Search results for: real time pest tracking
20340 Statistical Model to Examine the Impact of the Inflation Rate and Real Interest Rate on the Bahrain Economy
Authors: Ghada Abo-Zaid
Abstract:
Introduction: Oil is one of the most income source in Bahrain. Low oil price influence on the economy growth and the investment rate in Bahrain. For example, the economic growth was 3.7% in 2012, and it reduced to 2.9% in 2015. Investment rate was 9.8% in 2012, and it is reduced to be 5.9% and -12.1% in 2014 and 2015, respectively. The inflation rate is increased to the peak point in 2013 with 3.3 %. Objectives: The objectives here are to build statistical models to examine the effect of the interest rate inflation rate on the growth economy in Bahrain from 2000 to 2018. Methods: This study based on 18 years, and the multiple regression model is used for the analysis. All of the missing data are omitted from the analysis. Results: Regression model is used to examine the association between the Growth national product (GNP), the inflation rate, and real interest rate. We found that (i) Increase the real interest rate decrease the GNP. (ii) Increase the inflation rate does not effect on the growth economy in Bahrain since the average of the inflation rate was almost 2%, and this is considered as a low percentage. Conclusion: There is a positive impact of the real interest rate on the GNP in Bahrain. While the inflation rate does not show any negative influence on the GNP as the inflation rate was not large enough to effect negatively on the economy growth rate in Bahrain.Keywords: growth national product, egypt, regression model, interest rate
Procedia PDF Downloads 16620339 Exploring the Potential of Phase Change Materials in Construction Environments
Authors: A. Ait Ahsene F., B. Boughrara S.
Abstract:
The buildings sector accounts for a significant portion of global energy consumption, with much of this energy used to heat and cool indoor spaces. In this context, the integration of innovative technologies such as phase change materials (PCM) holds promising potential to improve the energy efficiency and thermal comfort of buildings. This research topic explores the benefits and challenges associated with the use of PCMs in buildings, focusing on their ability to store and release thermal energy to regulate indoor temperature. We investigated the different types of PCM available, their thermal properties, and their potential applications in various climate zones and building types. To evaluate and compare the performance of PCMs, our methodology includes a series of laboratory and field experiments. In the laboratory, we measure the thermal storage capacity, melting and solidification temperatures, latent heat, and thermal conductivity of various PCMs. These measurements make it possible to quantify the capacity of each PCM to store and release thermal energy, as well as its capacity to transfer this energy through the construction materials. Additionally, field studies are conducted to evaluate the performance of PCMs in real-world environments. We install PCM systems in real buildings and monitor their operation over time, measuring energy savings, occupant thermal comfort, and material durability. These empirical data allow us to compare the effectiveness of different types of PCMs under real-world use conditions. By combining the results of laboratory and field experiments, we provide a comprehensive analysis of the advantages and limitations of PCMs in buildings, as well as recommendations for their effective application in practice.Keywords: energy saving, phase change materials, material sustainability, buildings sector
Procedia PDF Downloads 4120338 A Modified Estimating Equations in Derivation of the Causal Effect on the Survival Time with Time-Varying Covariates
Authors: Yemane Hailu Fissuh, Zhongzhan Zhang
Abstract:
a systematic observation from a defined time of origin up to certain failure or censor is known as survival data. Survival analysis is a major area of interest in biostatistics and biomedical researches. At the heart of understanding, the most scientific and medical research inquiries lie for a causality analysis. Thus, the main concern of this study is to investigate the causal effect of treatment on survival time conditional to the possibly time-varying covariates. The theory of causality often differs from the simple association between the response variable and predictors. A causal estimation is a scientific concept to compare a pragmatic effect between two or more experimental arms. To evaluate an average treatment effect on survival outcome, the estimating equation was adjusted for time-varying covariates under the semi-parametric transformation models. The proposed model intuitively obtained the consistent estimators for unknown parameters and unspecified monotone transformation functions. In this article, the proposed method estimated an unbiased average causal effect of treatment on survival time of interest. The modified estimating equations of semiparametric transformation models have the advantage to include the time-varying effect in the model. Finally, the finite sample performance characteristics of the estimators proved through the simulation and Stanford heart transplant real data. To this end, the average effect of a treatment on survival time estimated after adjusting for biases raised due to the high correlation of the left-truncation and possibly time-varying covariates. The bias in covariates was restored, by estimating density function for left-truncation. Besides, to relax the independence assumption between failure time and truncation time, the model incorporated the left-truncation variable as a covariate. Moreover, the expectation-maximization (EM) algorithm iteratively obtained unknown parameters and unspecified monotone transformation functions. To summarize idea, the ratio of cumulative hazards functions between the treated and untreated experimental group has a sense of the average causal effect for the entire population.Keywords: a modified estimation equation, causal effect, semiparametric transformation models, survival analysis, time-varying covariate
Procedia PDF Downloads 17520337 Quartz Crystal Microbalance Based Hydrophobic Nanosensor for Lysozyme Detection
Authors: F. Yılmaz, Y. Saylan, A. Derazshamshir, S. Atay, A. Denizli
Abstract:
