Search results for: predictive biomarker
84 Effect of Chemical Fertilizer on Plant Growth-Promoting Rhizobacteria in Wheat
Authors: Tessa E. Reid, Vanessa N. Kavamura, Maider Abadie, Adriana Torres-Ballesteros, Mark Pawlett, Ian M. Clark, Jim Harris, Tim Mauchline
Abstract:
The deleterious effect of chemical fertilizer on rhizobacterial diversity has been well documented using 16S rRNA gene amplicon sequencing and predictive metagenomics. Biofertilization is a cost-effective and sustainable alternative; improving strategies depends on isolating beneficial soil microorganisms. Although culturing is widespread in biofertilization, it is unknown whether the composition of cultured isolates closely mirrors native beneficial rhizobacterial populations. This study aimed to determine the relative abundance of culturable plant growth-promoting rhizobacteria (PGPR) isolates within total soil DNA and how potential PGPR populations respond to chemical fertilization in a commercial wheat variety. It was hypothesized that PGPR will be reduced in fertilized relative to unfertilized wheat. Triticum aestivum cv. Cadenza seeds were sown in a nutrient depleted agricultural soil in pots treated with and without nitrogen-phosphorous-potassium (NPK) fertilizer. Rhizosphere and rhizoplane samples were collected at flowering stage (10 weeks) and analyzed by culture-independent (amplicon sequence variance (ASV) analysis of total rhizobacterial DNA) and -dependent (isolation using growth media) techniques. Rhizosphere- and rhizoplane-derived microbiota culture collections were tested for plant growth-promoting traits using functional bioassays. In general, fertilizer addition decreased the proportion of nutrient-solubilizing bacteria (nitrate, phosphate, potassium, iron and, zinc) isolated from rhizocompartments in wheat, whereas salt tolerant bacteria were not affected. A PGPR database was created from isolate 16S rRNA gene sequences and searched against total soil DNA, revealing that 1.52% of total community ASVs were identified as culturable PGPR isolates. Bioassays identified a higher proportion of PGPR in non-fertilized samples (rhizosphere (49%) and rhizoplane (91%)) compared to fertilized samples (rhizosphere (21%) and rhizoplane (19%)) which constituted approximately 1.95% and 1.25% in non-fertilized and fertilized total community DNA, respectively. The analyses of 16S rRNA genes and deduced functional profiles provide an in-depth understanding of the responses of bacterial communities to fertilizer; this study suggests that rhizobacteria, which potentially benefit plants by mobilizing insoluble nutrients in soil, are reduced by chemical fertilizer addition. This knowledge will benefit the development of more targeted biofertilization strategies.Keywords: bacteria, fertilizer, microbiome, rhizoplane, rhizosphere
Procedia PDF Downloads 30883 Predicting Mortality among Acute Burn Patients Using BOBI Score vs. FLAMES Score
Authors: S. Moustafa El Shanawany, I. Labib Salem, F. Mohamed Magdy Badr El Dine, H. Tag El Deen Abd Allah
Abstract:
Thermal injuries remain a global health problem and a common issue encountered in forensic pathology. They are a devastating cause of morbidity and mortality in children and adults especially in developing countries, causing permanent disfigurement, scarring and grievous hurt. Burns have always been a matter of legal concern in cases of suicidal burns, self-inflicted burns for false accusation and homicidal attempts. Assessment of burn injuries as well as rating permanent disabilities and disfigurement following thermal injuries for the benefit of compensation claims represents a challenging problem. This necessitates the development of reliable scoring systems to yield an expected likelihood of permanent disability or fatal outcome following burn injuries. The study was designed to identify the risk factors of mortality in acute burn patients and to evaluate the applicability of FLAMES (Fatality by Longevity, APACHE II score, Measured Extent of burn, and Sex) and BOBI (Belgian Outcome in Burn Injury) model scores in predicting the outcome. The study was conducted on 100 adult patients with acute burn injuries admitted to the Burn Unit of Alexandria Main University Hospital, Egypt from October 2014 to October 2015. Victims were examined after obtaining informed consent and the data were collected in specially designed sheets including demographic data, burn details and any associated inhalation injury. Each burn patient was assessed using both BOBI and FLAMES scoring systems. The results of the study show the mean age of patients was 35.54±12.32 years. Males outnumbered females (55% and 45%, respectively). Most patients were accidently burnt (95%), whereas suicidal burns accounted for the remaining 5%. Flame burn was recorded in 82% of cases. As well, 8% of patients sustained more than 60% of total burn surface area (TBSA) burns, 19% of patients needed mechanical ventilation, and 19% of burnt patients died either from wound sepsis, multi-organ failure or pulmonary embolism. The mean length of hospital stay was 24.91±25.08 days. The mean BOBI score was 1.07±1.27 and that of the FLAMES score was -4.76±2.92. The FLAMES score demonstrated an area under the receiver operating characteristic (ROC) curve of 0.95 which was significantly higher than that of the BOBI score (0.883). A statistically significant association was revealed between both predictive models and the outcome. The study concluded that both scoring systems were beneficial in predicting mortality in acutely burnt patients. However, the FLAMES score could be applied with a higher level of accuracy.Keywords: BOBI, burns, FLAMES, scoring systems, outcome
Procedia PDF Downloads 33682 Predictive Pathogen Biology: Genome-Based Prediction of Pathogenic Potential and Countermeasures Targets
Authors: Debjit Ray
Abstract:
Horizontal gene transfer (HGT) and recombination leads to the emergence of bacterial antibiotic resistance and pathogenic traits. HGT events can be identified by comparing a large number of fully sequenced genomes across a species or genus, define the phylogenetic range of HGT, and find potential sources of new resistance genes. In-depth comparative phylogenomics can also identify subtle genome or plasmid structural changes or mutations associated with phenotypic changes. Comparative phylogenomics requires that accurately sequenced, complete and properly annotated genomes of the organism. Assembling closed genomes requires additional mate-pair reads or “long read” sequencing data to accompany short-read paired-end data. To bring down the cost and time required of producing assembled genomes and annotating genome features that inform drug resistance and pathogenicity, we are analyzing the performance for genome assembly of data from the Illumina NextSeq, which has faster throughput than the Illumina HiSeq (~1-2 days versus ~1 week), and shorter reads (150bp paired-end versus 300bp paired end) but higher capacity (150-400M reads per run versus ~5-15M) compared to the Illumina MiSeq. Bioinformatics improvements are also needed to make rapid, routine production of complete genomes a reality. Modern assemblers such as SPAdes 3.6.0 running on a standard Linux blade are capable in a few hours of converting mixes of reads from different library preps into high-quality assemblies with only a few gaps. Remaining breaks in scaffolds are generally due to repeats (e.g., rRNA genes) are addressed by our software for gap closure techniques, that avoid custom PCR or targeted sequencing. Our goal is to improve the understanding of emergence of pathogenesis using sequencing, comparative genomics, and machine learning analysis of ~1000 pathogen genomes. Machine learning algorithms will be used to digest the diverse features (change in virulence genes, recombination, horizontal gene transfer, patient diagnostics). Temporal data and evolutionary models can thus determine whether the origin of a particular isolate is likely to have been from the environment (could it have evolved from previous isolates). It can be useful for comparing differences in virulence along or across the tree. More intriguing, it can test whether there is a direction to virulence strength. This would open new avenues in the prediction of uncharacterized clinical bugs and multidrug resistance evolution and pathogen emergence.Keywords: genomics, pathogens, genome assembly, superbugs
