, DB connected by spatial transformation layers. GAB learns to generate a deformation field which registers an image of the modality B to an image of the modality A. To do that, it uses the feedback of the discriminator DB which is learning to judge the quality of alignment of the registered image B. GBA and DA learn a mapping from modality A to modality B. Additionally, a cycle-consistency loss is implemented. For this, both registration networks are employed twice, therefore resulting in images ˆA, ˆB which were registered to ˜B, ˜A which were registered to the initial image pair A, B. Thus the resulting and initial images of the same modality can be easily compared. A dataset of liver CT and MRI was used to evaluate the quality of our approach and to compare it against learning and non-learning based registration algorithms. Our approach leads to dice scores of up to 0.80 ± 0.01 and is therefore comparable to and slightly more successful than algorithms like SimpleElastix and VoxelMorph.

Keywords: cycle consistency, deformable multimodal image registration, deep learning, GAN

Procedia PDF Downloads 131
1353 Artificial Intelligence Based Abnormality Detection System and Real Valuᵀᴹ Product Design

Authors: Junbeom Lee, Jaehyuck Cho, Wookyeong Jeong, Jonghan Won, Jungmin Hwang, Youngseok Song, Taikyeong Jeong

Abstract:

This paper investigates and analyzes meta-learning technologies that use multiple-cameras to monitor and check abnormal behavior in people in real-time in the area of healthcare fields. Advances in artificial intelligence and computer vision technologies have confirmed that cameras can be useful for individual health monitoring and abnormal behavior detection. Through this, it is possible to establish a system that can respond early by automatically detecting abnormal behavior of the elderly, such as patients and the elderly. In this paper, we use a technique called meta-learning to analyze image data collected from cameras and develop a commercial product to determine abnormal behavior. Meta-learning applies machine learning algorithms to help systems learn and adapt quickly to new real data. Through this, the accuracy and reliability of the abnormal behavior discrimination system can be improved. In addition, this study proposes a meta-learning-based abnormal behavior detection system that includes steps such as data collection and preprocessing, feature extraction and selection, and classification model development. Various healthcare scenarios and experiments analyze the performance of the proposed system and demonstrate excellence compared to other existing methods. Through this study, we present the possibility that camera-based meta-learning technology can be useful for monitoring and testing abnormal behavior in the healthcare area.

Keywords: artificial intelligence, abnormal behavior, early detection, health monitoring

Procedia PDF Downloads 86
1352 Study of Icons in Enterprise Application Software Context

Authors: Shiva Subhedar, Abhishek Jain, Shivin Mittal

Abstract:

Icons are not merely decorative elements in enterprise applications but very often used because of their many advantages such as compactness, visual appeal, etc. Despite these potential advantages, icons often cause usability problems when they are designed without consideration for their many potential downsides. The aim of the current study was to examine the effect of articulatory distance – the distance between the physical appearance of an interface element and what it actually means. In other words, will the subject find the association of the function and its appearance on the interface natural or is the icon difficult for them to associate with its function. We have calculated response time and quality of identification by varying icon concreteness, the context of usage and subject experience in the enterprise context. The subjects were asked to associate icons (prepared for study purpose) with given function options in context and out of context mode. Response time and their selection were recorded for analysis.

Keywords: HCI, icons, icon concreteness, icon recognition

Procedia PDF Downloads 258
1351 Effects of Coastal Structure Construction on Ecosystem

Authors: Afshin Jahangirzadeh, Shatirah Akib, Keyvan Kimiaei, Hossein Basser

Abstract:

Coastal defense structures were built to protect part of shore from beach erosion and flooding by sea water. Effects of coastal defense structures can be negative or positive. Some of the effects are beneficial in socioeconomic aspect, but environment matters should be given more concerns because it can bring bad consequences to the earth landscape and make the ecosystem be unbalanced. This study concerns on the negative impacts as they are dominant. Coastal structures can extremely impact the shoreline configuration. Artificial structures can influence sediment transport, split the coastal space, etc. This can result in habitats loss and lead to noise and visual disturbance of birds. There are two types of coastal defense structures, hard coastal structure and soft coastal structure. Both coastal structures have their own impacts. The impacts are induced during the construction, maintaining, and operation of the structures.

