Search results for: statistical machine learning
10883 Statistical Analysis of the Impact of Maritime Transport Gross Domestic Product (GDP) on Nigeria’s Economy
Authors: Kehinde Peter Oyeduntan, Kayode Oshinubi
Abstract:
Nigeria is referred as the ‘Giant of Africa’ due to high population, land mass and large economy. However, it still trails far behind many smaller economies in the continent in terms of maritime operations. As we have seen that the maritime industry is the spark plug for national growth, because it houses the most crucial infrastructure that generates wealth for a nation, it is worrisome that a nation with six seaports lag in maritime activities. In this research, we have studied how the Gross Domestic Product (GDP) of the maritime transport influences the Nigerian economy. To do this, we applied Simple Linear Regression (SLR), Support Vector Machine (SVM), Polynomial Regression Model (PRM), Generalized Additive Model (GAM) and Generalized Linear Mixed Model (GLMM) to model the relationship between the nation’s Total GDP (TGDP) and the Maritime Transport GDP (MGDP) using a time series data of 20 years. The result showed that the MGDP is statistically significant to the Nigerian economy. Amongst the statistical tool applied, the PRM of order 4 describes the relationship better when compared to other methods. The recommendations presented in this study will guide policy makers and help improve the economy of Nigeria in terms of its GDP.Keywords: maritime transport, economy, GDP, regression, port
Procedia PDF Downloads 15410882 Research Related to the Academic Learning Stress, Reflected into PubMed Website Publications
Authors: Ramona-Niculina Jurcau, Ioana-Marieta Jurcau, Dong Hun Kwak, Nicolae-Alexandru Colceriu
Abstract:
Background: Academic environment led, in time, to the birth of some research subjects concluded with many publications. One of these issues is related to the learning stress. Thus far, the PubMed website displays an impressive number of papers related to the academic stress. Aims: Through this study, we aimed to evaluate the research concerning academic learning stress (ALS), by a retrospective analysis of PubMed publications. Methods: We evaluated the ALS, considering: a) different keywords as - ‘academic stress’ (AS), ‘academic stressors’ (ASs), ‘academic learning stress’ (ALS), ‘academic student stress’ (ASS), ‘academic stress college’ (ASC), ‘medical academic stress’ (MAS), ‘non-medical academic stress’ (NMAS), ‘student stress’ (SS), ‘nursing student stress’ (NS), ‘college student stress’ (CSS), ‘university student stress’ (USS), ‘medical student stress’ (MSS), ‘dental student stress’ (DSS), ‘non-medical student stress’ (NMSS), ‘learning students stress’ (LSS), ‘medical learning student stress’ (MLSS), ‘non-medical learning student stress’ (NMLSS); b) the year average for decades; c) some selection filters provided by PubMed website: Article types - Journal Article (JA), Clinical Trial (CT), Review (R); Species - Humans (H); Sex - Male (M) and Female (F); Ages - 13-18, 19-24, 19-44. Statistical evaluation was made on the basis of the Student test. Results: There were differences between keywords, referring to all filters. Nevertheless, for all keywords were noted the following: the majority of studies have indicated that subjects were humans; there were no important differences between the number of subjects M and F; the age of participants was mentioned only in some studies, predominating those with teenagers and subjects between 19-24 years. Conclusions: 1) PubMed publications document that concern for the research field of academic stress, lasts for 56 years and was materialized in more than 5.010 papers. 2) Number of publications in the field of academic stress varies depending on the selected keywords: those with a general framing (AS, ASs, ALS, ASS, SS, USS, LSS) are more numerous than those with a specific framing (ASC, MAS, NMAS, NS, CSS, MSS, DSS, NMSS, MLSS, NMLSS); those concerning the academic medical environment (MAS, NS, MSS, DSS, MLSS) prevailed compared to the non-medical environment (NMAS, NMSS, NMLSS). 3) Most of the publications are included at JA, of which a small percentage are CT and R. 4) Most of the academic stress studies were conducted with subjects both M and F, most aged under 19 years and between 19-24 years.Keywords: academic stress, student stress, academic learning stress, medical student stress
Procedia PDF Downloads 56210881 Clustering and Modelling Electricity Conductors from 3D Point Clouds in Complex Real-World Environments
Authors: Rahul Paul, Peter Mctaggart, Luke Skinner
Abstract:
Maintaining public safety and network reliability are the core objectives of all electricity distributors globally. For many electricity distributors, managing vegetation clearances from their above ground assets (poles and conductors) is the most important and costly risk mitigation control employed to meet these objectives. Light Detection And Ranging (LiDAR) is widely used by utilities as a cost-effective method to inspect their spatially-distributed assets at scale, often captured using high powered LiDAR scanners attached to fixed wing or rotary aircraft. The resulting 3D point cloud model is used by these utilities to perform engineering grade measurements that guide the prioritisation of vegetation cutting programs. Advances in computer vision and machine-learning approaches are increasingly applied to increase automation and reduce inspection costs and time; however, real-world LiDAR capture variables (e.g., aircraft speed and height) create complexity, noise, and missing data, reducing the effectiveness of these approaches. This paper proposes a method for identifying each conductor from LiDAR data via clustering methods that can precisely reconstruct conductors in complex real-world configurations in the presence of high levels of noise. It proposes 3D catenary models for individual clusters fitted to the captured LiDAR data points using a least square method. An iterative learning process is used to identify potential conductor models between pole pairs. The proposed method identifies the optimum parameters of the catenary function and then fits the LiDAR points to reconstruct the conductors.Keywords: point cloud, LİDAR data, machine learning, computer vision, catenary curve, vegetation management, utility industry
Procedia PDF Downloads 9910880 Learning Model Applied to Cope with Professional Knowledge Gaps in Final Project of Information System Students
Authors: Ilana Lavy, Rami Rashkovits
Abstract:
In this study, we describe Information Systems students' learning model which was applied by students in order to cope with professional knowledge gaps in the context of their final project. The students needed to implement a software system according to specifications and design they have made beforehand. They had to select certain technologies and use them. Most of them decided to use programming environments that were learned during their academic studies. The students had to cope with various levels of knowledge gaps. For that matter they used learning strategies that were organized by us as a learning model which includes two phases each suitable for different learning tasks. We analyze the learning model, describing advantages and shortcomings as perceived by the students, and provide excerpts to support our findings.Keywords: knowledge gaps, independent learner skills, self-regulated learning, final project