Procedia PDF Downloads 19881 Diagenesis of the Permian Ecca Sandstones and Mudstones, in the Eastern Cape Province, South Africa: Implications for the Shale Gas Potential of the Karoo Basin
Authors: Temitope L. Baiyegunhi, Christopher Baiyegunhi, Kuiwu Liu, Oswald Gwavava
Abstract:
Diagenesis is the most important factor that affects or impact the reservoir property. Despite the fact that published data gives a vast amount of information on the geology, sedimentology and lithostratigraphy of the Ecca Group in the Karoo Basin of South Africa, little is known of the diagenesis of the potentially feasible shales and sandstones of the Ecca Group. The study aims to provide a general account of the diagenesis of sandstones and mudstone of the Ecca Group. Twenty-five diagenetic textures and structures are identified and grouped into three regimes or stages that include eogenesis, mesogenesis and telogenesis. Clay minerals are the most common cementing materials in the Ecca sandstones and mudstones. Smectite, kaolinite and illite are the major clay minerals that act as pore lining rims and pore-filling cement. Most of the clay minerals and detrital grains were seriously attacked and replaced by calcite. Calcite precipitates locally in pore spaces and partly or completely replaced feldspar and quartz grains, mostly at their margins. Precipitation of cements and formation of pyrite and authigenic minerals as well as little lithification occurred during the eogenesis. This regime was followed by mesogenesis which brought about an increase in tightness of grain packing, loss of pore spaces and thinning of beds due to weight of overlying sediments and selective dissolution of framework grains. Compaction, mineral overgrowths, mineral replacement, clay-mineral authigenesis, deformation and pressure solution structures occurred during mesogenesis. During rocks were uplifted, weathered and unroofed by erosion, this resulted in additional grain fracturing, decementation and oxidation of iron-rich volcanic fragments and ferromagnesian minerals. The rocks of Ecca Group were subjected to moderate-intense mechanical and chemical compaction during its progressive burial. Intergranular pores, matrix micro pores, secondary intragranular, dissolution and fractured pores are the observed pores. The presence of fractured and dissolution pores tend to enhance reservoir quality. However, the isolated nature of the pores makes them unfavourable producers of hydrocarbons, which at best would require stimulation. The understanding of the space and time distribution of diagenetic processes in these rocks will allow the development of predictive models of their quality, which may contribute to the reduction of risks involved in their exploration.Keywords: diagenesis, reservoir quality, Ecca Group, Karoo Supergroup
Procedia PDF Downloads 15280 Role of Psychological Capital in Organizational and Personal Outcomes: An Exploratory Study of Medical Professionals in Pakistan
Authors: Shazia Almas, Jaffar Iqbal, Nazia Almas
Abstract:
In most of the South Asian countries like Pakistan medical profession is one the most valued and respectful professions yet being a medical professional requires an enormous amount of responsibilities and work overload at the same time which possibly can be in contrast with family role of a doctor. Job and family are two primary spheres of a person's life no matter whatever the profession one adopts and the type of family one is running. There is a bi-directional relationship between job and family. The type and nature of work, time schedules, working shifts in medical profession are very demanding in the countries like Pakistan where number of patients is far more higher than the number of doctors available. The work life also have significant impact on family life and vice versa. Because of the sensitivity and interdependency of these relations, today’s overarching and competing demands remain dissatisfactory. The main objective of the current research is to investigate how interpersonal relationships affect work and work affects interpersonal relationships of medical professionals. In line with identifying these facts, the current study aimed to examine the predictive role of psychological capital (self-efficacy, hope, optimism, and resilience), in organizational outcome (job satisfaction) and personal outcome (family satisfaction) amongst male and medical professionals. A total of 350 participants from public and private sector hospitals of Pakistan were recruited through simple random and stratified sampling techniques, with age ranges from 26-50 years. The questionnaire including established and certified self-report measures of Psychological Capital Questionnaire, Job Satisfaction, and Family Satisfaction were adopted to collect the data. The reliability and validity of mentioned instruments were established through Cronbach’s alpha and factor analyses (exploratory and confirmatory) respectively using Structural Equation Modeling (SEM) by AMOS. The proposed hypotheses were tested using Pearson’s Correlation and Regression analyses for predicting effect whereas, t-Test was deployed to verify the difference between male and female health professionals. The results revealed that self-efficacy and optimism predicted job satisfaction while, self-efficacy, hope, and resilience predicted family satisfaction. Moreover, the results depicted significant gender differences in job satisfaction where females were higher on job satisfaction as compared to male medical professionals but no significant differences were observed in levels of family satisfaction between both genders. The study has implications for social, organizational and work policy designers. The study also paves for more researches with positive psychological approach to promote work-family harmony.Keywords: family satisfaction, job satisfaction, medical professionals, psychological capital
Procedia PDF Downloads 25179 An Evaluation of the Artificial Neural Network and Adaptive Neuro Fuzzy Inference System Predictive Models for the Remediation of Crude Oil-Contaminated Soil Using Vermicompost
Authors: Precious Ehiomogue, Ifechukwude Israel Ahuchaogu, Isiguzo Edwin Ahaneku
Abstract:
Vermicompost is the product of the decomposition process using various species of worms, to create a mixture of decomposing vegetable or food waste, bedding materials, and vemicast. This process is called vermicomposting, while the rearing of worms for this purpose is called vermiculture. Several works have verified the adsorption of toxic metals using vermicompost but the application is still scarce for the retention of organic compounds. This research brings to knowledge the effectiveness of earthworm waste (vermicompost) for the remediation of crude oil contaminated soils. The remediation methods adopted in this study were two soil washing methods namely, batch and column process which represent laboratory and in-situ remediation. Characterization of the vermicompost and crude oil contaminated soil were performed before and after the soil washing using Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD) and Atomic adsorption spectrometry (AAS). The optimization of washing parameters, using response surface methodology (RSM) based on Box-Behnken Design was performed on the response from the laboratory experimental results. This study also investigated the application of machine learning models [Artificial neural network (ANN), Adaptive neuro fuzzy inference system (ANFIS). ANN and ANFIS were evaluated using the coefficient of determination (R²) and mean square error (MSE)]. Removal efficiency obtained from the Box-Behnken design experiment ranged from 29% to 98.9% for