Keywords: ecosystem, environmental impact, hard coastal structures, soft coastal structures

Procedia PDF Downloads 485
1350 Analysis of Expression Data Using Unsupervised Techniques

Authors: M. A. I Perera, C. R. Wijesinghe, A. R. Weerasinghe

Abstract:

his study was conducted to review and identify the unsupervised techniques that can be employed to analyze gene expression data in order to identify better subtypes of tumors. Identifying subtypes of cancer help in improving the efficacy and reducing the toxicity of the treatments by identifying clues to find target therapeutics. Process of gene expression data analysis described under three steps as preprocessing, clustering, and cluster validation. Feature selection is important since the genomic data are high dimensional with a large number of features compared to samples. Hierarchical clustering and K Means are often used in the analysis of gene expression data. There are several cluster validation techniques used in validating the clusters. Heatmaps are an effective external validation method that allows comparing the identified classes with clinical variables and visual analysis of the classes.

Keywords: cancer subtypes, gene expression data analysis, clustering, cluster validation

Procedia PDF Downloads 149
1349 Machine Learning Classification of Fused Sentinel-1 and Sentinel-2 Image Data Towards Mapping Fruit Plantations in Highly Heterogenous Landscapes

Authors: Yingisani Chabalala, Elhadi Adam, Khalid Adem Ali

Abstract:

Mapping smallholder fruit plantations using optical data is challenging due to morphological landscape heterogeneity and crop types having overlapped spectral signatures. Furthermore, cloud covers limit the use of optical sensing, especially in subtropical climates where they are persistent. This research assessed the effectiveness of Sentinel-1 (S1) and Sentinel-2 (S2) data for mapping fruit trees and co-existing land-use types by using support vector machine (SVM) and random forest (RF) classifiers independently. These classifiers were also applied to fused data from the two sensors. Feature ranks were extracted using the RF mean decrease accuracy (MDA) and forward variable selection (FVS) to identify optimal spectral windows to classify fruit trees. Based on RF MDA and FVS, the SVM classifier resulted in relatively high classification accuracy with overall accuracy (OA) = 0.91.6% and kappa coefficient = 0.91% when applied to the fused satellite data. Application of SVM to S1, S2, S2 selected variables and S1S2 fusion independently produced OA = 27.64, Kappa coefficient = 0.13%; OA= 87%, Kappa coefficient = 86.89%; OA = 69.33, Kappa coefficient = 69. %; OA = 87.01%, Kappa coefficient = 87%, respectively. Results also indicated that the optimal spectral bands for fruit tree mapping are green (B3) and SWIR_2 (B10) for S2, whereas for S1, the vertical-horizontal (VH) polarization band. Including the textural metrics from the VV channel improved crop discrimination and co-existing land use cover types. The fusion approach proved robust and well-suited for accurate smallholder fruit plantation mapping.

Keywords: smallholder agriculture, fruit trees, data fusion, precision agriculture

Procedia PDF Downloads 54
1348 Instance Segmentation of Wildfire Smoke Plumes using Mask-RCNN

Authors: Jamison Duckworth, Shankarachary Ragi

Abstract:

Detection and segmentation of wildfire smoke plumes from remote sensing imagery are being pursued as a solution for early fire detection and response. Smoke plume detection can be automated and made robust by the application of artificial intelligence methods. Specifically, in this study, the deep learning approach Mask Region-based Convolutional Neural Network (RCNN) is being proposed to learn smoke patterns across different spectral bands. This method is proposed to separate the smoke regions from the background and return masks placed over the smoke plumes. Multispectral data was acquired using NASA’s Earthdata and WorldView and services and satellite imagery. Due to the use of multispectral bands along with the three visual bands, we show that Mask R-CNN can be applied to distinguish smoke plumes from clouds and other landscape features that resemble smoke.