Quartz crystal microbalance (QCM), high-resolution mass-sensing technique, measures changes in mass on oscillating quartz crystal surface by measuring changes in oscillation frequency of crystal in real time. Protein adsorption techniques via hydrophobic interaction between protein and solid support, called hydrophobic interaction chromatography (HIC), can be favorable in many cases. Some nanoparticles can be effectively applied for HIC. HIC takes advantage of the hydrophobicity of proteins by promoting its separation on the basis of hydrophobic interactions between immobilized hydrophobic ligands and nonpolar regions on the surface of the proteins. Lysozyme is found in a variety of vertebrate cells and secretions, such as spleen, milk, tears, and egg white. Its common applications are as a cell-disrupting agent for extraction of bacterial intracellular products, as an antibacterial agent in ophthalmologic preparations, as a food additive in milk products and as a drug for treatment of ulcers and infections. Lysozyme has also been used in cancer chemotherapy. The aim of this study is the synthesis of hydrophobic nanoparticles for Lysozyme detection. For this purpose, methacryoyl-L-phenylalanine was chosen as a hydrophobic matrix. The hydrophobic nanoparticles were synthesized by micro-emulsion polymerization method. Then, hydrophobic QCM nanosensor was characterized by Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, atomic force microscopy (AFM) and zeta size analysis. Hydrophobic QCM nanosensor was tested for real-time detection of Lysozyme from aqueous solution. The kinetic and affinity studies were determined by using Lysozyme solutions with different concentrations. The responses related to a mass (Δm) and frequency (Δf) shifts were used to evaluate adsorption properties.Keywords: nanosensor, HIC, lysozyme, QCM
Procedia PDF Downloads 34820336 Identifying Pathogenic Mycobacterium Species Using Multiple Gene Phylogenetic Analysis
Authors: Lemar Blake, Chris Oura, Ayanna C. N. Phillips Savage
Abstract:
Improved DNA sequencing technology has greatly enhanced bacterial identification, especially for organisms that are difficult to culture. Mycobacteriosis with consistent hyphema, bilateral exophthalmia, open mouth gape and ocular lesions, were observed in various fish populations at the School of Veterinary Medicine, Aquaculture/Aquatic Animal Health Unit. Objective: To identify the species of Mycobacterium that is affecting aquarium fish at the School of Veterinary Medicine, Aquaculture/Aquatic Animal Health Unit. Method: A total of 13 fish samples were collected and analyzed via: Ziehl-Neelsen, conventional polymerase chain reaction (PCR) and real-time PCR. These tests were carried out simultaneously for confirmation. The following combination of conventional primers: 16s rRNA (564 bp), rpoB (396 bp), sod (408 bp) were used. Concatenation of the gene fragments was carried out to phylogenetically classify the organism. Results: Acid fast non-branching bacilli were detected in all samples from homogenized internal organs. All 13 acid fast samples were positive for Mycobacterium via real-time PCR. Partial gene sequences using all three primer sets were obtained from two samples and demonstrated a novel strain. A strain 99% related to Mycobacterium marinum was also confirmed in one sample, using 16srRNA and rpoB genes. The two novel strains were clustered with the rapid growers and strains that are known to affect humans. Conclusions: Phylogenetic analysis demonstrated two novel Mycobacterium strains with the potential of being zoonotic and one strain 99% related to Mycobacterium marinum.Keywords: polymerase chain reaction, phylogenetic, DNA sequencing, zoonotic
Procedia PDF Downloads 14320335 An Investigation on Smartphone-Based Machine Vision System for Inspection
Authors: They Shao Peng
Abstract:
Machine vision system for inspection is an automated technology that is normally utilized to analyze items on the production line for quality control purposes, it also can be known as an automated visual inspection (AVI) system. By applying automated visual inspection, the existence of items, defects, contaminants, flaws, and other irregularities in manufactured products can be easily detected in a short time and accurately. However, AVI systems are still inflexible and expensive due to their uniqueness for a specific task and consuming a lot of set-up time and space. With the rapid development of mobile devices, smartphones can be an alternative device for the visual system to solve the existing problems of AVI. Since the smartphone-based AVI system is still at a nascent stage, this led to the motivation to investigate the smartphone-based AVI system. This study is aimed to provide a low-cost AVI system with high efficiency and flexibility. In this project, the object detection models, which are You Only Look Once (YOLO) model and Single Shot MultiBox Detector (SSD) model, are trained, evaluated, and integrated with the smartphone and webcam devices. The performance of the smartphone-based AVI is compared with the webcam-based AVI according to the precision and inference time in this study. Additionally, a mobile application is developed which allows users to implement real-time object detection and object detection from image storage.Keywords: automated visual inspection, deep learning, machine vision, mobile application
Procedia PDF Downloads 12420334 A Hazard Rate Function for the Time of Ruin
Authors: Sule Sahin, Basak Bulut Karageyik
Abstract:
This paper introduces a hazard rate function for the time of ruin to calculate the conditional probability of ruin for very small intervals. We call this function the force of ruin (FoR). We obtain the expected time of ruin and conditional expected time of ruin from the exact finite time ruin probability with exponential claim amounts. Then we introduce the FoR which gives the conditional probability of ruin and the condition is that ruin has not occurred at time t. We analyse the behavior of the FoR function for different initial surpluses over a specific time interval. We also obtain FoR under the excess of loss reinsurance arrangement and examine the effect of reinsurance on the FoR.Keywords: conditional time of ruin, finite time ruin probability, force of ruin, reinsurance
Procedia PDF Downloads 40620333 Elastic and Plastic Collision Comparison Using Finite Element Method
Authors: Gustavo Rodrigues, Hans Weber, Larissa Driemeier
Abstract:
The prevision of post-impact conditions and the behavior of the bodies during the impact have been object of several collision models. The formulation from Hertz’s theory is generally used dated from the 19th century. These models consider the repulsive force as proportional to the deformation of the bodies under contact and may consider it proportional to the rate of deformation. The objective of the present work is to analyze the behavior of the bodies during impact using the Finite Element Method (FEM) with elastic and plastic material models. The main parameters to evaluate are, the contact force, the time of contact and the deformation of the bodies. An advantage of using the FEM approach is the possibility to apply a plastic deformation to the model according to the material definition: there will be used Johnson–Cook plasticity model whose parameters are obtained through empirical tests of real materials. This model allows analyzing the permanent deformation caused by impact, phenomenon observed in real world depending on the forces applied to the body. These results are compared between them and with the model-based Hertz theory.Keywords: collision, impact models, finite element method, Hertz Theory
Procedia PDF Downloads 17520332 Times2D: A Time-Frequency Method for Time Series Forecasting
Authors: Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan
Abstract:
Time series data consist of successive data points collected over a period of time. Accurate prediction of future values is essential for informed decision-making in several real-world applications, including electricity load demand forecasting, lifetime estimation of industrial machinery, traffic planning, weather prediction, and the stock market. Due to their critical relevance and wide application, there has been considerable interest in time series forecasting in recent years. However, the proliferation of sensors and IoT devices, real-time monitoring systems, and high-frequency trading data introduce significant intricate temporal variations, rapid changes, noise, and non-linearities, making time series forecasting more challenging. Classical methods such as Autoregressive integrated moving average (ARIMA) and Exponential Smoothing aim to extract pre-defined temporal variations, such as trends and seasonality. While these methods are effective for capturing well-defined seasonal patterns and trends, they often struggle with more complex, non-linear patterns present in real-world time series data. In recent years, deep learning has made significant contributions to time series forecasting. Recurrent Neural Networks (RNNs) and their variants, such as Long short-term memory (LSTMs) and Gated Recurrent Units (GRUs), have been widely adopted for modeling sequential data. However, they often suffer from the locality, making it difficult to capture local trends and rapid fluctuations. Convolutional Neural Networks (CNNs), particularly Temporal Convolutional Networks (TCNs), leverage convolutional layers to capture temporal dependencies by applying convolutional filters along the temporal dimension. Despite their advantages, TCNs struggle with capturing relationships between distant time points due to the locality of one-dimensional convolution kernels. Transformers have revolutionized time series forecasting with their powerful attention mechanisms, effectively capturing long-term dependencies and relationships between distant time points. However, the attention mechanism may struggle to discern dependencies directly from scattered time points due to intricate temporal patterns. Lastly, Multi-Layer Perceptrons (MLPs) have also been employed, with models like N-BEATS and LightTS demonstrating success. Despite this, MLPs often face high volatility and computational complexity challenges in long-horizon forecasting. To address intricate temporal variations in time series data, this study introduces Times2D, a novel framework that parallelly integrates 2D spectrogram and derivative heatmap techniques. The spectrogram focuses on the frequency domain, capturing periodicity, while the derivative patterns emphasize the time domain, highlighting sharp fluctuations and turning points. This 2D transformation enables the utilization of powerful computer vision techniques to capture various intricate temporal variations. To evaluate the performance of Times2D, extensive experiments were conducted on standard time series datasets and compared with various state-of-the-art algorithms, including DLinear (2023), TimesNet (2023), Non-stationary Transformer (2022), PatchTST (2023), N-HiTS (2023), Crossformer (2023), MICN (2023), LightTS (2022), FEDformer (2022), FiLM (2022), SCINet (2022a), Autoformer (2021), and Informer (2021) under the same modeling conditions. The initial results demonstrated that Times2D achieves consistent state-of-the-art performance in both short-term and long-term forecasting tasks. Furthermore, the generality of the Times2D framework allows it to be applied to various tasks such as time series imputation, clustering, classification, and anomaly detection, offering potential benefits in any domain that involves sequential data analysis.Keywords: derivative patterns, spectrogram, time series forecasting, times2D, 2D representation
Procedia PDF Downloads 4220331 Impact of Audit Committee on Real Earnings Management: Cases of Netherlands
Authors: Sana Masmoudi Mardassi, Yosra Makni Fourati
Abstract:
Regulators highlight the importance of the Audit Committee (AC) as a key internal corporate governance mechanism. One of the most important roles of this committee is to oversee the financial reporting process. The purpose of this paper is to examine the link between the characteristics of an audit committee and the financial reporting quality by investigating whether the characteristics of audit committees are associated with improved financial reporting quality, especially the Real Earnings Management. In the current study, a panel data from 80 nonfinancial companies listed on the Amsterdam Stock Exchange during the period between 2010 and 2017 were used. To measure audit committee characteristics, four proxies have been used, specifically, audit committee independence, financial expertise, gender diversity and AC meetings. For this research, a linear regression model was used to identify the influence of a set of board characteristics of the audit committee on real earnings management after controlling for firm audit committee size, leverage, size, loss, growth and board size. This research provides empirical evidence of the association between audit committee independence, financial expertise, gender diversity and meetings and Real Earnings Management (REM) as a proxy of financial reporting quality. The study finds that independence and AC Gender diversity are strongly related to financial reporting quality. In fact, these two characteristics constrain REM. The results also suggest that AC- financial expertise reduces to some extent, the likelihood of engaging in REM. These conclusions provide support then to the audit committee requirement under the Dutch Corporate Governance Code rules regarding gender diversity and AC meetings.Keywords: audit committee, financial expertise, independence, real earnings management
Procedia PDF Downloads 16720330 Labview-Based System for Fiber Links Events Detection
Authors: Bo Liu, Qingshan Kong, Weiqing Huang
Abstract:
With the rapid development of modern communication, diagnosing the fiber-optic quality and faults in real-time is widely focused. In this paper, a Labview-based system is proposed for fiber-optic faults detection. The wavelet threshold denoising method combined with Empirical Mode Decomposition (EMD) is applied to denoise the optical time domain reflectometer (OTDR) signal. Then the method based on Gabor representation is used to detect events. Experimental measurements show that signal to noise ratio (SNR) of the OTDR signal is improved by 1.34dB on average, compared with using the wavelet threshold denosing method. The proposed system has a high score in event detection capability and accuracy. The maximum detectable fiber length of the proposed Labview-based system can be 65km.Keywords: empirical mode decomposition, events detection, Gabor transform, optical time domain reflectometer, wavelet threshold denoising
Procedia PDF Downloads 12320329 Cytotoxicological Evaluation of a Folate Receptor Targeting Drug Delivery System Based on Cyclodextrins
Authors: Caroline Mendes, Mary McNamara, Orla Howe
Abstract:
For chemotherapy, a drug delivery system should be able to specifically target cancer cells and deliver the therapeutic dose without affecting normal cells. Folate receptors (FR) can be considered key targets since they are commonly over-expressed in cancer cells and they are the molecular marker used in this study. Here, cyclodextrin (CD) has being studied as a vehicle for delivering the chemotherapeutic drug, methotrexate (MTX). CDs have the ability to form inclusion complexes, in which molecules of suitable dimensions are included within the CD cavity. In this study, β-CD has been modified using folic acid so as to specifically target the FR molecular marker. Thus, the system studied here for drug delivery consists of β-CD, folic acid and MTX (CDEnFA:MTX). Cellular uptake of folic acid is mediated with high affinity by folate receptors while the cellular uptake of antifolates, such as MTX, is mediated with high affinity by the reduced folate carriers (RFCs). This study addresses the gene (mRNA) and protein expression levels of FRs and RFCs in the cancer cell lines CaCo-2, SKOV-3, HeLa, MCF-7, A549 and the normal cell line BEAS-2B, quantified by real-time polymerase chain reaction (real-time PCR) and flow cytometry, respectively. From that, four cell lines with different levels of FRs, were chosen for cytotoxicity assays of MTX and CDEnFA:MTX using the MTT assay. Real-time PCR and flow cytometry data demonstrated that all cell lines ubiquitously express moderate levels of RFC. These experiments have also shown that levels of FR protein in CaCo-2 cells are high, while levels in SKOV-3, HeLa and MCF-7 cells are moderate. A549 and BEAS-2B cells express low levels of FR protein. FRs are highly expressed in all the cancer cell lines analysed when compared to the normal cell line BEAS-2B. The cell lines CaCo-2, MCF-7, A549 and BEAS-2B were used in the cell viability assays. 48 hours treatment with the free drug and the complex resulted in IC50 values of 93.9 µM ± 9.2 and 56.0 µM ± 4.0 for CaCo-2 for free MTX and CDEnFA:MTX respectively, 118.2 µM ± 10.8 and 97.8 µM ± 12.3 for MCF-7, 36.4 µM ± 6.9 and 75.0 µM ± 8.5 for A549 and 132.6 µM ± 12.1 and 288.1 µM ± 16.3 for BEAS-2B. These results demonstrate that MTX is more toxic towards cell lines expressing low levels of FR, such as the BEAS-2B. More importantly, these results demonstrate that the inclusion complex CDEnFA:MTX showed greater cytotoxicity than the free drug towards the high FR expressing CaCo-2 cells, indicating that it has potential to target this receptor, enhancing the specificity and the efficiency of the drug.Keywords: cyclodextrins, cancer treatment, drug delivery, folate receptors, reduced folate carriers
Procedia PDF Downloads 30120328 Impact of Foliar Formulations of Macro and Micro Nutrients on the Tritrophic Association of Wheat Aphid and Entomophagous Insects
Authors: Muhammad Sufyan, Muhammad J. Arif, Muhammad Arshad, Usman Shoukat
Abstract:
In Pakistan, wheat (Triticum aestivum L.) is seriously attacked by the wheat aphid. Naturally, bio control agents play an important role in managing wheat aphid. However, association among pest, natural enemies and host plant is highly affected by food resource concentration and predator/parasitoid factor of any ecosystem. The present study was conducted to estimate the effect of different dose levels of macro and micronutrients on the aphid population and its entomophagous insect on wheat and their tri-trophic association. The experiment was laid out in RCBD with six different combinations of macro and micronutrients and a control treatment. The data was initiated from the second week of the February till the maturity of the crop. Data regarding aphid population and coccinellids counts were collected on weekly basis and subjected to analysis of variance and mean comparison. The data revealed that aphid population was at peak in the last week of March. Coccinellids population increased side by side with aphid population and declined after second week of April. Aphid parasitism was maximum 25% on recommended dose of Double and Flasher and minimum 8.67% on control treatment. Maximum aphid population was observed on first April with 687.2 specimens. However, this maximum population was shown against the application of Double + Flasher treatment. The minimum aphid population was recorded after the application of HiK Gold + Flasher recommended dose on 15th April. The coccinellids population was at peak level at on 8th April and against the treatment double recommended dose of HiK gold + Flasher. Amount of nitrogen, phosphorus and potassium percentage dry leaves components was maximum (2.33, 0.18 and 2.62 % dry leaves. respectively) in plots treated with recommended double dose mixture of Double + Flasher and Hi-K Gold + Flasher while it was minimum (1.43, 0.12 and 1.77 dry leaves respectively) in plots where no nutrients applied. The result revealed that maximum parasitism was at recommended level of micro and macro nutrients application. Maximum micro nutrients zinc, copper, manganese, iron and boron found with values 46.67 ppm, 21.81 ppm, 62.35 ppm, 152.69 ppm and 36.78 respectively. The result also showed that Over application of macro and micro nutrients should be avoided because it do not help in pest control, conversely it may cause stress on plant. The treatment Double and Flasher recommended dose ratio is almost comparable with recommended dose and present studies confirm its usefulness on wheat.Keywords: entomophagous insects, macro and micro nutrients, tri-trophic, wheat aphid
Procedia PDF Downloads 23020327 Clinical Training Simulation Experience of Medical Sector Students
Authors: Tahsien Mohamed Okasha
Abstract:
Simulation is one of the emerging educational strategies that depend on the creation of scenarios to imitate what could happen in real life. At the time of COVID, we faced big obstacles in medical education, specially the clinical part and how we could apply it, the simulation was the golden key. Simulation is a very important tool of education for medical sector students, through creating a safe, changeable, quiet environment with less anxiety level for students to practice and to have repeated trials on their competencies. That impacts the level of practice, achievement, and the way of acting in real situations and experiences. A blind Random sample of students from different specialties and colleges who came and finished their training in an integrated environment was collected and tested, and the responses were graded from (1-5). The results revealed that 77% of the studied subjects agreed that dealing and interacting with different medical sector candidates in the same place was beneficial. 77% of the studied subjects agreed that simulations were challenging in thinking and decision-making skills .75% agreed that using high-fidelity manikins was helpful. 75% agree .76% agreed that working in a safe, prepared environment is helpful for realistic situations.Keywords: simulation, clinical training, education, medical sector students
Procedia PDF Downloads 3120326 Investigation of Natural Resource Sufficiency for Development of a Sustainable Agriculture Strategy Based on Permaculture in Malta
Authors: Byron Baron
Abstract:
Typical of the Mediterranean region, the Maltese islands exhibit calcareous soils containing low organic carbon content and high salinity, in addition to being relatively shallow. This has lead to the common practice of applying copious amounts of artificial fertilisers as well as other chemical inputs, together with the use of ground water having high salinity. Such intensive agricultural activities, over a prolonged time period, on such land has lead further to the loss of any soil fertility, together with direct negative impacts on the quality of fresh water reserves and the local ecosystem. The aim of this study was to investigate whether the natural resources on the island would be sufficient to apply ecological intensification i.e. the use of natural processes to replace anthropological inputs without any significant loss in food production. This was implementing through a sustainable agricultural system based on permaculture practices. Ecological intensification following permaculture principles was implemented for two years in order to capture the seasonal changes in duplicate. The areas dedicated to wild plants were only trimmed back to avoid excessive seeding but never mowing. A number of local staple crops were grown throughout this period, also in duplicate. Concomitantly, a number of practices were implemented following permaculture principles such as reducing land tilling, applying only natural fertiliser, mulching, monitoring of soil parameters using sensors, no use of herbicides or pesticides, and precision irrigation linked to a desalination system. Numerous environmental parameters were measured at regular intervals so as to quantify any improvements in ecological conditions. Crop output was also measured as kilos of produce per area. The results clearly show that over the two year period, the variety of wild plant species increased, the number of visiting pollinators increased, there were no pest infestations (although an increase in the number of pests was observed), and a slight improvement in overall soil health was also observed. This was obviously limited by the short duration of the testing implementation. Dedicating slightly less than 15% of total land area to wild plants in the form of borders around plots of crops assisted pollination and provided a foraging area for gleaning bats (measured as an increased number of feeding buzzes) whilst not giving rise to any pest infestations and no apparent yield losses or ill effects to the crops. Observed increases in crop yields were not significant. The study concluded that with the right support for the initial establishment of a healthy ecosystem and controlled intervention, the available natural resources on the island can substantially improve the condition of the local agricultural land area, resulting is a more prolonged economical output with greater ecological sustainability. That being said, more comprehensive and long-term monitoring is required in order to fully validate these results and design a sustainable agriculture system that truly achieves the best outcome for the Maltese context.Keywords: ecological intensification, soil health, sustainable agriculture, permaculture
Procedia PDF Downloads 6520325 Real Time Classification of Political Tendency of Twitter Spanish Users based on Sentiment Analysis
Authors: Marc Solé, Francesc Giné, Magda Valls, Nina Bijedic
Abstract:
What people say on social media has turned into a rich source of information to understand social behavior. Specifically, the growing use of Twitter social media for political communication has arisen high opportunities to know the opinion of large numbers of politically active individuals in real time and predict the global political tendencies of a specific country. It has led to an increasing body of research on this topic. The majority of these studies have been focused on polarized political contexts characterized by only two alternatives. Unlike them, this paper tackles the challenge of forecasting Spanish political trends, characterized by multiple political parties, by means of analyzing the Twitters Users political tendency. According to this, a new strategy, named Tweets Analysis Strategy (TAS), is proposed. This is based on analyzing the users tweets by means of discovering its sentiment (positive, negative or neutral) and classifying them according to the political party they support. From this individual political tendency, the global political prediction for each political party is calculated. In order to do this, two different strategies for analyzing the sentiment analysis are proposed: one is based on Positive and Negative words Matching (PNM) and the second one is based on a Neural Networks Strategy (NNS). The complete TAS strategy has been performed in a Big-Data environment. The experimental results presented in this paper reveal that NNS strategy performs much better than PNM strategy to analyze the tweet sentiment. In addition, this research analyzes the viability of the TAS strategy to obtain the global trend in a political context make up by multiple parties with an error lower than 23%.Keywords: political tendency, prediction, sentiment analysis, Twitter
Procedia PDF Downloads 23820324 Experiences of Timing Analysis of Parallel Embedded Software
Authors: Muhammad Waqar Aziz, Syed Abdul Baqi Shah
Abstract:
The execution time analysis is fundamental to the successful design and execution of real-time embedded software. In such analysis, the Worst-Case Execution Time (WCET) of a program is a key measure, on the basis of which system tasks are scheduled. The WCET analysis of embedded software is also needed for system understanding and to guarantee its behavior. WCET analysis can be performed statically (without executing the program) or dynamically (through measurement). Traditionally, research on the WCET analysis assumes sequential code running on single-core platforms. However, as computation is steadily moving towards using a combination of parallel programs and multi-core hardware, new challenges in WCET analysis need to be addressed. In this article, we report our experiences of performing the WCET analysis of Parallel Embedded Software (PES) running on multi-core platform. The primary purpose was to investigate how WCET estimates of PES can be computed statically, and how they can be derived dynamically. Our experiences, as reported in this article, include the challenges we faced, possible suggestions to these challenges and the workarounds that were developed. This article also provides observations on the benefits and drawbacks of deriving the WCET estimates using the said methods and provides useful recommendations for further research in this area.Keywords: embedded software, worst-case execution-time analysis, static flow analysis, measurement-based analysis, parallel computing
Procedia PDF Downloads 32420323 Implementation of an IoT Sensor Data Collection and Analysis Library
Authors: Jihyun Song, Kyeongjoo Kim, Minsoo Lee
Abstract:
Due to the development of information technology and wireless Internet technology, various data are being generated in various fields. These data are advantageous in that they provide real-time information to the users themselves. However, when the data are accumulated and analyzed, more various information can be extracted. In addition, development and dissemination of boards such as Arduino and Raspberry Pie have made it possible to easily test various sensors, and it is possible to collect sensor data directly by using database application tools such as MySQL. These directly collected data can be used for various research and can be useful as data for data mining. However, there are many difficulties in using the board to collect data, and there are many difficulties in using it when the user is not a computer programmer, or when using it for the first time. Even if data are collected, lack of expert knowledge or experience may cause difficulties in data analysis and visualization. In this paper, we aim to construct a library for sensor data collection and analysis to overcome these problems.Keywords: clustering, data mining, DBSCAN, k-means, k-medoids, sensor data
Procedia PDF Downloads 37820322 Multimodal Employee Attendance Management System
Authors: Khaled Mohammed
Abstract:
This paper presents novel face recognition and identification approaches for the real-time attendance management problem in large companies/factories and government institutions. The proposed uses the Minimum Ratio (MR) approach for employee identification. Capturing the authentic face variability from a sequence of video frames has been considered for the recognition of faces and resulted in system robustness against the variability of facial features. Experimental results indicated an improvement in the performance of the proposed system compared to the Previous approaches at a rate between 2% to 5%. In addition, it decreased the time two times if compared with the Previous techniques, such as Extreme Learning Machine (ELM) & Multi-Scale Structural Similarity index (MS-SSIM). Finally, it achieved an accuracy of 99%.Keywords: attendance management system, face detection and recognition, live face recognition, minimum ratio
Procedia PDF Downloads 15520321 Optical Properties of TlInSe₂<AU> Si̇ngle Crystals
Authors: Gulshan Mammadova
Abstract:
This paper presents the results of studying the surface microrelief in 2D and 3D models and analyzing the spectroscopy of a three-junction TlInSe₂Keywords: optical properties, dielectric permittivity, real and imaginary dielectric permittivity, optical electrical conductivity
Procedia PDF Downloads 6320320 Enhancing Financial Security: Real-Time Anomaly Detection in Financial Transactions Using Machine Learning
Authors: Ali Kazemi
Abstract:
The digital evolution of financial services, while offering unprecedented convenience and accessibility, has also escalated the vulnerabilities to fraudulent activities. In this study, we introduce a distinct approach to real-time anomaly detection in financial transactions, aiming to fortify the defenses of banking and financial institutions against such threats. Utilizing unsupervised machine learning algorithms, specifically autoencoders and isolation forests, our research focuses on identifying irregular patterns indicative of fraud within transactional data, thus enabling immediate action to prevent financial loss. The data we used in this study included the monetary value of each transaction. This is a crucial feature as fraudulent transactions may have distributions of different amounts than legitimate ones, such as timestamps indicating when transactions occurred. Analyzing transactions' temporal patterns can reveal anomalies (e.g., unusual activity in the middle of the night). Also, the sector or category of the merchant where the transaction occurred, such as retail, groceries, online services, etc. Specific categories may be more prone to fraud. Moreover, the type of payment used (e.g., credit, debit, online payment systems). Different payment methods have varying risk levels associated with fraud. This dataset, anonymized to ensure privacy, reflects a wide array of transactions typical of a global banking institution, ranging from small-scale retail purchases to large wire transfers, embodying the diverse nature of potentially fraudulent activities. By engineering features that capture the essence of transactions, including normalized amounts and encoded categorical variables, we tailor our data to enhance model sensitivity to anomalies. The autoencoder model leverages its reconstruction error mechanism to flag transactions that deviate significantly from the learned normal pattern, while the isolation forest identifies anomalies based on their susceptibility to isolation from the dataset's majority. Our experimental results, validated through techniques such as k-fold cross-validation, are evaluated using precision, recall, and the F1 score alongside the area under the receiver operating characteristic (ROC) curve. Our models achieved an F1 score of 0.85 and a ROC AUC of 0.93, indicating high accuracy in detecting fraudulent transactions without excessive false positives. This study contributes to the academic discourse on financial fraud detection and provides a practical framework for banking institutions seeking to implement real-time anomaly detection systems. By demonstrating the effectiveness of unsupervised learning techniques in a real-world context, our research offers a pathway to significantly reduce the incidence of financial fraud, thereby enhancing the security and trustworthiness of digital financial services.Keywords: anomaly detection, financial fraud, machine learning, autoencoders, isolation forest, transactional data analysis
Procedia PDF Downloads 5720319 Dimension Free Rigid Point Set Registration in Linear Time
Authors: Jianqin Qu
Abstract:
This paper proposes a rigid point set matching algorithm in arbitrary dimensions based on the idea of symmetric covariant function. A group of functions of the points in the set are formulated using rigid invariants. Each of these functions computes a pair of correspondence from the given point set. Then the computed correspondences are used to recover the unknown rigid transform parameters. Each computed point can be geometrically interpreted as the weighted mean center of the point set. The algorithm is compact, fast, and dimension free without any optimization process. It either computes the desired transform for noiseless data in linear time, or fails quickly in exceptional cases. Experimental results for synthetic data and 2D/3D real data are provided, which demonstrate potential applications of the algorithm to a wide range of problems.Keywords: covariant point, point matching, dimension free, rigid registration
Procedia PDF Downloads 16820318 Reducing the Computational Overhead of Metaheuristics Parameterization with Exploratory Landscape Analysis
Authors: Iannick Gagnon, Alain April
Abstract:
The performance of a metaheuristic on a given problem class depends on the class itself and the choice of parameters. Parameter tuning is the most time-consuming phase of the optimization process after the main calculations and it often nullifies the speed advantage of metaheuristics over traditional optimization algorithms. Several off-the-shelf parameter tuning algorithms are available, but when the objective function is expensive to evaluate, these can be prohibitively expensive to use. This paper presents a surrogate-like method for finding adequate parameters using fitness landscape analysis on simple benchmark functions and real-world objective functions. The result is a simple compound similarity metric based on the empirical correlation coefficient and a measure of convexity. It is then used to find the best benchmark functions to serve as surrogates. The near-optimal parameter set is then found using fractional factorial design. The real-world problem of NACA airfoil lift coefficient maximization is used as a preliminary proof of concept. The overall aim of this research is to reduce the computational overhead of metaheuristics parameterization.Keywords: metaheuristics, stochastic optimization, particle swarm optimization, exploratory landscape analysis
Procedia PDF Downloads 15320317 Time and Cost Prediction Models for Language Classification Over a Large Corpus on Spark
Authors: Jairson Barbosa Rodrigues, Paulo Romero Martins Maciel, Germano Crispim Vasconcelos
Abstract:
This paper presents an investigation of the performance impacts regarding the variation of five factors (input data size, node number, cores, memory, and disks) when applying a distributed implementation of Naïve Bayes for text classification of a large Corpus on the Spark big data processing framework. Problem: The algorithm's performance depends on multiple factors, and knowing before-hand the effects of each factor becomes especially critical as hardware is priced by time slice in cloud environments. Objectives: To explain the functional relationship between factors and performance and to develop linear predictor models for time and cost. Methods: the solid statistical principles of Design of Experiments (DoE), particularly the randomized two-level fractional factorial design with replications. This research involved 48 real clusters with different hardware arrangements. The metrics were analyzed using linear models for screening, ranking, and measurement of each factor's impact. Results: Our findings include prediction models and show some non-intuitive results about the small influence of cores and the neutrality of memory and disks on total execution time, and the non-significant impact of data input scale on costs, although notably impacts the execution time.Keywords: big data, design of experiments, distributed machine learning, natural language processing, spark
Procedia PDF Downloads 12020316 Social Networks Global Impact on Protest Movements and Human Rights Activism
Authors: Marcya Burden, Savonna Greer
Abstract:
In the wake of social unrest around the world, protest movements have been captured like never before. As protest movements have evolved, so too have their visibility and sources of coverage. Long gone are the days of print media as our only glimpse into the action surrounding a protest. Now, with social networks such as Facebook, Instagram and Snapchat, we have access to real-time video footage of protest movements and human rights activism that can reach millions of people within seconds. This research paper investigated various social media network platforms’ statistical usage data in the areas of human rights activism and protest movements, paralleling with other past forms of media coverage. This research demonstrates that social networks are extremely important to protest movements and human rights activism. With over 2.9 billion users across social media networks globally, these platforms are the heart of most recent protests and human rights activism. This research shows the paradigm shift from the Selma March of 1965 to the more recent protests of Ferguson in 2014, Ni Una Menos in 2015, and End Sars in 2018. The research findings demonstrate that today, almost anyone may use their social networks to protest movement leaders and human rights activists. From a student to an 80-year-old professor, the possibility of reaching billions of people all over the world is limitless. Findings show that 82% of the world’s internet population is on social networks 1 in every 5 minutes. Over 65% of Americans believe social media highlights important issues. Thus, there is no need to have a formalized group of people or even be known online. A person simply needs to be engaged on their respective social media networks (Facebook, Twitter, Instagram, Snapchat) regarding any cause they are passionate about. Information may be exchanged in real time around the world and a successful protest can begin.Keywords: activism, protests, human rights, networks
Procedia PDF Downloads 9520315 Volume Estimation of Trees: An Exploratory Study on Pterocarpus erinaceus Logging Operations within Forest Transition and Savannah Ecological Zones of Ghana
Authors: Albert Kwabena Osei Konadu
Abstract:
Pterocarpus erinaceus, also known as Rosewood, is tropical wood, endemic in forest savannah transition zones within the middle and northern portion of Ghana. Its economic viability has made it increasingly popular and in high demand, leading to widespread conservation concerns. Ghana’s forest resource management regime for these ecozones is mainly on conservation and very little on resource utilization. Consequently, commercial logging management standards are at teething stage and not fully developed, leading to a deficiency in the monitoring of logging operations and quantification of harvested trees volumes. Tree information form (TIF); a volume estimation and tracking regime, has proven to be an effective, sustainable management tool for regulating timber resource extraction in the high forest zones of the country. This work aims to generate TIF that can track and capture requisite parameters to accurately estimate the volume of harvested rosewood within forest savannah transition zones. Tree information forms were created on three scenarios of individual billets, stacked billets and conveying vessel basis. These TIFs were field-tested to deduce the most viable option for the tracking and estimation of harvested volumes of rosewood using the smallian and cubic volume estimation formula. Overall, four districts were covered with individual billets, stacked billets and conveying vessel scenarios registering mean volumes of 25.83m3,45.08m3 and 32.6m3, respectively. These adduced volumes were validated by benchmarking to assigned volumes of the Forestry Commission of Ghana and known standard volumes of conveying vessels. The results did indicate an underestimation of extracted volumes under the quotas regime, a situation that could lead to unintended overexploitation of the species. The research revealed conveying vessels route is the most viable volume estimation and tracking regime for the sustainable management of the Pterocarpous erinaceus species as it provided a more practical volume estimate and data extraction protocol.Keywords: convention on international trade in endangered species, cubic volume formula, forest transition savannah zones, pterocarpus erinaceus, smallian’s volume formula, tree information form
Procedia PDF Downloads 10720314 Security Issues on Smart Grid and Blockchain-Based Secure Smart Energy Management Systems