batch process remediation. Optimization of the experimental factors carried out using numerical optimization techniques by applying desirability function method of the response surface methodology (RSM) produce the highest removal efficiency of 98.9% at absorbent dosage of 34.53 grams, adsorbate concentration of 69.11 (g/ml), contact time of 25.96 (min), and pH value of 7.71, respectively. Removal efficiency obtained from the multilevel general factorial design experiment ranged from 56% to 92% for column process remediation. The coefficient of determination (R²) for ANN was (0.9974) and (0.9852) for batch and column process, respectively, showing the agreement between experimental and predicted results. For batch and column precess, respectively, the coefficient of determination (R²) for RSM was (0.9712) and (0.9614), which also demonstrates agreement between experimental and projected findings. For the batch and column processes, the ANFIS coefficient of determination was (0.7115) and (0.9978), respectively. It can be concluded that machine learning models can predict the removal of crude oil from polluted soil using vermicompost. Therefore, it is recommended to use machines learning models to predict the removal of crude oil from contaminated soil using vermicompost.Keywords: ANFIS, ANN, crude-oil, contaminated soil, remediation and vermicompost
Procedia PDF Downloads 11178 Predictability of Kiremt Rainfall Variability over the Northern Highlands of Ethiopia on Dekadal and Monthly Time Scales Using Global Sea Surface Temperature
Authors: Kibrom Hadush
Abstract:
Countries like Ethiopia, whose economy is mainly rain-fed dependent agriculture, are highly vulnerable to climate variability and weather extremes. Sub-seasonal (monthly) and dekadal forecasts are hence critical for crop production and water resource management. Therefore, this paper was conducted to study the predictability and variability of Kiremt rainfall over the northern half of Ethiopia on monthly and dekadal time scales in association with global Sea Surface Temperature (SST) at different lag time. Trends in rainfall have been analyzed on annual, seasonal (Kiremt), monthly, and dekadal (June–September) time scales based on rainfall records of 36 meteorological stations distributed across four homogenous zones of the northern half of Ethiopia for the period 1992–2017. The results from the progressive Mann–Kendall trend test and the Sen’s slope method shows that there is no significant trend in the annual, Kiremt, monthly and dekadal rainfall total at most of the station's studies. Moreover, the rainfall in the study area varies spatially and temporally, and the distribution of the rainfall pattern increases from the northeast rift valley to northwest highlands. Methods of analysis include graphical correlation and multiple linear regression model are employed to investigate the association between the global SSTs and Kiremt rainfall over the homogeneous rainfall zones and to predict monthly and dekadal (June-September) rainfall using SST predictors. The results of this study show that in general, SST in the equatorial Pacific Ocean is the main source of the predictive skill of the Kiremt rainfall variability over the northern half of Ethiopia. The regional SSTs in the Atlantic and the Indian Ocean as well contribute to the Kiremt rainfall variability over the study area. Moreover, the result of the correlation analysis showed that the decline of monthly and dekadal Kiremt rainfall over most of the homogeneous zones of the study area are caused by the corresponding persistent warming of the SST in the eastern and central equatorial Pacific Ocean during the period 1992 - 2017. It is also found that the monthly and dekadal Kiremt rainfall over the northern, northwestern highlands and northeastern lowlands of Ethiopia are positively correlated with the SST in the western equatorial Pacific, eastern and tropical northern the Atlantic Ocean. Furthermore, the SSTs in the western equatorial Pacific and Indian Oceans are positively correlated to the Kiremt season rainfall in the northeastern highlands. Overall, the results showed that the prediction models using combined SSTs at various ocean regions (equatorial and tropical) performed reasonably well in the prediction (With R2 ranging from 30% to 65%) of monthly and dekadal rainfall and recommends it can be used for efficient prediction of Kiremt rainfall over the study area to aid with systematic and informed decision making within the agricultural sector.Keywords: dekadal, Kiremt rainfall, monthly, Northern Ethiopia, sea surface temperature
Procedia PDF Downloads 14277 Enhanced Furfural Extraction from Aqueous Media Using Neoteric Hydrophobic Solvents
Authors: Ahmad S. Darwish, Tarek Lemaoui, Hanifa Taher, Inas M. AlNashef, Fawzi Banat
Abstract:
This research reports a systematic top-down approach for designing neoteric hydrophobic solvents –particularly, deep eutectic solvents (DES) and ionic liquids (IL)– as furfural extractants from aqueous media for the application of sustainable biomass conversion. The first stage of the framework entailed screening 32 neoteric solvents to determine their efficacy against toluene as the application’s conventional benchmark for comparison. The selection criteria for the best solvents encompassed not only their efficiency in extracting furfural but also low viscosity and minimal toxicity levels. Additionally, for the DESs, their natural origins, availability, and biodegradability were also taken into account. From the screening pool, two neoteric solvents were selected: thymol:decanoic acid 1:1 (Thy:DecA) and trihexyltetradecyl phosphonium bis(trifluoromethylsulfonyl) imide [P₁₄,₆,₆,₆][NTf₂]. These solvents outperformed the toluene benchmark, achieving efficiencies of 94.1% and 97.1% respectively, compared to toluene’s 81.2%, while also possessing the desired properties. These solvents were then characterized thoroughly in terms of their physical properties, thermal properties, critical properties, and cross-contamination solubilities. The selected neoteric solvents were then extensively tested under various operating conditions, and an exceptional stable performance was exhibited, maintaining high efficiency across a broad range of temperatures (15–100 °C), pH levels (1–13), and furfural concentrations (0.1–2.0 wt%) with a remarkable equilibrium time of only 2 minutes, and most notably, demonstrated high efficiencies even at low solvent-to-feed ratios. The durability of the neoteric solvents was also validated to be stable over multiple extraction-regeneration cycles, with limited leachability to the aqueous phase (≈0.1%). Moreover, the extraction performance of the solvents was then modeled through machine learning, specifically multiple non-linear regression (MNLR) and artificial neural networks (ANN). The models demonstrated high accuracy, indicated by their low absolute average relative deviations with values of 2.74% and 2.28% for Thy:DecA and [P₁₄,₆,₆,₆][NTf₂], respectively, using MNLR, and 0.10% for Thy:DecA and 0.41% for [P₁₄,₆,₆,₆][NTf₂] using ANN, highlighting the significantly enhanced predictive accuracy of the ANN. The neoteric solvents presented herein offer noteworthy advantages over traditional organic solvents, including their high efficiency in both extraction and regeneration processes, their stability and minimal leachability, making them particularly suitable for applications involving aqueous media. Moreover, these solvents are more environmentally friendly, incorporating renewable and sustainable components like thymol and decanoic acid. This exceptional efficacy of the newly developed neoteric solvents signifies a significant advancement, providing a green and sustainable alternative for furfural production from biowaste.Keywords: sustainable biomass conversion, furfural extraction, ionic liquids, deep eutectic solvents
Procedia PDF Downloads 7176 Characterization of Thin Woven Composites Used in Printed Circuit Boards by Combining Numerical and Experimental Approaches