Keywords: deep learning, mask-RCNN, smoke plumes, spectral bands

Procedia PDF Downloads 127
1347 Developing an Instrument to Measure Teachers’ Self-Efficacy of Teaching Innovation Skills

Authors: Huda S. Al-Azmi

Abstract:

There is a growing consensus that adoption of teachers’ self-efficacy measurement tools help to assess teachers’ abilities in specific areas in order to improve their skills. As a result, different instruments to assess teachers’ ability were developed by academics and practitioners. However, many of these instruments focused either on general teaching skills, or on the other hand, were very specific to one subject. As such, these instruments do not offer a tool to measure the ability of teachers in teaching 21st century skills such as innovation skills. Teaching innovation skills helps to prepare students for lives and careers in the 21st century. The purpose of this study is to develop an instrument measuring teachers’ self-efficacy of teaching innovation skills related to the classroom context and evaluating the teachers’ beliefs regarding their ability in teaching innovation skills. To reach this goal, the 16-item instrument measures four dimensions of innovation skills: creativity, critical thinking, communication, and collaboration. 211 secondary-school teachers filled out the survey to quantitatively analyze the quality of the instrument. The instrument’s reliability and item analysis were measured by using jMetrik. The results concluded that the mean of self-efficacy ranged from 3 to 3.6 without extreme high or low self-efficacy scores. The discrimination analysis revealed that one item recorded a negative correlation with the total, and three items recorded low correlation with the total. The reliabilities of items ranged from 0.64 to 0.69 and the instrument needed a couple of revisions before practical use. The study concluded the need to discard one item and revise five items to increase the quality of the instrument for future work.

Keywords: critical thinking, collaboration, innovation skills, self-efficacy

Procedia PDF Downloads 214
1346 Advanced Concrete Crack Detection Using Light-Weight MobileNetV2 Neural Network

Authors: Li Hui, Riyadh Hindi

Abstract:

Concrete structures frequently suffer from crack formation, a critical issue that can significantly reduce their lifespan by allowing damaging agents to enter. Traditional methods of crack detection depend on manual visual inspections, which heavily relies on the experience and expertise of inspectors using tools. In this study, a more efficient, computer vision-based approach is introduced by using the lightweight MobileNetV2 neural network. A dataset of 40,000 images was used to develop a specialized crack evaluation algorithm. The analysis indicates that MobileNetV2 matches the accuracy of traditional CNN methods but is more efficient due to its smaller size, making it well-suited for mobile device applications. The effectiveness and reliability of this new method were validated through experimental testing, highlighting its potential as an automated solution for crack detection in concrete structures.

Keywords: Concrete crack, computer vision, deep learning, MobileNetV2 neural network

Procedia PDF Downloads 66
1345 Exploring the Effectiveness of Robotic Companions Through the Use of Symbiotic Autonomous Plant Care Robots

Authors: Angelos Kaminis, Dakotah Stirnweis

Abstract:

Advances in robotic technology have driven the development of improved robotic companions in the last couple decades. However, commercially available robotic companions lack the ability to create an emotional connection with their user. By developing a companion robot that has a symbiotic relationship with a plant, an element of co-dependency is introduced into the human companion robot dynamic. This companion robot, while theoretically capable of providing most of the plant’s needs, still requires human interaction for watering, moving obstacles, and solar panel cleaning. To facilitate the interaction between human and robot, the robot is capable of limited auditory and visual communication to help express its and the plant’s needs. This paper seeks to fully describe the Autonomous Plant Care Robot system and its symbiotic relationship with its botanical ward and the plant and robot’s dependent relationship with their owner.

Keywords: symbiotic, robotics, autonomous, plant-care, companion

Procedia PDF Downloads 144
1344 Global Peace and Security: The Role of International Peace and Security Organizations and the Need for Institutional and Operational Reforms

Authors: Saint C. Nguedjip

Abstract:

This paper is an analytical review a set of 20 literatures as required by the assignment prompt. The review centers on global peace and security. What role do international organizations play in global peace and security? The review centers around three main points. First, I examine global peace and security impacts on global governance. Secondly, it highlights the role traditional international community and security organizations such as the United Nations (UN), the North Atlantic Treaty Organization (NATO), and others play in providing the globe with peace and collective security. Third, it suggests a way forward as those institutions seek betterment and improvement. The review begins by defining some concepts and addressing the ambivalent meaning of peace and war. Scholars and researchers have conducted extensive research on the importance of international organizations. Yet, there is still a lot to consider if betterment and improvement are on the agenda. The review will shed light on the failures and challenges that these organizations. Those challenges are continuously undermining peacebuilding and peacekeeping actions of a great number among those institutions created with an ultimate mission of keeping the world order organized and coordinated for peace and security regardless of differences, cultures, and backgrounds. Women face violence on a daily basis, while racism and discrimination cause klm; ]]];inflammations worldwide. The chaotic situation in Ukraine is a wake-up call on scholarship and practitioners alike to come up with suggestions as well as recommendations that help mitigate insecurity while promoting peace and security, not only for Ukrainians but also for all countries facing wars and others issues. This paper will point the audience toward the right direction.

Keywords: security, peace, global governance, global peace and security, peacekeeping, international organizations, human rights, multilateralism, and unilateralism, gender, women

Procedia PDF Downloads 104
1343 LED Lighting Interviews and Assessment in Forest Machines

Authors: Rauno Pääkkönen, Fabriziomaria Gobba, Leena Korpinen

Abstract:

The objective of the study is to assess the implementation of LED lighting into forest machine work in the dark. In addition, the paper includes a wide variety of important and relevant safety and health parameters. In modern, computerized work in the cab of forest machines, artificial illumination is a demanding task when performing duties, such as the visual inspections of wood and computer calculations. We interviewed entrepreneurs and gathered the following as the most pertinent themes: (1) safety, (2) practical problems, and (3) work with LED lighting. The most important comments were in regards to the practical problems of LED lighting. We found indications of technical problems in implementing LED lighting, like snow and dirt on the surfaces of lamps that dim the emission of light. Moreover, service work in the dark forest is dangerous and increases the risks of on-site accidents. We also concluded that the amount of blue light to the eyes should be assessed, especially, when the drivers are working in a semi-dark cab.

Keywords: forest machines, health, LED, safety

Procedia PDF Downloads 430
1342 Egalitarianism and Social Stratification: An Overview of the Caste System among the Southern Muslims of Sri Lanka

Authors: Mohamed Faslan

Abstract:

This paper describes how caste-based differentiation functions among the Southern Muslims of Sri Lanka despite Islamic egalitarian principles. Such differences are not promoted by religious teachings, mosques, or the various Islamic religious denominations. Instead, it underpins a hereditary, hierarchical stratification in social structure. Since Islam is against social stratification and promotes egalitarianism, what are the persuasive social structures that organize the existing caste system among Southern Muslims? To answer this puzzle, this paper discusses and analyses the caste system under these five subsections: ancestry; marriage; geography; mosque ownership or trustees; and occupation. The study of caste in Sri Lanka is generally compartmentalized into separate Sinhala and Tamil systems. Most caste studies have focused on the characteristics, upward mobility, or discrimination of specific castes in relation to other castes within ethnic systems. As an operational definition, in this paper, by “southern” or the south of Sri Lanka, I refer to the Kalutara, Galle and Matara Districts. This research was conducted in these three districts, and the respondents were selected purposively. Community history interviews were used as a tool for collecting information, and grounded theory used for analysis. Caste stratification among the Southern Muslims of Sri Lanka is directly connected to whether they are descended from Arab or South Indian ancestors. Arab ancestors are considered upper caste and South Indian ancestors are considered lower caste. Endogamy is the most serious driving factor keeping caste system functioning among Muslims while the other factors—geography, mosques, and occupations—work as supporting factors.

Keywords: caste, social stratification, Sri Lanka Muslims, endogamy

Procedia PDF Downloads 173
1341 Automatic Seizure Detection Using Weighted Permutation Entropy and Support Vector Machine

Authors: Noha Seddik, Sherine Youssef, Mohamed Kholeif

Abstract:

The automated epileptic seizure detection research field has emerged in the recent years; this involves analyzing the Electroencephalogram (EEG) signals instead of the traditional visual inspection performed by expert neurologists. In this study, a Support Vector Machine (SVM) that uses Weighted Permutation Entropy (WPE) as the input feature is proposed for classifying normal and seizure EEG records. WPE is a modified statistical parameter of the permutation entropy (PE) that measures the complexity and irregularity of a time series. It incorporates both the mapped ordinal pattern of the time series and the information contained in the amplitude of its sample points. The proposed system utilizes the fact that entropy based measures for the EEG segments during epileptic seizure are lower than in normal EEG.