Authors: Surah Aldakhl, Dafer Alali, Mohamed Zohdy
Abstract:
The next generation of electricity grid infrastructure, known as the "smart grid," integrates smart ICT (information and communication technology) into existing grids in order to alleviate the drawbacks of existing one-way grid systems. Future power systems' efficiency and dependability are anticipated to significantly increase thanks to the Smart Grid, especially given the desire for renewable energy sources. The security of the Smart Grid's cyber infrastructure is a growing concern, though, as a result of the interconnection of significant power plants through communication networks. Since cyber-attacks can destroy energy data, beginning with personal information leaking from grid members, they can result in serious incidents like huge outages and the destruction of power network infrastructure. We shall thus propose a secure smart energy management system based on the Blockchain as a remedy for this problem. The power transmission and distribution system may undergo a transformation as a result of the inclusion of optical fiber sensors and blockchain technology in smart grids. While optical fiber sensors allow real-time monitoring and management of electrical energy flow, Blockchain offers a secure platform to safeguard the smart grid against cyberattacks and unauthorized access. Additionally, this integration makes it possible to see how energy is produced, distributed, and used in real time, increasing transparency. This strategy has advantages in terms of improved security, efficiency, dependability, and flexibility in energy management. An in-depth analysis of the advantages and drawbacks of combining blockchain technology with optical fiber is provided in this paper.Keywords: smart grids, blockchain, fiber optic sensor, security
Procedia PDF Downloads 12020313 Some New Bounds for a Real Power of the Normalized Laplacian Eigenvalues
Authors: Ayşe Dilek Maden
Abstract:
For a given a simple connected graph, we present some new bounds via a new approach for a special topological index given by the sum of the real number power of the non-zero normalized Laplacian eigenvalues. To use this approach presents an advantage not only to derive old and new bounds on this topic but also gives an idea how some previous results in similar area can be developed.Keywords: degree Kirchhoff index, normalized Laplacian eigenvalue, spanning tree, simple connected graph
Procedia PDF Downloads 36620312 Automatic Thresholding for Data Gap Detection for a Set of Sensors in Instrumented Buildings
Authors: Houda Najeh, Stéphane Ploix, Mahendra Pratap Singh, Karim Chabir, Mohamed Naceur Abdelkrim
Abstract:
Building systems are highly vulnerable to different kinds of faults and failures. In fact, various faults, failures and human behaviors could affect the building performance. This paper tackles the detection of unreliable sensors in buildings. Different literature surveys on diagnosis techniques for sensor grids in buildings have been published but all of them treat only bias and outliers. Occurences of data gaps have also not been given an adequate span of attention in the academia. The proposed methodology comprises the automatic thresholding for data gap detection for a set of heterogeneous sensors in instrumented buildings. Sensor measurements are considered to be regular time series. However, in reality, sensor values are not uniformly sampled. So, the issue to solve is from which delay each sensor become faulty? The use of time series is required for detection of abnormalities on the delays. The efficiency of the method is evaluated on measurements obtained from a real power plant: an office at Grenoble Institute of technology equipped by 30 sensors.Keywords: building system, time series, diagnosis, outliers, delay, data gap
Procedia PDF Downloads 24520311 Assessment of Very Low Birth Weight Neonatal Tracking and a High-Risk Approach to Minimize Neonatal Mortality in Bihar, India
Authors: Aritra Das, Tanmay Mahapatra, Prabir Maharana, Sridhar Srikantiah
Abstract:
In the absence of adequate well-equipped neonatal-care facilities serving rural Bihar, India, the practice of essential home-based newborn-care remains critically important for reduction of neonatal and infant mortality, especially among pre-term and small-for-gestational-age (Low-birth-weight) newborns. To improve the child health parameters in Bihar, ‘Very-Low-Birth-Weight (vLBW) Tracking’ intervention is being conducted by CARE India, since 2015, targeting public facility-delivered newborns weighing ≤2000g at birth, to improve their identification and provision of immediate post-natal care. To assess the effectiveness of the intervention, 200 public health facilities were randomly selected from all functional public-sector delivery points in Bihar and various outcomes were tracked among the neonates born there. Thus far, one pre-intervention (Feb-Apr’2015-born neonates) and three post-intervention (for Sep-Oct’2015, Sep-Oct’2016 and Sep-Oct’2017-born children) follow-up studies were conducted. In each round, interviews were conducted with the mothers/caregivers of successfully-tracked children to understand outcome, service-coverage and care-seeking during the neonatal period. Data from 171 matched facilities common across all rounds were analyzed using SAS-9.4. Identification of neonates with birth-weight ≤ 2000g improved from 2% at baseline to 3.3%-4% during post-intervention. All indicators pertaining to post-natal home-visits by frontline-workers (FLWs) improved. Significant improvements between baseline and post-intervention rounds were also noted regarding mothers being informed about ‘weak’ child – at the facility (R1 = 25 to R4 = 50%) and at home by FLW (R1 = 19%, to R4 = 30%). Practice of ‘Kangaroo-Mother-Care (KMC)’– an important component of essential newborn care – showed significant improvement in postintervention period compared to baseline in both facility (R1 = 15% to R4 = 31%) and home (R1 = 10% to R4=29%). Increasing trend was noted regarding detection and birth weight-recording of the extremely low-birth-weight newborns (< 1500 g) showed an increasing trend. Moreover, there was a downward trend in mortality across rounds, in each birth-weight strata (< 1500g, 1500-1799g and >= 1800g). After adjustment for the differential distribution of birth-weights, mortality was found to decline significantly from R1 (22.11%) to R4 (11.87%). Significantly declining trend was also observed for both early and late neonatal mortality and morbidities. Multiple regression analysis identified - birth during immediate post-intervention phase as well as that during the maintenance phase, birth weight > 1500g, children of low-parity mothers, receiving visit from FLW in the first week and/or receiving advice on extra care from FLW as predictors of survival during neonatal period among vLBW newborns. vLBW tracking was found to be a successful and sustainable intervention and has already been handed over to the Government.Keywords: weak newborn tracking, very low birth weight babies, newborn care, community response
Procedia PDF Downloads 161