Authors: Gautier Girard, Marion Martiny, Sebastien Mercier, Mohamad Jrad, Mohamed-Slim Bahi, Laurent Bodin, Francois Lechleiter, David Nevo, Sophie Dareys
Abstract:
Reliability of electronic devices has always been of highest interest for Aero-MIL and space applications. In any electronic device, Printed Circuit Board (PCB), providing interconnection between components, is a key for reliability. During the last decades, PCB technologies evolved to sustain and/or fulfill increased original equipment manufacturers requirements and specifications, higher densities and better performances, faster time to market and longer lifetime, newer material and mixed buildups. From the very beginning of the PCB industry up to recently, qualification, experiments and trials, and errors were the most popular methods to assess system (PCB) reliability. Nowadays OEM, PCB manufacturers and scientists are working together in a close relationship in order to develop predictive models for PCB reliability and lifetime. To achieve that goal, it is fundamental to characterize precisely base materials (laminates, electrolytic copper, …), in order to understand failure mechanisms and simulate PCB aging under environmental constraints by means of finite element method for example. The laminates are woven composites and have thus an orthotropic behaviour. The in-plane properties can be measured by combining classical uniaxial testing and digital image correlation. Nevertheless, the out-of-plane properties cannot be evaluated due to the thickness of the laminate (a few hundred of microns). It has to be noted that the knowledge of the out-of-plane properties is fundamental to investigate the lifetime of high density printed circuit boards. A homogenization method combining analytical and numerical approaches has been developed in order to obtain the complete elastic orthotropic behaviour of a woven composite from its precise 3D internal structure and its experimentally measured in-plane elastic properties. Since the mechanical properties of the resin surrounding the fibres are unknown, an inverse method is proposed to estimate it. The methodology has been applied to one laminate used in hyperfrequency spatial applications in order to get its elastic orthotropic behaviour at different temperatures in the range [-55°C; +125°C]. Next; numerical simulations of a plated through hole in a double sided PCB are performed. Results show the major importance of the out-of-plane properties and the temperature dependency of these properties on the lifetime of a printed circuit board. Acknowledgements—The support of the French ANR agency through the Labcom program ANR-14-LAB7-0003-01, support of CNES, Thales Alenia Space and Cimulec is acknowledged.Keywords: homogenization, orthotropic behaviour, printed circuit board, woven composites
Procedia PDF Downloads 20575 Serological IgG Testing to Diagnose Alimentary Induced Diseases and Monitoring Efficacy of an Individual Defined Diet in Dogs
Authors: Anne-Margré C. Vink
Abstract:
Background: Food-related allergies and intolerances are frequently occurring in dogs. Diagnosis and monitoring according to ‘Golden Standard’ of elimination efficiency are time-consuming, expensive, and requires expert clinical setting. In order to facilitate rapid and robust, quantitative testing of intolerance, and determining the individual offending foods, a serological test is implicated. Method: As we developed Medisynx IgG Human Screening Test ELISA before and the dog’s immune system is most similar to humans, we were able to develop Medisynx IgG Dog Screening Test ELISA as well. In this study, 47 dogs suffering from Canine Atopic Dermatitis (CAD) and several secondary induced reactions were included to participate in serological Medisynx IgG Dog Screening Test ELISA (within < 0,02 % SD). Results were expressed as titers relative to the standard OD readings to diagnose alimentary induced diseases and monitoring the efficacy of an individual eliminating diet in dogs. Split sample analysis was performed by independently sending 2 times 3 ml serum under two unique codes. Results: The veterinarian monitored these dogs to check dog’ results at least at 3, 7, 21, 49, 70 days and after period of 6 and 12 months on an individual negative diet and a positive challenge (retrospectively) at 6 months. Data of each dog were recorded in a screening form and reported that a complete recovery of all clinical manifestations was observed at or less than 70 days (between 50 and 70 days) in the majority of dogs(44 out of 47 dogs =93.6%). Conclusion: Challenge results showed a significant result of 100% in specificity as well as 100% positive predicted value. On the other hand, sensitivity was 95,7% and negative predictive value was 95,7%. In conclusion, an individual diet based on IgG ELISA in dogs provides a significant improvement of atopic dermatitis and pruritus including all other non-specific defined allergic skin reactions as erythema, itching, biting and gnawing at toes, as well as to several secondary manifestations like chronic diarrhoea, chronic constipation, otitis media, obesity, laziness or inactive behaviour, pain and muscular stiffness causing a movement disorders, excessive lacrimation, hyper behaviour, nervous behaviour and not possible to stay alone at home, anxiety, biting and aggressive behaviour and disobedience behaviour. Furthermore, we conclude that a relatively more severe systemic candidiasis, as shown by relatively higher titer (class 3 and 4 IgG reactions to Candida albicans), influence the duration of recovery from clinical manifestations in affected dogs. These findings are consistent with our preliminary human clinical studies.Keywords: allergy, canine atopic dermatitis, CAD, food allergens, IgG-ELISA, food-incompatibility
Procedia PDF Downloads 32374 Towards an Environmental Knowledge System in Water Management
Authors: Mareike Dornhoefer, Madjid Fathi
Abstract:
Water supply and water quality are key problems of mankind at the moment and - due to increasing population - in the future. Management disciplines like water, environment and quality management therefore need to closely interact, to establish a high level of water quality and to guarantee water supply in all parts of the world. Groundwater remediation is one aspect in this process. From a knowledge management perspective it is only possible to solve complex ecological or environmental problems if different factors, expert knowledge of various stakeholders and formal regulations regarding water, waste or chemical management are interconnected in form of a knowledge base. In general knowledge management focuses the processes of gathering and representing existing and new knowledge in a way, which allows for inference or deduction of knowledge for e.g. a situation where a problem solution or decision support are required. A knowledge base is no sole data repository, but a key element in a knowledge based system, thus providing or allowing for inference mechanisms to deduct further knowledge from existing facts. In consequence this knowledge provides decision support. The given paper introduces an environmental knowledge system in water management. The proposed environmental knowledge system is part of a research concept called Green Knowledge Management. It applies semantic technologies or concepts such as ontology or linked open data to interconnect different data and information sources about environmental aspects, in this case, water quality, as well as background material enriching an established knowledge base. Examples for the aforementioned ecological or environmental factors threatening water quality are among others industrial pollution (e.g. leakage of chemicals), environmental changes (e.g. rise in temperature) or floods, where all kinds of waste are merged and transferred into natural water environments. Water quality is usually determined with the help of measuring different indicators (e.g. chemical or biological), which are gathered with the help of laboratory testing, continuous monitoring equipment or other