Keywords: electroencephalogram (EEG), epileptic seizure detection, weighted permutation entropy (WPE), support vector machine (SVM)

Procedia PDF Downloads 371
1340 BlueVision: A Visual Tool for Exploring a Blockchain Network

Authors: Jett Black, Jordyn Godsey, Gaby G. Dagher, Steve Cutchin

Abstract:

Despite the growing interest in distributed ledger technology, many data visualizations of blockchain are limited to monotonous tabular displays or overly abstract graphical representations that fail to adequately educate individuals on blockchain components and their functionalities. To address these limitations, it is imperative to develop data visualizations that offer not only comprehensive insights into these domains but education as well. This research focuses on providing a conceptual understanding of the consensus process that underlies blockchain technology. This is accomplished through the implementation of a dynamic network visualization and an interactive educational tool called BlueVision. Further, a controlled user study is conducted to measure the effectiveness and usability of BlueVision. The findings demonstrate that the tool represents significant advancements in the field of blockchain visualization, effectively catering to the educational needs of both novice and proficient users.

Keywords: blockchain, visualization, consensus, distributed network

Procedia PDF Downloads 62
1339 Identifying Strategies for Improving Railway Services in Bangladesh

Authors: Armana Sabiha Huq, Tahmina Rahman Chowdhury

Abstract:

In this paper, based on the stated preference experiment, the service quality of Bangladesh Railway has been assessed, and particular importance has been given to investigate if there exists a relationship between service quality and safety. For investigation purposes, environmental and organizational factors were assumed to determine the safety performance of the railway. Data collected from the survey has been analyzed by importance-performance analysis (IPA). In this paper, a modification of the well-known importance-performance analysis (IPA) has been done by adopting the importance of the weights determined through a structural equation modeling (SEM) approach and by plotting the gap between importance and performance on a visual graph. It has been found that there exists a relationship between safety and serviceability to some extent. Limited resources are an important factor to improve the safety and serviceability condition of the BD railway. Moreover, it is observed that the limited resources available to monitor and improve the safety performance of railway.

Keywords: importance-performance analysis, GAP-IPA, SEM, serviceability, safety, factor analysis

Procedia PDF Downloads 140
1338 Investigating the Factors Affecting Generalization of Deep Learning Models for Plant Disease Detection

Authors: Praveen S. Muthukumarana, Achala C. Aponso

Abstract:

A large percentage of global crop harvest is lost due to crop diseases. Timely identification and treatment of crop diseases is difficult in many developing nations due to insufficient trained professionals in the field of agriculture. Many crop diseases can be accurately diagnosed by visual symptoms. In the past decade, deep learning has been successfully utilized in domains such as healthcare but adoption in agriculture for plant disease detection is rare. The literature shows that models trained with popular datasets such as PlantVillage does not generalize well on real world images. This paper attempts to find out how to make plant disease identification models that generalize well with real world images.

Keywords: agriculture, convolutional neural network, deep learning, plant disease classification, plant disease detection, plant disease diagnosis

Procedia PDF Downloads 145
1337 A New and Simple Method of Plotting Binocular Single Vision Field (BSVF) using the Cervical Range of Motion - CROM - Device

Authors: Mihir Kothari, Heena Khan, Vivek Rathod

Abstract:

Assessment of binocular single vision field (BSVF) is traditionally done using a Goldmann perimeter. The measurement of BSVF is important for the management of incomitant strabismus, viz. orbital fractures, thyroid orbitopathy, oculomotor cranial nerve palsies, Duane syndrome etc. In this paper, we describe a new technique for measuring BSVF using a CROM device. Goldmann perimeter is very bulky and expensive (Euro 5000.00 or more) instrument which is 'almost' obsolete from the contemporary ophthalmology practice. Whereas, CROM can be easily made in the DIY (do it yourself) manner for the fraction of the price of the perimeter (only Euro 15.00). Moreover, CROM is useful for the accurate measurement of ocular torticollis vis. nystagmus, paralytic or incomitant squint etc, and it is highly portable.