Procedia PDF Downloads 47810879 The Effect of Observational Practice on the Volleyball Service Learning with Emphasis on the Role of Self–Efficacy
Authors: Majed Zobairy, Payam Mohammadpanahi
Abstract:
Introduction: Skill movement education is one of extremely important duty for sport coaches and sport teachers. Researchers have done lots of studies in this filed to gain the best methodology in movement learning. One of the essential aspects in skill movement education is observational learning. Observational learning, or learning by watching demonstrations, has been characterized as one of the most important methods by which people learn variety of skill and behaviours.The purpose of this study was determined the effect of observational practice on the volleyball service learning with emphasis on the Role of Self–Efficacy. Methods: The Sample consisted of100 male students was assigned accessible sampling technique and homogeneous manner with emphasis on the Role of Self–Efficacy level to 4 groups. The first group performed physical training, the second group performed observational practice task, the third practiced physically and observationally and the fourth group served as the control group. The experimental groups practiced in a one day acquisition and performed the retention task, after 72 hours. Kolmogorov-Smirnov test and independent t-test were used for Statistical analyses. Results and Discussion: Results shows that observation practice task group can significantly improve volleyball services skills acquisition (T=7.73). Also mixed group (physically and observationally) is significantly better than control group regarding to volleyball services skills acquisition (T=7.04). Conclusion: Results have shown observation practice task group and mixed group are significantly better than control group in acquisition test. The present results are in line with previous studies, suggesting that observation learning can improve performance. On the other hand, results shows that self-efficacy level significantly effect on acquisition movement skill. In other words, high self-efficacy is important factor in skill learning level in volleyball service.Keywords: observational practice, volleyball service, self–efficacy, sport science
Procedia PDF Downloads 39410878 A Dynamic Ensemble Learning Approach for Online Anomaly Detection in Alibaba Datacenters
Authors: Wanyi Zhu, Xia Ming, Huafeng Wang, Junda Chen, Lu Liu, Jiangwei Jiang, Guohua Liu
Abstract:
Anomaly detection is a first and imperative step needed to respond to unexpected problems and to assure high performance and security in large data center management. This paper presents an online anomaly detection system through an innovative approach of ensemble machine learning and adaptive differentiation algorithms, and applies them to performance data collected from a continuous monitoring system for multi-tier web applications running in Alibaba data centers. We evaluate the effectiveness and efficiency of this algorithm with production traffic data and compare with the traditional anomaly detection approaches such as a static threshold and other deviation-based detection techniques. The experiment results show that our algorithm correctly identifies the unexpected performance variances of any running application, with an acceptable false positive rate. This proposed approach has already been deployed in real-time production environments to enhance the efficiency and stability in daily data center operations.Keywords: Alibaba data centers, anomaly detection, big data computation, dynamic ensemble learning
Procedia PDF Downloads 20110877 A West Coast Estuarine Case Study: A Predictive Approach to Monitor Estuarine Eutrophication
Authors: Vedant Janapaty
Abstract:
Estuaries are wetlands where fresh water from streams mixes with salt water from the sea. Also known as “kidneys of our planet”- they are extremely productive environments that filter pollutants, absorb floods from sea level rise, and shelter a unique ecosystem. However, eutrophication and loss of native species are ailing our wetlands. There is a lack of uniform data collection and sparse research on correlations between satellite data and in situ measurements. Remote sensing (RS) has shown great promise in environmental monitoring. This project attempts to use satellite data and correlate metrics with in situ observations collected at five estuaries. Images for satellite data were processed to calculate 7 bands (SIs) using Python. Average SI values were calculated per month for 23 years. Publicly available data from 6 sites at ELK was used to obtain 10 parameters (OPs). Average OP values were calculated per month for 23 years. Linear correlations between the 7 SIs and 10 OPs were made and found to be inadequate (correlation = 1 to 64%). Fourier transform analysis on 7 SIs was performed. Dominant frequencies and amplitudes were extracted for 7 SIs, and a machine learning(ML) model was trained, validated, and tested for 10 OPs. Better correlations were observed between SIs and OPs, with certain time delays (0, 3, 4, 6 month delay), and ML was again performed. The OPs saw improved R² values in the range of 0.2 to 0.93. This approach can be used to get periodic analyses of overall wetland health with satellite indices. It proves that remote sensing can be used to develop correlations with critical parameters that measure eutrophication in situ data and can be used by practitioners to easily monitor wetland health.Keywords: estuary, remote sensing, machine learning, Fourier transform
Procedia PDF Downloads 10410876 Feasibility Study on Hybrid Multi-Stage Direct-Drive Generator for Large-Scale Wind Turbine
Authors: Jin Uk Han, Hye Won Han, Hyo Lim Kang, Tae An Kim, Seung Ho Han
Abstract:
Direct-drive generators for large-scale wind turbine, which are divided into AFPM(Axial Flux Permanent Magnet) and RFPM(Radial Flux Permanent Magnet) type machine, have attracted interest because of a higher energy density in comparison with gear train type generators. Each type of the machines provides distinguishable geometrical features such as narrow width with a large diameter for the AFPM-type machine and wide width with a certain diameter for the RFPM-type machine. When the AFPM-type machine is applied, an increase of electric power production through a multi-stage arrangement in axial direction is easily achieved. On the other hand, the RFPM-type machine can be applied by using its geometric feature of wide width. In this study, a hybrid two-stage direct-drive generator for 6.2MW class wind turbine was proposed, in which the two-stage AFPM-type machine for 5 MW was composed of two models arranged in axial direction with a hollow shape topology of the rotor with annular disc, the stator and the main shaft mounted on coupled slew bearings. In addition, the RFPM-type machine for 1.2MW was installed at the empty space of the rotor. Analytic results obtained from an electro-magnetic and structural interaction analysis showed that the structural weight of the proposed hybrid two-stage direct-drive generator can be achieved as 155tonf in a condition satisfying the requirements of structural behaviors such as allowable air-gap clearance and strength. Therefore, it was sure that the 6.2MW hybrid two-stage direct-drive generator is competitive than conventional generators. (NRF grant funded by the Korea government MEST, No. 2017R1A2B4005405).Keywords: AFPM-type machine, direct-drive generator, electro-magnetic analysis, large-scale wind turbine, RFPM-type machine