measuring processes. During all of these processes data are gathered and stored in different databases. Meanwhile the knowledge base needs to be established through interconnecting data of these different data sources and enriching its semantics. Experts may add their knowledge or experiences of previous incidents or influencing factors. In consequence querying or inference mechanisms are applied for the deduction of coherence between indicators, predictive developments or environmental threats. Relevant processes or steps of action may be modeled in form of a rule based approach. Overall the environmental knowledge system supports the interconnection of information and adding semantics to create environmental knowledge about water environment, supply chain as well as quality. The proposed concept itself is a holistic approach, which links to associated disciplines like environmental and quality management. Quality indicators and quality management steps need to be considered e.g. for the process and inference layers of the environmental knowledge system, thus integrating the aforementioned management disciplines in one water management application.Keywords: water quality, environmental knowledge system, green knowledge management, semantic technologies, quality management
Procedia PDF Downloads 22173 DeepNIC a Method to Transform Each Tabular Variable into an Independant Image Analyzable by Basic CNNs
Authors: Nguyen J. M., Lucas G., Ruan S., Digonnet H., Antonioli D.
Abstract:
Introduction: Deep Learning (DL) is a very powerful tool for analyzing image data. But for tabular data, it cannot compete with machine learning methods like XGBoost. The research question becomes: can tabular data be transformed into images that can be analyzed by simple CNNs (Convolutional Neuron Networks)? Will DL be the absolute tool for data classification? All current solutions consist in repositioning the variables in a 2x2 matrix using their correlation proximity. In doing so, it obtains an image whose pixels are the variables. We implement a technology, DeepNIC, that offers the possibility of obtaining an image for each variable, which can be analyzed by simple CNNs. Material and method: The 'ROP' (Regression OPtimized) model is a binary and atypical decision tree whose nodes are managed by a new artificial neuron, the Neurop. By positioning an artificial neuron in each node of the decision trees, it is possible to make an adjustment on a theoretically infinite number of variables at each node. From this new decision tree whose nodes are artificial neurons, we created the concept of a 'Random Forest of Perfect Trees' (RFPT), which disobeys Breiman's concepts by assembling very large numbers of small trees with no classification errors. From the results of the RFPT, we developed a family of 10 statistical information criteria, Nguyen Information Criterion (NICs), which evaluates in 3 dimensions the predictive quality of a variable: Performance, Complexity and Multiplicity of solution. A NIC is a probability that can be transformed into a grey level. The value of a NIC depends essentially on 2 super parameters used in Neurops. By varying these 2 super parameters, we obtain a 2x2 matrix of probabilities for each NIC. We can combine these 10 NICs with the functions AND, OR, and XOR. The total number of combinations is greater than 100,000. In total, we obtain for each variable an image of at least 1166x1167 pixels. The intensity of the pixels is proportional to the probability of the associated NIC. The color depends on the associated NIC. This image actually contains considerable information about the ability of the variable to make the prediction of Y, depending on the presence or absence of other variables. A basic CNNs model was trained for supervised classification. Results: The first results are impressive. Using the GSE22513 public data (Omic data set of markers of Taxane Sensitivity in Breast Cancer), DEEPNic outperformed other statistical methods, including XGBoost. We still need to generalize the comparison on several databases. Conclusion: The ability to transform any tabular variable into an image offers the possibility of merging image and tabular information in the same format. This opens up great perspectives in the analysis of metadata.Keywords: tabular data, CNNs, NICs, DeepNICs, random forest of perfect trees, classification
Procedia PDF Downloads 12772 Association of Body Composition Parameters with Lower Limb Strength and Upper Limb Functional Capacity in Quilombola Remnants
Authors: Leonardo Costa Pereira, Frederico Santos Santana, Mauro Karnikowski, Luís Sinésio Silva Neto, Aline Oliveira Gomes, Marisete Peralta Safons, Margô Gomes De Oliveira Karnikowski
Abstract:
In Brazil, projections of population aging follow all world projections, the birth rate tends to be surpassed by the mortality rate around the year 2045. Historically, the population of Brazilian blacks suffered for several centuries from the oppression of dominant classes. A group, especially of blacks, stands out in relation to territorial, historical and social aspects, and for centuries they have isolated themselves in small communities, in order to maintain their freedom and culture. The isolation of the Quilombola communities generated socioeconomic effects as well as the health of these blacks. Thus, the objective of the present study is to verify the association of body composition parameters with lower and upper limb strength and functional capacity in Quilombola remnants. The research was approved by ethics committee (1,771,159). Anthropometric evaluations of hip and waist circumference, body mass and height were performed. In order to verify the body composition, the relationship between stature and body mass (BM) was performed, generating the body mass index (BMI), as well as the dual-energy X-ray absorptiometry (DEXA) test. The Time Up and Go (TUG) test was used to evaluate the functional capacity, and a maximum repetition test (1MR) for knee extension and handgrip (HG) was applied for strength magnitude analysis. Statistical analysis was performed using the statistical package SPSS 22.0. Shapiro Wilk's normality test was performed. For the possible correlations, the suggestions of the Pearson or Spearman tests were adopted. The results obtained after the interpretation identified that the sample (n = 18) was composed of 66.7% of female individuals with mean age of 66.07 ± 8.95 years. The sample’s body fat percentage (%BF) (35.65 ± 10.73) exceeds the recommendations for age group, as well as the anthropometric parameters of hip (90.91 ± 8.44cm) and waist circumference (80.37 ± 17.5cm). The relationship between height (1.55 ± 0.1m) and body mass (63.44 ± 11.25Kg) generated a BMI of 24.16 ± 7.09Kg/m2, that was considered normal. The TUG performance was 10.71 ± 1.85s. In the 1MR test, 46.67 ± 13.06Kg and in the HG 23.93±7.96Kgf were obtained, respectively. Correlation analyzes were characterized by the high frequency of significant correlations for height, dominant arm mass (DAM), %BF, 1MR and HG variables. In addition, correlations between HG and BM (r = 0.67, p = 0.005), height (r = 0.51, p = 0.004) and DAM (r = 0.55, p = 0.026) were also observed. The strength of the lower limbs correlates with BM (r = 0.69, p = 0.003), height (r = 0.62, p = 0.01) and DAM (r = 0.772, p = 0.001). In this way, we can conclude that not only the simple spatial relationship of mass and height can influence in predictive parameters of strength or functionality, being important the verification of the conditions of the corporal composition. For this population, height seems to be a good predictor of strength and body composition.Keywords: African Continental Ancestry Group, body composition, functional capacity, strength
Procedia PDF Downloads 27671 DEKA-1 a Dose-Finding Phase 1 Trial: Observing Safety and Biomarkers using DK210 (EGFR) for Inoperable Locally Advanced and/or Metastatic EGFR+ Tumors with Progressive Disease Failing Systemic Therapy
Authors: Spira A., Marabelle A., Kientop D., Moser E., Mumm J.