Keywords: binocular single vision, perimetry, cervical rgen of motion, visual field, binocular single vision field

Procedia PDF Downloads 66
1336 An Unusual Occurrence: Typhoid Retinitis with Kyrieleis' Vasculitis

Authors: Aditya Sethi, Vaibhav Sethi, Shenouda Girgis

Abstract:

We present a case of a 31-year-old female who presented with a three week history of left eye blurry vision following a fever. She was diagnosed with Typhoid fever, confirmed by a positive Widal test report. On examination, her best corrected visual acuity in the right eye was 20/20 and in the left eye was 20/60. Fundus examination of the right eye showed a focal area of retinitis with retinal haemorrhages along the superior arcade within the macula. There was also focal area of retinitis with superficial retinal haemorrhages along the superior arcade vessels. There was also presence of multiple yellowish white exudates within the adjacent retinal artery arranged in a beaded pattern, suggestive of Kyrieleis' vasculitis. Optical Coherence Tomography (OCT) of the left eye demonstrated cystoid macula edema with serous foveal detachment.

Keywords: typhoid retinitis, Kyrieleis’ vasculitis, immune-mediated retinitis, post-fever retinitis, typhoid retinopathy, retinitis

Procedia PDF Downloads 178
1335 Muscle: The Tactile Texture Designed for the Blind

Authors: Chantana Insra

Abstract:

The research objective focuses on creating a prototype media of the tactile texture of muscles for educational institutes to help visually impaired students learn massage extra learning materials further than the ordinary curriculum. This media is designed as an extra learning material. The population in this study was 30 blinded students between 4th - 6th grades who were able to read Braille language. The research was conducted during the second semester in 2012 at The Bangkok School for the Blind. The method in choosing the population in the study was purposive sampling. The methodology of the research includes collecting data related to visually impaired people, the production of the tactile texture media, human anatomy and Thai traditional massage from literature reviews and field studies. This information was used for analyzing and designing 14 tactile texture pictures presented to experts to evaluate and test the media.

Keywords: blind, tactile texture, muscle, visual arts and design

Procedia PDF Downloads 269
1334 Under-Reporting and Under-Recording of Hate Crimes against Muslim Women in Italy

Authors: Broccolo Cinzia, Grigaliunaite Ruta, Saint-Nom Cloé, Savasta Guido

Abstract:

The present article analyses the root causes of under-reporting and under-recording of hate crimes against Muslim women in Italy. The main findings emerged from the survey conducted between May and September 2022 within the framework of the TRUST project (co-funded by the CERV programme (CERV-2021-EQUAL) of the European Union) with relevant practitioners and members of the Muslim community, including first-generation and second-generation Muslim women residing in Italy. The findings reveal that multiple factors contribute to the low reporting rate as well as to the flaws in recording episodes of intolerance and hatred against the above-mentioned group. Lack of trust in the judiciary or the police may represent one of the main causes of under-reporting; however, the phenomenon is not limited to such aspects, and additional factors and sources of discrimination paving the way to under-recording have been identified during the survey. The significant “tendency” to not report a case of intolerance as the difficulties in identifying the discriminatory nature of the crime are two faces of the same coin and are particularly intertwined; despite this, at first, both issues need to be assessed and analysed separately in order to take their own specificities into duly consideration. By contrast, the potential solution to low recording and reporting trends should be found collectively, namely by involving all the relevant parties and bodies facing the above-mentioned issues. In this regard, a participatory and multi-agency approach may curb the root causes leading Muslim women not to report and, besides this, support law enforcement officials as well as public authorities in providing a more effective service to the victims of hatred, whether offline or online.