Procedia PDF Downloads 16710875 A Bibliometric Analysis of Research on E-learning in Physics Education: Trends, Patterns, and Future Directions
Authors: Siti Nurjanah, Supahar
Abstract:
E-learning has become an increasingly popular mode of instruction, particularly in the field of physics education, where it offers opportunities for interactive and engaging learning experiences. This research aims to analyze the trends of research that investigated e-learning in physics education. Data was extracted from Scopus's database using the keywords "physics" and "e-learning". Of the 380 articles obtained based on the search criteria, a trend analysis of the research was carried out with the help of RStudio using the biblioshiny package and VosViewer software. Analysis showed that publications on this topic have increased significantly from 2014 to 2021. The publication was dominated by researchers from the United States. The main journal that publishes articles on this topic is Proceedings Frontiers in Education Conference fie. The most widely cited articles generally focus on the effectiveness of Moodle for physics learning. Overall, this research provides an in-depth understanding of the trends and key findings of research related to e-learning in physics.Keywords: bibliometric analysis, physics education, biblioshiny, E-learning
Procedia PDF Downloads 4110874 Presenting Internals of Networks Using Bare Machine Technology
Authors: Joel Weymouth, Ramesh K. Karne, Alexander L. Wijesinha
Abstract:
Bare Machine Internet is part of the Bare Machine Computing (BMC) paradigm. It is used in programming application ns to run directly on a device. It is software that runs directly against the hardware using CPU, Memory, and I/O. The software application runs without an Operating System and resident mass storage. An important part of the BMC paradigm is the Bare Machine Internet. It utilizes an Application Development model software that interfaces directly with the hardware on a network server and file server. Because it is “bare,” it is a powerful teaching and research tool that can readily display the internals of the network protocols, software, and hardware of the applications running on the Bare Server. It was also demonstrated that the bare server was accessible by laptop and by smartphone/android. The purpose was to show the further practicality of Bare Internet in Computer Engineering and Computer Science Education and Research. It was also to show that an undergraduate student could take advantage of a bare server with any device and any browser at any release version connected to the internet. This paper presents the Bare Web Server as an educational tool. We will discuss possible applications of this paradigm.Keywords: bare machine computing, online research, network technology, visualizing network internals
Procedia PDF Downloads 17210873 DeepNIC a Method to Transform Each Tabular Variable into an Independant Image Analyzable by Basic CNNs
Authors: Nguyen J. M., Lucas G., Ruan S., Digonnet H., Antonioli D.
Abstract:
Introduction: Deep Learning (DL) is a very powerful tool for analyzing image data. But for tabular data, it cannot compete with machine learning methods like XGBoost. The research question becomes: can tabular data be transformed into images that can be analyzed by simple CNNs (Convolutional Neuron Networks)? Will DL be the absolute tool for data classification? All current solutions consist in repositioning the variables in a 2x2 matrix using their correlation proximity. In doing so, it obtains an image whose pixels are the variables. We implement a technology, DeepNIC, that offers the possibility of obtaining an image for each variable, which can be analyzed by simple CNNs. Material and method: The 'ROP' (Regression OPtimized) model is a binary and atypical decision tree whose nodes are managed by a new artificial neuron, the Neurop. By positioning an artificial neuron in each node of the decision trees, it is possible to make an adjustment on a theoretically infinite number of variables at each node. From this new decision tree whose nodes are artificial neurons, we created the concept of a 'Random Forest of Perfect Trees' (RFPT), which disobeys Breiman's concepts by assembling very large numbers of small trees with no classification errors. From the results of the RFPT, we developed a family of 10 statistical information criteria, Nguyen Information Criterion (NICs), which evaluates in 3 dimensions the predictive quality of a variable: Performance, Complexity and Multiplicity of solution. A NIC is a probability that can be transformed into a grey level. The value of a NIC depends essentially on 2 super parameters used in Neurops. By varying these 2 super parameters, we obtain a 2x2 matrix of probabilities for each NIC. We can combine these 10 NICs with the functions AND, OR, and XOR. The total number of combinations is greater than 100,000. In total, we obtain for each variable an image of at least 1166x1167 pixels. The intensity of the pixels is proportional to the probability of the associated NIC. The color depends on the associated NIC. This image actually contains considerable information about the ability of the variable to make the prediction of Y, depending on the presence or absence of other variables. A basic CNNs model was trained for supervised classification. Results: The first results are impressive. Using the GSE22513 public data (Omic data set of markers of Taxane Sensitivity in Breast Cancer), DEEPNic outperformed other statistical methods, including XGBoost. We still need to generalize the comparison on several databases. Conclusion: The ability to transform any tabular variable into an image offers the possibility of merging image and tabular information in the same format. This opens up great perspectives in the analysis of metadata.Keywords: tabular data, CNNs, NICs, DeepNICs, random forest of perfect trees, classification
Procedia PDF Downloads 12510872 An IoT-Enabled Crop Recommendation System Utilizing Message Queuing Telemetry Transport (MQTT) for Efficient Data Transmission to AI/ML Models
Authors: Prashansa Singh, Rohit Bajaj, Manjot Kaur
Abstract:
In the modern agricultural landscape, precision farming has emerged as a pivotal strategy for enhancing crop yield and optimizing resource utilization. This paper introduces an innovative Crop Recommendation System (CRS) that leverages the Internet of Things (IoT) technology and the Message Queuing Telemetry Transport (MQTT) protocol to collect critical environmental and soil data via sensors deployed across agricultural fields. The system is designed to address the challenges of real-time data acquisition, efficient data transmission, and dynamic crop recommendation through the application of advanced Artificial Intelligence (AI) and Machine Learning (ML) models. The CRS architecture encompasses a network of sensors that continuously monitor environmental parameters such as temperature, humidity, soil moisture, and nutrient levels. This sensor data is then transmitted to a central MQTT server, ensuring reliable and low-latency communication even in bandwidth-constrained scenarios typical of rural agricultural settings. Upon reaching the server, the data is processed and analyzed by AI/ML models trained to correlate specific environmental conditions with optimal crop choices and cultivation practices. These models consider historical crop performance data, current agricultural research, and real-time field conditions to generate tailored crop recommendations. This implementation gets 99% accuracy.Keywords: Iot, MQTT protocol, machine learning, sensor, publish, subscriber, agriculture, humidity
Procedia PDF Downloads 6910871 Learning for the Future: Flipping English Language Learning Classrooms for Future
Authors: Natarajan Hema, Tamilarasan Karunakaran
Abstract:
Technology is remodeling the process of teaching and learning. An inflection point is faced where technological interventions are rewiring learning process in formal classrooms. Employment depends on dynamic learning capability. Transforming the functionalities of teaching-learning-assessment through innovation is needed to modify the roles of teacher to enabler and learner to the dynamic learner. This makeover is vital for English language teaching where English is acquired as a skill, exercised as ability and get stabilized as a competence. This reshaping could be achieved through providing autonomy to participants of learning. This paper explores parameters and components aiding such a transformation. The differentiated responsibilities and other critical learning support systems are projected as viable options. New age teaching practices are studied for feasibilities to aid transformation and being put forth an inter-operable teaching-learning system for a learner-centric ELT classrooms. LOTUS model developed by the authors is also studied for its inclusiveness to promote skill acquisition.Keywords: ELT methodology, communicative competence, skill acquisition , new age teaching
Procedia PDF Downloads 35810870 Student Diversity in Higher Education: The Impact of Digital Elements on Student Learning Behavior and Subject-Specific Preferences
Authors: Pia Kastl
Abstract:
By combining face-to-face sessions with digital selflearning units, the learning process can be enhanced and learning success improved. Potentials of blended learning are the flexibility and possibility to get in touch with lecturers and fellow students face-toface. It also offers the opportunity to individualize and self-regulate the learning process. Aim of this article is to analyse how different learning environments affect students’ learning behavior and how digital tools can be used effectively. The analysis also considers the extent to which the field of study affects the students’ preferences. Semi-structured interviews were conducted with students from different disciplines at two German universities (N= 60). The questions addressed satisfaction and perception of online, faceto-face and blended learning courses. In addition, suggestions for improving learning experience and the use of digital tools in the different learning environments were surveyed. The results show that being present on campus has a positive impact on learning success and online teaching facilitates flexible learning. Blended learning can combine the respective benefits, although one challenge is to keep the time investment within reasonable limits. The use of digital tools differs depending on the subject. Medical students are willing to use digital tools to improve their learning success and voluntarily invest more time. Students of the humanities and social sciences, on the other hand, are reluctant to invest additional time. They do not see extra study material as an additional benefit their learning success. This study illustrates how these heterogenous demands on learning environments can be met. In addition, potential for improvement will be identified in order to foster both learning process and learning success. Learning environments can be meaningfully enriched with digital elements to address student diversity in higher education.Keywords: blended learning, higher education, diversity, learning styles
Procedia PDF Downloads 7010869 Bridging the Digital Divide in India: Issus and Challenges
Authors: Parveen Kumar
Abstract:
The cope the rapid change of technology and to control the ephemeral rate of information generation, librarians along with their professional colleagues need to equip themselves as per the requirement of the electronic information society. E-learning is purely based on computer and communication technologies. The terminologies like computer based learning. It is the delivery of content via all electronic media through internet, internet, Extranets television broadcast, CD-Rom documents, etc. E-learning poses lot of issues in the transformation of literature or knowledge from the conventional medium to ICT based format and web based services.Keywords: e-learning, digital libraries, online learning, electronic information society
Procedia PDF Downloads 51010868 Review of Full Body Imaging and High-Resolution Automatic 3D Mapping Systems for Medical Application
Authors: Jurijs Salijevs, Katrina Bolocko
Abstract:
The integration of artificial intelligence and neural networks has significantly changed full-body imaging and high-resolution 3D mapping systems, and this paper reviews research in these areas. With an emphasis on their use in the early identification of melanoma and other disorders, the goal is to give a wide perspective on the current status and potential future of these medical imaging technologies. Authors also examine methodologies such as machine learning and deep learning, seeking to identify efficient procedures that enhance diagnostic capabilities through the analysis of 3D body scans. This work aims to encourage further research and technological development to harness the full potential of AI in disease diagnosis.Keywords: artificial intelligence, neural networks, 3D scan, body scan, 3D mapping system, healthcare
Procedia PDF Downloads 10310867 Enhancing Organizational Performance through Adaptive Learning: A Case Study of ASML
Authors: Ramin Shadani
Abstract:
This study introduces adaptive performance as a key organizational performance dimension and explores the relationship between the dimensions of a learning organization and adaptive performance. A survey was therefore conducted using the dimensions of the Learning Organization Questionnaire (DLOQ), followed by factor analysis and structural equation modeling in order to investigate the dynamics between learning organization practices and adaptive performance. Results confirm that adaptive performance is indeed one important dimension of organizational performance. The study also shows that perceived knowledge and adaptive performance mediate the positive relationship between the practices of a learning organization with perceived financial performance. We extend existing DLOQ research by demonstrating that adaptive performance, as a nonfinancial organizational learning outcome, has a significant impact on financial performance. Our study also provides additional validation of the measures of DLOQ's performance. Indeed, organizations need to take a glance at how the activities of learning and development can provide better overall improvement in performance, especially in enhancing adaptive capability. The study has provided requisite empirical support that activities of learning and development within organizations allow much-improved intangible performance outcomes, especially through adaptive performance.Keywords: adaptive performance, continuous learning, financial performance, leadership style, organizational learning, organizational performance
Procedia PDF Downloads 3010866 Machine Learning Framework: Competitive Intelligence and Key Drivers Identification of Market Share Trends among Healthcare Facilities
Authors: Anudeep Appe, Bhanu Poluparthi, Lakshmi Kasivajjula, Udai Mv, Sobha Bagadi, Punya Modi, Aditya Singh, Hemanth Gunupudi, Spenser Troiano, Jeff Paul, Justin Stovall, Justin Yamamoto
Abstract:
The necessity of data-driven decisions in healthcare strategy formulation is rapidly increasing. A reliable framework which helps identify factors impacting a healthcare provider facility or a hospital (from here on termed as facility) market share is of key importance. This pilot study aims at developing a data-driven machine learning-regression framework which aids strategists in formulating key decisions to improve the facility’s market share which in turn impacts in improving the quality of healthcare services. The US (United States) healthcare business is chosen for the study, and the data spanning 60 key facilities in Washington State and about 3 years of historical data is considered. In the current analysis, market share is termed as the ratio of the facility’s encounters to the total encounters among the group of potential competitor facilities. The current study proposes a two-pronged approach of competitor identification and regression approach to evaluate and predict market share, respectively. Leveraged model agnostic technique, SHAP, to quantify the relative importance of features impacting the market share. Typical techniques in literature to quantify the degree of competitiveness among facilities use an empirical method to calculate a competitive factor to interpret the severity of competition. The proposed method identifies a pool of competitors, develops Directed Acyclic Graphs (DAGs) and feature level word vectors, and evaluates the key connected components at the facility level. This technique is robust since its data-driven, which minimizes the bias from empirical techniques. The DAGs factor in partial correlations at various segregations and key demographics of facilities along with a placeholder to factor in various business rules (for ex. quantifying the patient exchanges, provider references, and sister facilities). Identified are the multiple groups of competitors among facilities. Leveraging the competitors' identified developed and fine-tuned Random Forest Regression model to predict the market share. To identify key drivers of market share at an overall level, permutation feature importance of the attributes was calculated. For relative quantification of features at a facility level, incorporated SHAP (SHapley Additive exPlanations), a model agnostic explainer. This helped to identify and rank the attributes at each facility which impacts the market share. This approach proposes an amalgamation of the two popular and efficient modeling practices, viz., machine learning with graphs and tree-based regression techniques to reduce the bias. With these, we helped to drive strategic business decisions.Keywords: competition, DAGs, facility, healthcare, machine learning, market share, random forest, SHAP
Procedia PDF Downloads 9110865 Design, Synthesis and Evaluation of 4-(Phenylsulfonamido)Benzamide Derivatives as Selective Butyrylcholinesterase Inhibitors
Authors: Sushil Kumar Singh, Ashok Kumar, Ankit Ganeshpurkar, Ravi Singh, Devendra Kumar
Abstract:
In spectrum of neurodegenerative diseases, Alzheimer’s disease (AD) is characterized by the presence of amyloid β plaques and neurofibrillary tangles in the brain. It results in cognitive and memory impairment due to loss of cholinergic neurons, which is considered to be one of the contributing factors. Donepezil, an acetylcholinesterase (AChE) inhibitor which also inhibits butyrylcholinesterase (BuChE) and improves the memory and brain’s cognitive functions, is the most successful and prescribed drug to treat the symptoms of AD. The present work is based on designing of the selective BuChE inhibitors using computational techniques. In this work, machine learning models were trained using classification algorithms followed by screening of diverse chemical library of compounds. The various molecular modelling and simulation techniques were used to obtain the virtual hits. The amide derivatives of 4-(phenylsulfonamido) benzoic acid were synthesized and characterized using 1H & 13C NMR, FTIR and mass spectrometry. The enzyme inhibition assays were performed on equine plasma BuChE and electric eel’s AChE by method developed by Ellman et al. Compounds 31, 34, 37, 42, 49, 52 and 54 were found to be active against equine BuChE. N-(2-chlorophenyl)-4-(phenylsulfonamido)benzamide and N-(2-bromophenyl)-4-(phenylsulfonamido)benzamide (compounds 34 and 37) displayed IC50 of 61.32 ± 7.21 and 42.64 ± 2.17 nM against equine plasma BuChE. Ortho-substituted derivatives were more active against BuChE. Further, the ortho-halogen and ortho-alkyl substituted derivatives were found to be most active among all with minimal AChE inhibition. The compounds were selective toward BuChE.Keywords: Alzheimer disease, butyrylcholinesterase, machine learning, sulfonamides
Procedia PDF Downloads 13910864 Safe and Efficient Deep Reinforcement Learning Control Model: A Hydroponics Case Study
Authors: Almutasim Billa A. Alanazi, Hal S. Tharp
Abstract:
Safe performance and efficient energy consumption are essential factors for designing a control system. This paper presents a reinforcement learning (RL) model that can be applied to control applications to improve safety and reduce energy consumption. As hardware constraints and environmental disturbances are imprecise and unpredictable, conventional control methods may not always be effective in optimizing control designs. However, RL has demonstrated its value in several artificial intelligence (AI) applications, especially in the field of control systems. The proposed model intelligently monitors a system's success by observing the rewards from the environment, with positive rewards counting as a success when the controlled reference is within the desired operating zone. Thus, the model can determine whether the system is safe to continue operating based on the designer/user specifications, which can be adjusted as needed. Additionally, the controller keeps track of energy consumption to improve energy efficiency by enabling the idle mode when the controlled reference is within the desired operating zone, thus reducing the system energy consumption during the controlling operation. Water temperature control for a hydroponic system is taken as a case study for the RL model, adjusting the variance of disturbances to show the model’s robustness and efficiency. On average, the model showed safety improvement by up to 15% and energy efficiency improvements by 35%- 40% compared to a traditional RL model.Keywords: control system, hydroponics, machine learning, reinforcement learning
Procedia PDF Downloads 18510863 The Impact of Blended Learning on the Perception of High School Learners Towards Entrepreneurship
Authors: Rylyne Mande Nchu, Robertson Tengeh, Chux Iwu
Abstract:
Blended learning is a global phenomenon and is essential to many institutes of learning as an additional method of teaching that complements more traditional methods of learning. In this paper, the lack of practice of a blended learning approach to entrepreneurship education and how it impacts learners' perception of being entrepreneurial. E-learning is in its infancy within the secondary and high school sectors in South Africa. The conceptual framework of the study is based on theoretical aspects of systemic-constructivist learning implemented in an interactive online learning environment in an entrepreneurship education subject. The formative evaluation research was conducted implementing mixed methods of research (quantitative and qualitative) and it comprised a survey of high school learners and informant interviewing with entrepreneurs. Theoretical analysis of literature provides features necessary for creating interactive blended learning environments to be used in entrepreneurship education subject. Findings of the study show that learners do not always objectively evaluate their capacities. Special attention has to be paid to the development of learners’ computer literacy as well as to the activities that would bring online learning to practical training. Needs analysis shows that incorporating blended learning in entrepreneurship education may have a positive perception of entrepreneurship.Keywords: blended learning, entrepreneurship education, entrepreneurship intention, entrepreneurial skills
Procedia PDF Downloads 11210862 Prediction of Covid-19 Cases and Current Situation of Italy and Its Different Regions Using Machine Learning Algorithm
Authors: Shafait Hussain Ali
Abstract:
Since its outbreak in China, the Covid_19 19 disease has been caused by the corona virus SARS N coyote 2. Italy was the first Western country to be severely affected, and the first country to take drastic measures to control the disease. In start of December 2019, the sudden outbreaks of the Coronary Virus Disease was caused by a new Corona 2 virus (SARS-CO2) of acute respiratory syndrome in china city Wuhan. The World Health Organization declared the epidemic a public health emergency of international concern on January 30, 2020,. On February 14, 2020, 49,053 laboratory-confirmed deaths and 1481 deaths have been reported worldwide. The threat of the disease has forced most of the governments to implement various control measures. Therefore it becomes necessary to analyze the Italian data very carefully, in particular to investigates and to find out the present condition and the number of infected persons in the form of positive cases, death, hospitalized or some other features of infected persons will clear in simple form. So used such a model that will clearly shows the real facts and figures and also understandable to every readable person which can get some real benefit after reading it. The model used must includes(total positive cases, current positive cases, hospitalized patients, death, recovered peoples frequency rates ) all features that explains and clear the wide range facts in very simple form and helpful to administration of that country.Keywords: machine learning tools and techniques, rapid miner tool, Naive-Bayes algorithm, predictions
Procedia PDF Downloads 10710861 Perceived Benefits of Technology Enhanced Learning by Learners in Uganda: Three Band Benefits
Authors: Kafuko M. Maria, Namisango Fatuma, Byomire Gorretti
Abstract:
Mobile learning (m-learning) is steadily growing and has undoubtedly derived benefits to learners and tutors in different learning environments. This paper investigates the variation in benefits derived from enhanced classroom learning through use of m-learning platforms in the context of a developing country owing to the fact that it is still in its initial stages. The study focused on how basic technology-enhanced pedagogic innovation like cell phone-based learning is enhancing classroom learning from the learners’ perspective. The paper explicitly indicates the opportunities presented by enhanced learning to a conventional learning environment like a physical classroom. The findings were obtained through a survey of two universities in Uganda in which data was quantitatively collected, analyzed and presented in a three banded diagram depicting the variation in the obtainable benefits. Learners indicated that a smartphone is the most commonly used device. Learners also indicate that straight lectures, student to student plus student to lecturer communication, accessing learning material and assignments are core activities. In a TEL environment support by smartphones, learners indicated that they conveniently achieve the prior activities plus discussions and group work. Learners seemed not attracted to the possibility of using TEL environment to take lectures, as well as make class presentations. The less attractiveness of these two factors may be due to the teacher centered approach commonly applied in the country’s education system.Keywords: technology enhanced learning, m-learning, classroom learning, perceived benefits
Procedia PDF Downloads 23110860 A Framework on the Critical Success Factors of E-Learning Implementation in Higher Education: A Review of the Literature
Authors: Sujit K. Basak, Marguerite Wotto, Paul Bélanger
Abstract:
This paper presents a conceptual framework on the critical success factors of e-learning implementation in higher education, derived from an in-depth survey of literature review. The aim of this study was achieved by identifying critical success factors that affect for the successful implementation of e-learning. The findings help to articulate issues that are related to e-learning implementation in both formal and non-formal higher education and in this way contribute to the development of programs designed to address the relevant issues.Keywords: critical success factors, e-learning, higher education, life-long learning
Procedia PDF Downloads 36310859 The Student Care: The Influence of Family’s Attention toward the Student of Junior High Schools in Physics Learning Achievements
Authors: Siti Rossidatul Munawaroh, Siti Khusnul Khowatim