Abstract:
Background: Both interleukin-2 (IL-2) and interleukin-10 (IL-10) have been extensively studied for their stimulatory function on T cells and their potential to obtain sustainable tumor control in RCC, melanoma, lung, and pancreatic cancer as monotherapy, as well as combination with PD-1 blockers, radiation, and chemotherapy. While approved, IL-2 retains significant toxicity, preventing its widespread use. The significant efforts undertaken to uncouple IL-2 toxicity from its anti-tumor function have been unsuccessful, and early phase clinical safety observed with PEGylated IL-10 was not met in a blinded Phase 3 trial. Deka Biosciences has engineered a novel molecule coupling wild-type IL-2 to a high affinity variant of Epstein Barr Viral (EBV) IL-10 via a scaffold (scFv) that binds to epidermal growth factor receptors (EGFR). This patented molecule, termed DK210 (EGFR), is retained at high levels within the tumor microenvironment for days after dosing. In addition to overlapping and non-redundant anti-tumor function, IL-10 reduces IL-2 mediated cytokine release syndrome risks and inhibits IL-2 mediated T regulatory cell proliferation. Methods: DK210 (EGFR) is being evaluated in an open-label, dose-escalation (Phase 1) study with 5 (0.025-0.3 mg/kg) monotherapy dose levels and (expansion cohorts) in combination with PD-1 blockers, or radiation or chemotherapy in patients with advanced solid tumors overexpressing EGFR. Key eligibility criteria include 1) confirmed progressive disease on at least one line of systemic treatment, 2) EGFR overexpression or amplification documented in histology reports, 3) at least a 4 week or 5 half-lives window since last treatment, and 4) excluding subjects with long QT syndrome, multiple myeloma, multiple sclerosis, myasthenia gravis or uncontrolled infectious, psychiatric, neurologic, or cancer disease. Plasma and tissue samples will be investigated for pharmacodynamic and predictive biomarkers and genetic signatures associated with IFN-gamma secretion, aiming to select subjects for treatment in Phase 2. Conclusion: Through successful coupling of wild-type IL-2 with a high affinity IL-10 and targeting directly to the tumor microenvironment, DK210 (EGFR) has the potential to harness IL-2 and IL-10’s known anti-cancer promise while reducing immunogenicity and toxicity risks enabling safe concomitant cytokine treatment with other anti-cancer modalities.Keywords: cytokine, EGFR over expression, interleukine-2, interleukine-10, clinical trial
Procedia PDF Downloads 8670 Smart Architecture and Sustainability in the Built Environment for the Hatay Refugee Camp
Authors: Ali Mohammed Ali Lmbash
Abstract:
The global refugee crisis points to the vital need for sustainable and resistant solutions to different kinds of problems for displaced persons all over the world. Among the myriads of sustainable concerns, however, there are diverse considerations including energy consumption, waste management, water access, and resiliency of structures. Our research aims to develop distinct ideas for sustainable architecture given the exigent problems in disaster-threatened areas starting with the Hatay Refugee camp in Turkey where the majority of the camp dwellers are Syrian refugees. Commencing community-based participatory research which focuses on the socio-environmental issues of displaced populations, this study will apply two approaches with a specific focus on the Hatay region. The initial experiment uses Richter's predictive model and simulations to forecast earthquake outcomes in refugee campers. The result could be useful in implementing architectural design tactics that enhance structural reliability and ensure the security and safety of shelters through earthquakes. In the second experiment a model is generated which helps us in predicting the quality of the existing water sources and since we understand how greatly water is vital for the well-being of humans, we do it. This research aims to enable camp administrators to employ forward-looking practices while managing water resources and thus minimizing health risks as well as building resilience of the refugees in the Hatay area. On the other side, this research assesses other sustainability problems of Hatay Refugee Camp as well. As energy consumption becomes the major issue, housing developers are required to consider energy-efficient designs as well as feasible integration of renewable energy technologies to minimize the environmental impact and improve the long-term sustainability of housing projects. Waste management is given special attention in this case by imposing recycling initiatives and waste reduction measures to reduce the pace of environmental degradation in the camp's land area. As well, study gives an insight into the social and economic reality of the camp, investigating the contribution of initiatives such as urban agriculture or vocational training to the enhancement of livelihood and community empowerment. In a similar fashion, this study combines the latest research with practical experience in order to contribute to the continuing discussion on sustainable architecture during disaster relief, providing recommendations and info that can be adapted on every scale worldwide. Through collaborative efforts and a dedicated sustainability approach, we can jointly get to the root of the cause and work towards a far more robust and equitable society.Keywords: smart architecture, Hatay Camp, sustainability, machine learning.