Keywords: hate crime, under-reporting, under-recording, Islamophobia, Muslim women

Procedia PDF Downloads 106
1333 Policy Brief/Note of Philippine Health Issues: Human Rights Violations Committed on Healthcare Workers

Authors: Trina Isabel Santiago, Daniel Chua, Jumee Tayaban, Joseph Daniel Timbol, Joshua Yanes

Abstract:

Numerous instances of human rights violations on healthcare workers have been reported during the COVID-19 pandemic in the Philippines. This brief aims to explore these civil and political rights violations and propose recommendations to address these. Our review shows that a wide range of civic and political human rights violations have been committed by individual citizens and government agencies on individual healthcare workers and health worker groups. These violations include discrimination, red-tagging, evictions, illegal arrests, and acts of violence ranging from chemical attacks to homicide. If left unchecked, these issues, compounded by the pandemic, may lead to the exacerbations of the pre-existing problems of the Philippine healthcare system. Despite all pre-existing reports by human rights groups and public media articles, there still seems to be a lack of government action to condemn and prevent these violations. The existence of government agencies which directly contribute to these violations with the lack of condemnation from other agencies further propagate the problem. Given these issues, this policy brief recommends the establishment of an interagency task force for the protection of human rights of healthcare workers as well as the expedited passing of current legislative bills towards the same goal. For more immediate action, we call for the establishment of a dedicated hotline for these incidents with adequate appointment and training of point persons, construction of clear guidelines, and closer collaboration between government agencies in being united against these issues.

Keywords: human rights violations, healthcare workers, COVID-19 pandemic, Philippines

Procedia PDF Downloads 629
1332 Virtual Reality as a Method in Transformative Learning: A Strategy to Reduce Implicit Bias

Authors: Cory A. Logston

Abstract:

It is imperative researchers continue to explore every transformative strategy to increase empathy and awareness of racial bias. Racism is a social and political concept that uses stereotypical ideology to highlight racial inequities. Everyone has biases they may not be aware of toward disparate out-groups. There is some form of racism in every profession; doctors, lawyers, and teachers are not immune. There have been numerous successful and unsuccessful strategies to motivate and transform an individual’s unconscious biased attitudes. One method designed to induce a transformative experience and identify implicit bias is virtual reality (VR). VR is a technology designed to transport the user to a three-dimensional environment. In a virtual reality simulation, the viewer is immersed in a realistic interactive video taking on the perspective of a Black man. The viewer as the character experiences discrimination in various life circumstances growing up as a child into adulthood. For instance, the prejudice felt in school, as an adolescent encountering the police and false accusations in the workplace. Current research suggests that an immersive VR simulation can enhance self-awareness and become a transformative learning experience. This study uses virtual reality immersion and transformative learning theory to create empathy and identify any unintentional racial bias. Participants, White teachers, will experience a VR immersion to create awareness and identify implicit biases regarding Black students. The desired outcome provides a springboard to reconceptualize their own implicit bias. Virtual reality is gaining traction in the research world and promises to be an effective tool in the transformative learning process.

Keywords: empathy, implicit bias, transformative learning, virtual reality

Procedia PDF Downloads 194
1331 Audio-Visual Co-Data Processing Pipeline

Authors: Rita Chattopadhyay, Vivek Anand Thoutam

Abstract:

Speech is the most acceptable means of communication where we can quickly exchange our feelings and thoughts. Quite often, people can communicate orally but cannot interact or work with computers or devices. It’s easy and quick to give speech commands than typing commands to computers. In the same way, it’s easy listening to audio played from a device than extract output from computers or devices. Especially with Robotics being an emerging market with applications in warehouses, the hospitality industry, consumer electronics, assistive technology, etc., speech-based human-machine interaction is emerging as a lucrative feature for robot manufacturers. Considering this factor, the objective of this paper is to design the “Audio-Visual Co-Data Processing Pipeline.” This pipeline is an integrated version of Automatic speech recognition, a Natural language model for text understanding, object detection, and text-to-speech modules. There are many Deep Learning models for each type of the modules mentioned above, but OpenVINO Model Zoo models are used because the OpenVINO toolkit covers both computer vision and non-computer vision workloads across Intel hardware and maximizes performance, and accelerates application development. A speech command is given as input that has information about target objects to be detected and start and end times to extract the required interval from the video. Speech is converted to text using the Automatic speech recognition QuartzNet model. The summary is extracted from text using a natural language model Generative Pre-Trained Transformer-3 (GPT-3). Based on the summary, essential frames from the video are extracted, and the You Only Look Once (YOLO) object detection model detects You Only Look Once (YOLO) objects on these extracted frames. Frame numbers that have target objects (specified objects in the speech command) are saved as text. Finally, this text (frame numbers) is converted to speech using text to speech model and will be played from the device. This project is developed for 80 You Only Look Once (YOLO) labels, and the user can extract frames based on only one or two target labels. This pipeline can be extended for more than two target labels easily by making appropriate changes in the object detection module. This project is developed for four different speech command formats by including sample examples in the prompt used by Generative Pre-Trained Transformer-3 (GPT-3) model. Based on user preference, one can come up with a new speech command format by including some examples of the respective format in the prompt used by the Generative Pre-Trained Transformer-3 (GPT-3) model. This pipeline can be used in many projects like human-machine interface, human-robot interaction, and surveillance through speech commands. All object detection projects can be upgraded using this pipeline so that one can give speech commands and output is played from the device.

Keywords: OpenVINO, automatic speech recognition, natural language processing, object detection, text to speech

Procedia PDF Downloads 80
1330 Markov Random Field-Based Segmentation Algorithm for Detection of Land Cover Changes Using Uninhabited Aerial Vehicle Synthetic Aperture Radar Polarimetric Images

Authors: Mehrnoosh Omati, Mahmod Reza Sahebi

Abstract:

The information on land use/land cover changing plays an essential role for environmental assessment, planning and management in regional development. Remotely sensed imagery is widely used for providing information in many change detection applications. Polarimetric Synthetic aperture radar (PolSAR) image, with the discrimination capability between different scattering mechanisms, is a powerful tool for environmental monitoring applications. This paper proposes a new boundary-based segmentation algorithm as a fundamental step for land cover change detection. In this method, first, two PolSAR images are segmented using integration of marker-controlled watershed algorithm and coupled Markov random field (MRF). Then, object-based classification is performed to determine changed/no changed image objects. Compared with pixel-based support vector machine (SVM) classifier, this novel segmentation algorithm significantly reduces the speckle effect in PolSAR images and improves the accuracy of binary classification in object-based level. The experimental results on Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) polarimetric images show a 3% and 6% improvement in overall accuracy and kappa coefficient, respectively. Also, the proposed method can correctly distinguish homogeneous image parcels.

Keywords: coupled Markov random field (MRF), environment, object-based analysis, polarimetric SAR (PolSAR) images

Procedia PDF Downloads 218
1329 Future Prospects of Female Journalists in Mass Media of Bangladesh

Authors: M. Nurus Safa, Jiang Jinzhang, Akter Tahera

Abstract:

This study explores the female are overcoming the odds and doing well as journalist during the last decade in Bangladesh. Female journalists are contributing to the society for economic prosperity and changing the attitude towards the development concept and process. But the path is not smooth for involving women in journalism. The findings are female journalist facing many barriers like family pressure, Society problem, pay-allowances, gender discrimination, sexual harassment and even lack of workplace. According to their skill and merit, they face problems in getting maternity leave and assignments. But their role in this sector cannot be neglected. It is possible to survive if have the passion, professionalism, and love on this profession. Day by day, the female participation in journalism sector is increasing in Bangladesh. Despite the barriers, female journalists are showing strong interest in journalism as a career. As much gender balance in Mass media as the women's freedom and scope will increase. As a result, the spread of female’s workplace in the media will spread. Good number of female journalists is working in different policy making positions of the organization. In future, experienced female journalists will be more because now day's they taking challenges and working religiously according to the company and public need. In recent time Bangladesh is encouraging her women to work outside of home. Currently, a significant change has come into the social attitude which represents by women’s advancement in journalism sector of Bangladesh. This study uses the survey method and 6 depth interview to find out a fruitful result. As a sampling, the study uses purposive sampling technique to collect the data from the 120 female respondents of television, online and print media journalists.

Keywords: attitude, Bangladesh, challenges, female journalists, prospects

Procedia PDF Downloads 217