Abstract:
This study is determined to find how is the influence of family attention of students in provides guidance of the student learning. The increasing of student’s learning motivation can be increased made up in various ways, one of them are through students social guidance in their relation with the family. The family not only provides the matter and the learning time but also be supervise for the learning time and guide his children to overcome a learning disability. The character of physics subject in their science experiences at junior high schools has demanded that student’s ability is to think symbolically and understand something in a meaningful manner. Therefore, the reinforcement of the physics learning motivation is clearly necessary not only by the school are related, but the family environment and the society. As for the role of family which includes maintenance, parenting, coaching, and educating both of physically and spiritually, this way is expected to give spirit impulsion in studying physics subject in order to increase student learning achievements.Keywords: physics subject, the influence of family attention, learning motivation, the Student care
Procedia PDF Downloads 43010858 Impact of Pedagogical Techniques on the Teaching of Sports Sciences
Authors: Muhammad Saleem
Abstract:
Background: The teaching of sports sciences encompasses a broad spectrum of disciplines, including biomechanics, physiology, psychology, and coaching. Effective pedagogical techniques are crucial in imparting both theoretical knowledge and practical skills necessary for students to excel in the field. The impact of these techniques on students’ learning outcomes, engagement, and professional preparedness remains a vital area of study. Objective: This study aims to evaluate the effectiveness of various pedagogical techniques used in the teaching of sports sciences. It seeks to identify which methods most significantly enhance student learning, retention, engagement, and practical application of knowledge. Methods: A mixed-methods approach was employed, including both quantitative and qualitative analyses. The study involved a comparative analysis of traditional lecture-based teaching, experiential learning, problem-based learning (PBL), and technology-enhanced learning (TEL). Data were collected through surveys, interviews, and academic performance assessments from students enrolled in sports sciences programs at multiple universities. Statistical analysis was used to evaluate academic performance, while thematic analysis was applied to qualitative data to capture student experiences and perceptions. Results: The findings indicate that experiential learning and PBL significantly improve students' understanding and retention of complex sports science concepts compared to traditional lectures. TEL was found to enhance engagement and provide students with flexible learning opportunities, but its impact on deep learning varied depending on the quality of the digital resources. Overall, a combination of experiential learning, PBL, and TEL was identified as the most effective pedagogical approach, leading to higher student satisfaction and better preparedness for real-world applications. Conclusion: The study underscores the importance of adopting diverse and student-centered pedagogical techniques in the teaching of sports sciences. While traditional lectures remain useful for foundational knowledge, integrating experiential learning, PBL, and TEL can substantially improve student outcomes. These findings suggest that educators should consider a blended approach to pedagogy to maximize the effectiveness of sports science education.Keywords: sport sciences, pedagogical techniques, health and physical education, problem-based learning, student engagement
Procedia PDF Downloads 2610857 A Comparative Study of Mechanisms across Different Online Social Learning Types
Authors: Xinyu Wang
Abstract:
In the context of the rapid development of Internet technology and the increasing prevalence of online social media, this study investigates the impact of digital communication on social learning. Through three behavioral experiments, we explore both affective and cognitive social learning in online environments. Experiment 1 manipulates the content of experimental materials and two forms of feedback, emotional valence, sociability, and repetition, to verify whether individuals can achieve online emotional social learning through reinforcement using two social learning strategies. Results reveal that both social learning strategies can assist individuals in affective, social learning through reinforcement, with feedback-based learning strategies outperforming frequency-dependent strategies. Experiment 2 similarly manipulates the content of experimental materials and two forms of feedback to verify whether individuals can achieve online knowledge social learning through reinforcement using two social learning strategies. Results show that similar to online affective social learning, individuals adopt both social learning strategies to achieve cognitive social learning through reinforcement, with feedback-based learning strategies outperforming frequency-dependent strategies. Experiment 3 simultaneously observes online affective and cognitive social learning by manipulating the content of experimental materials and feedback at different levels of social pressure. Results indicate that online affective social learning exhibits different learning effects under different levels of social pressure, whereas online cognitive social learning remains unaffected by social pressure, demonstrating more stable learning effects. Additionally, to explore the sustained effects of online social learning and differences in duration among different types of online social learning, all three experiments incorporate two test time points. Results reveal significant differences in pre-post-test scores for online social learning in Experiments 2 and 3, whereas differences are less apparent in Experiment 1. To accurately measure the sustained effects of online social learning, the researchers conducted a mini-meta-analysis of all effect sizes of online social learning duration. Results indicate that although the overall effect size is small, the effect of online social learning weakens over time.Keywords: online social learning, affective social learning, cognitive social learning, social learning strategies, social reinforcement, social pressure, duration
Procedia PDF Downloads 4610856 Effect of E-Governance and E-Learning Platform on Access to University Education by Public Servants in Nigeria
Authors: Nwamaka Patricia Ibeme, Musa Zakari
Abstract:
E-learning is made more effective because; it is enable student to students to easily interact, share, and collaborate across time and space with the help of e-governance platform. Zoom and the Microsoft classroom team can invite students from all around the world to join a conversation on a certain subject simultaneously. E-governance may be able to work on problem solving skills, as well as brainstorming and developing ideas. As a result of the shared experiences and knowledge, students are able to express themselves and reflect on their own learning." For students, e-governance facilities provide greater opportunity for students to build critical (higher order) thinking abilities through constructive learning methods. Students' critical thinking abilities may improve with more time spent in an online classroom. Students' inventiveness can be enhanced through the use of computer-based instruction. Discover multimedia tools and produce products in the styles that are easily available through games, Compact Disks, and television. The use of e-learning has increased both teaching and learning quality by combining student autonomy, capacity, and creativity over time in developed countries." Teachers are catalysts for the integration of technology through Information and Communication Technology, and e-learning supports teaching by simplifying access to course content." Creating an Information and Communication Technology class will be much easier if educational institutions provide teachers with the assistance, equipment, and resources they need. The study adopted survey research design. The populations of the study are Students and staff. The study adopted a simple random sampling technique to select a representative population. Both primary and secondary method of data collection was used to obtain the data. A chi-square statistical technique was used to analyze. Finding from the study revealed that e-learning has increase accesses to universities educational by public servants in Nigeria. Public servants in Nigeria have utilized e-learning and Online Distance Learning (ODL) programme to into various degree programmes. Finding also shows that E-learning plays an important role in teaching because it is oriented toward the use of information and communication technologies that have become a part of the everyday life and day-to-day business. E-learning contributes to traditional teaching methods and provides many advantages to society and citizens. The study recommends that the e-learning tools and internet facilities should be upgrade to foster any network challenges in the online facilitation and lecture delivery system.Keywords: E-governance, E-learning, online distance learning, university education public servants, Nigeria
Procedia PDF Downloads 6910855 The Mental Workload of Intensive Care Unit Nurses in Performing Human-Machine Tasks: A Cross-Sectional Survey
Authors: Yan Yan, Erhong Sun, Lin Peng, Xuchun Ye
Abstract:
Aims: The present study aimed to explore Intensive Care Unit (ICU) nurses’ mental workload (MWL) and associated factors with it in performing human-machine tasks. Background: A wide range of emerging technologies have penetrated widely in the field of health care, and ICU nurses are facing a dramatic increase in nursing human-machine tasks. However, there is still a paucity of literature reporting on the general MWL of ICU nurses performing human-machine tasks and the associated influencing factors. Methods: A cross-sectional survey was employed. The data was collected from January to February 2021 from 9 tertiary hospitals in 6 provinces (Shanghai, Gansu, Guangdong, Liaoning, Shandong, and Hubei). Two-stage sampling was used to recruit eligible ICU nurses (n=427). The data were collected with an electronic questionnaire comprising sociodemographic characteristics and the measures of MWL, self-efficacy, system usability, and task difficulty. The univariate analysis, two-way analysis of variance (ANOVA), and a linear mixed model were used for data analysis. Results: Overall, the mental workload of ICU nurses in performing human-machine tasks was medium (score 52.04 on a 0-100 scale). Among the typical nursing human-machine tasks selected, the MWL of ICU nurses in completing first aid and life support tasks (‘Using a defibrillator to defibrillate’ and ‘Use of ventilator’) was significantly higher than others (p < .001). And ICU nurses’ MWL in performing human-machine tasks was also associated with age (p = .001), professional title (p = .002), years of working in ICU (p < .001), willingness to study emerging technology actively (p = .006), task difficulty (p < .001), and system usability (p < .001). Conclusion: The MWL of ICU nurses is at a moderate level in the context of a rapid increase in nursing human-machine tasks. However, there are significant differences in MWL when performing different types of human-machine tasks, and MWL can be influenced by a combination of factors. Nursing managers need to develop intervention strategies in multiple ways. Implications for practice: Multidimensional approaches are required to perform human-machine tasks better, including enhancing nurses' willingness to learn emerging technologies actively, developing training strategies that vary with tasks, and identifying obstacles in the process of human-machine system interaction.Keywords: mental workload, nurse, ICU, human-machine, tasks, cross-sectional study, linear mixed model, China
Procedia PDF Downloads 7010854 Disentangling the Sources and Context of Daily Work Stress: Study Protocol of a Comprehensive Real-Time Modelling Study Using Portable Devices
Authors: Larissa Bolliger, Junoš Lukan, Mitja Lustrek, Dirk De Bacquer, Els Clays
Abstract:
Introduction and Aim: Chronic workplace stress and its health-related consequences like mental and cardiovascular diseases have been widely investigated. This project focuses on the sources and context of psychosocial daily workplace stress in a real-world setting. The main objective is to analyze and model real-time relationships between (1) psychosocial stress experiences within the natural work environment, (2) micro-level work activities and events, and (3) physiological signals and behaviors in office workers. Methods: An Ecological Momentary Assessment (EMA) protocol has been developed, partly building on machine learning techniques. Empatica® wristbands will be used for real-life detection of stress from physiological signals; micro-level activities and events at work will be based on smartphone registrations, further processed according to an automated computer algorithm. A field study including 100 office-based workers with high-level problem-solving tasks like managers and researchers will be implemented in Slovenia and Belgium (50 in each country). Data mining and state-of-the-art statistical methods – mainly multilevel statistical modelling for repeated data – will be used. Expected Results and Impact: The project findings will provide novel contributions to the field of occupational health research. While traditional assessments provide information about global perceived state of chronic stress exposure, the EMA approach is expected to bring new insights about daily fluctuating work stress experiences, especially micro-level events and activities at work that induce acute physiological stress responses. The project is therefore likely to generate further evidence on relevant stressors in a real-time working environment and hence make it possible to advise on workplace procedures and policies for reducing stress.Keywords: ecological momentary assessment, real-time, stress, work
Procedia PDF Downloads 161