Procedia PDF Downloads 5869 An Unified Model for Longshore Sediment Transport Rate Estimation
Authors: Aleksandra Dudkowska, Gabriela Gic-Grusza
Abstract:
Wind wave-induced sediment transport is an important multidimensional and multiscale dynamic process affecting coastal seabed changes and coastline evolution. The knowledge about sediment transport rate is important to solve many environmental and geotechnical issues. There are many types of sediment transport models but none of them is widely accepted. It is bacause the process is not fully defined. Another problem is a lack of sufficient measurment data to verify proposed hypothesis. There are different types of models for longshore sediment transport (LST, which is discussed in this work) and cross-shore transport which is related to different time and space scales of the processes. There are models describing bed-load transport (discussed in this work), suspended and total sediment transport. LST models use among the others the information about (i) the flow velocity near the bottom, which in case of wave-currents interaction in coastal zone is a separate problem (ii) critical bed shear stress that strongly depends on the type of sediment and complicates in the case of heterogeneous sediment. Moreover, LST rate is strongly dependant on the local environmental conditions. To organize existing knowledge a series of sediment transport models intercomparisons was carried out as a part of the project “Development of a predictive model of morphodynamic changes in the coastal zone”. Four classical one-grid-point models were studied and intercompared over wide range of bottom shear stress conditions, corresponding with wind-waves conditions appropriate for coastal zone in polish marine areas. The set of models comprises classical theories that assume simplified influence of turbulence on the sediment transport (Du Boys, Meyer-Peter & Muller, Ribberink, Engelund & Hansen). It turned out that the values of estimated longshore instantaneous mass sediment transport are in general in agreement with earlier studies and measurements conducted in the area of interest. However, none of the formulas really stands out from the rest as being particularly suitable for the test location over the whole analyzed flow velocity range. Therefore, based on the models discussed a new unified formula for longshore sediment transport rate estimation is introduced, which constitutes the main original result of this study. Sediment transport rate is calculated based on the bed shear stress and critical bed shear stress. The dependence of environmental conditions is expressed by one coefficient (in a form of constant or function) thus the model presented can be quite easily adjusted to the local conditions. The discussion of the importance of each model parameter for specific velocity ranges is carried out. Moreover, it is shown that the value of near-bottom flow velocity is the main determinant of longshore bed-load in storm conditions. Thus, the accuracy of the results depends less on the sediment transport model itself and more on the appropriate modeling of the near-bottom velocities.Keywords: bedload transport, longshore sediment transport, sediment transport models, coastal zone
Procedia PDF Downloads 38768 Palliative Care Referral Behavior Among Nurse Practitioners in Hospital Medicine
Authors: Sharon Jackson White
Abstract:
Purpose: Nurse practitioners (NPs) practicing within hospital medicine play a significant role in caring for patients who might benefit from palliative care (PC) services. Using the Theory of Planned Behavior, the purpose of this study was to examine the relationships among facilitators to referral, barriers to referral, self-efficacy with end-of-life discussions, history of referral, and referring to PC among NPs in hospital medicine. Hypotheses: 1) Perceived facilitators to referral will be associated with a higher history of referral and a higher number of referrals to PC. 2) Perceived barriers to referral will be associated with a lower history of referral and a lower number of referrals to PC. 3) Increased self-efficacy with end-of-life discussions will be associated with a higher history of referral and a higher number of referrals to PC. 4) Perceived facilitators to referral, perceived barriers to referral, and self–efficacy with end-of-life discussions will contribute to a significant variance in the history of referral to PC. 5) Perceived facilitators to referral, perceived barriers to referral, and self–efficacy with end-of-life discussions will contribute to a significant variance in the number of referrals to PC. Significance: Previous studies of referring patients to PC within the hospital setting care have focused on physician practices. Identifying factors that influence NPs referring hospitalized patients to PC is essential to ensure that patients have access to these important services. This study incorporates the SNRS mission of advancing nursing research through the dissemination of research findings and the promotion of nursing science. Methods: A cross-sectional, predictive correlational study was conducted. History of referral to PC, facilitators to referring to PC, barriers to referring to PC, self-efficacy in end-of-life discussions, and referral to PC were measured using the PC referral case study survey, facilitators and barriers to PC referral survey, and self-assessment with end-of-life discussions survey. Data were analyzed descriptively and with Pearson’s Correlation, Spearman’s Rho, point-biserial correlation, multiple regression, logistic regression, Chi-Square test, and the Mann-Whitney U test. Results: Only one facilitator (PC team being helpful with establishing goals of care) was significantly associated with referral to PC. Three variables were statistically significant in relation to the history of referring to PC: “Inclined to refer: PC can help decrease the length of stay in hospital”, “Most inclined to refer: Patients with serious illnesses and/or poor prognoses”, and “Giving bad news to a patient or family member”. No predictor variables contributed a significant variance in the number of referrals to PC for all three case studies. There were no statistically significant results showing a relationship between the history of referral and referral to PC. All five hypotheses were partially supported. Discussion: Findings from this study emphasize the need for further research on NPs who work in hospital settings and what factors influence their behaviors of referring to PC. Since there is an increase in NPs practicing within hospital settings, future studies should use a larger sample size and incorporate hospital medicine NPs and other types of NPs that work in hospitals.Keywords: palliative care, nurse practitioners, hospital medicine, referral
Procedia PDF Downloads 7467 Possibilities of Psychodiagnostics in the Context of Highly Challenging Situations in Military Leadership
Authors: Markéta Chmelíková, David Ullrich, Iva Burešová
Abstract:
The paper maps the possibilities and limits of diagnosing selected personality and performance characteristics of military leadership and psychology students in the context of coping with challenging situations. Individuals vary greatly inter-individually in their ability to effectively manage extreme situations, yet existing diagnostic tools are often criticized mainly for their low predictive power. Nowadays, every modern army focuses primarily on the systematic minimization of potential risks, including the prediction of desirable forms of behavior and the performance of military commanders. The context of military leadership is well known for its life-threatening nature. Therefore, it is crucial to research stress load in the specific context of military leadership for the purpose of possible anticipation of human failure in managing extreme situations of military leadership. The aim of the submitted pilot study, using an experiment of 24 hours duration, is to verify the possibilities of a specific combination of psychodiagnostic to predict people who possess suitable equipment for coping with increased stress load. In our pilot study, we conducted an experiment of 24 hours duration with an experimental group (N=13) in the bomb shelter and a control group (N=11) in a classroom. Both groups were represented by military leadership students (N=11) and psychology students (N=13). Both groups were equalized in terms of study type and gender. Participants were administered the following test battery of personality characteristics: Big Five Inventory 2 (BFI-2), Short Dark Triad (SD-3), Emotion Regulation Questionnaire (ERQ), Fatigue Severity Scale (FSS), and Impulsive Behavior Scale (UPPS-P). This test battery was administered only once at the beginning of the experiment. Along with this, they were administered a test battery consisting of the Test of Attention (d2) and the Bourdon test four times overall with 6 hours ranges. To better simulate an extreme situation – we tried to induce sleep deprivation - participants were required to try not to fall asleep throughout the experiment. Despite the assumption that a stay in an underground bomb shelter will manifest in impaired cognitive performance, this expectation has been significantly confirmed in only one measurement, which can be interpreted as marginal in the context of multiple testing. This finding is a fundamental insight into the issue of stress management in extreme situations, which is crucial for effective military leadership. The results suggest that a 24-hour stay in a shelter, together with sleep deprivation, does not seem to simulate sufficient stress for an individual, which would be reflected in the level of cognitive performance. In the context of these findings, it would be interesting in future to extend the diagnostic battery with physiological indicators of stress, such as: heart rate, stress score, physical stress, mental stress ect.Keywords: bomb shelter, extreme situation, military leadership, psychodiagnostic
Procedia PDF Downloads 9166 A Comprehensive Key Performance Indicators Dashboard for Emergency Medical Services
Authors: Giada Feletti, Daniela Tedesco, Paolo Trucco
Abstract:
The present study aims to develop a dashboard of Key Performance Indicators (KPI) to enhance information and predictive capabilities in Emergency Medical Services (EMS) systems, supporting both operational and strategic decisions of different actors. The employed research methodology consists of the first phase of revision of the technical-scientific literature concerning the indicators currently used for the performance measurement of EMS systems. From this literature analysis, it emerged that current studies focus on two distinct perspectives: the ambulance service, a fundamental component of pre-hospital health treatment, and the patient care in the Emergency Department (ED). The perspective proposed by this study is to consider an integrated view of the ambulance service process and the ED process, both essential to ensure high quality of care and patient safety. Thus, the proposal focuses on the entire healthcare service process and, as such, allows considering the interconnection between the two EMS processes, the pre-hospital and hospital ones, connected by the assignment of the patient to a specific ED. In this way, it is possible to optimize the entire patient management. Therefore, attention is paid to the dependency of decisions that in current EMS management models tend to be neglected or underestimated. In particular, the integration of the two processes enables the evaluation of the advantage of an ED selection decision having visibility on EDs’ saturation status and therefore considering the distance, the available resources and the expected waiting times. Starting from a critical review of the KPIs proposed in the extant literature, the design of the dashboard was carried out: the high number of analyzed KPIs was reduced by eliminating the ones firstly not in line with the aim of the study and then the ones supporting a similar functionality. The KPIs finally selected were tested on a realistic dataset, which draws us to exclude additional indicators due to the unavailability of data required for their computation. The final dashboard, which was discussed and validated by experts in the field, includes a variety of KPIs able to support operational and planning decisions, early warning, and citizens’ awareness of EDs accessibility in real-time. By associating each KPI to the EMS phase it refers to, it was also possible to design a well-balanced dashboard covering both efficiency and effective performance of the entire EMS process. Indeed, just the initial phases related to the interconnection between ambulance service and patient’s care are covered by traditional KPIs compared to the subsequent phases taking place in the hospital ED. This could be taken into consideration for the potential future development of the dashboard. Moreover, the research could proceed by building a multi-layer dashboard composed of the first level with a minimal set of KPIs to measure the basic performance of the EMS system at an aggregate level and further levels with KPIs that can bring additional and more detailed information.Keywords: dashboard, decision support, emergency medical services, key performance indicators
Procedia PDF Downloads 11365 Determination of Physical Properties of Crude Oil Distillates by Near-Infrared Spectroscopy and Multivariate Calibration
Authors: Ayten Ekin Meşe, Selahattin Şentürk, Melike Duvanoğlu
Abstract:
Petroleum refineries are a highly complex process industry with continuous production and high operating costs. Physical separation of crude oil starts with the crude oil distillation unit, continues with various conversion and purification units, and passes through many stages until obtaining the final product. To meet the desired product specification, process parameters are strictly followed. To be able to ensure the quality of distillates, routine analyses are performed in quality control laboratories based on appropriate international standards such as American Society for Testing and Materials (ASTM) standard methods and European Standard (EN) methods. The cut point of distillates in the crude distillation unit is very crucial for the efficiency of the upcoming processes. In order to maximize the process efficiency, the determination of the quality of distillates should be as fast as possible, reliable, and cost-effective. In this sense, an alternative study was carried out on the crude oil distillation unit that serves the entire refinery process. In this work, studies were conducted with three different crude oil distillates which are Light Straight Run Naphtha (LSRN), Heavy Straight Run Naphtha (HSRN), and Kerosene. These products are named after separation by the number of carbons it contains. LSRN consists of five to six carbon-containing hydrocarbons, HSRN consist of six to ten, and kerosene consists of sixteen to twenty-two carbon-containing hydrocarbons. Physical properties of three different crude distillation unit products (LSRN, HSRN, and Kerosene) were determined using Near-Infrared Spectroscopy with multivariate calibration. The absorbance spectra of the petroleum samples were obtained in the range from 10000 cm⁻¹ to 4000 cm⁻¹, employing a quartz transmittance flow through cell with a 2 mm light path and a resolution of 2 cm⁻¹. A total of 400 samples were collected for each petroleum sample for almost four years. Several different crude oil grades were processed during sample collection times. Extended Multiplicative Signal Correction (EMSC) and Savitzky-Golay (SG) preprocessing techniques were applied to FT-NIR spectra of samples to eliminate baseline shifts and suppress unwanted variation. Two different multivariate calibration approaches (Partial Least Squares Regression, PLS and Genetic Inverse Least Squares, GILS) and an ensemble model were applied to preprocessed FT-NIR spectra. Predictive performance of each multivariate calibration technique and preprocessing techniques were compared, and the best models were chosen according to the reproducibility of ASTM reference methods. This work demonstrates the developed models can be used for routine analysis instead of conventional analytical methods with over 90% accuracy.Keywords: crude distillation unit, multivariate calibration, near infrared spectroscopy, data preprocessing, refinery
Procedia PDF Downloads 13264 Comparison of GIS-Based Soil Erosion Susceptibility Models Using Support Vector Machine, Binary Logistic Regression and Artificial Neural Network in the Southwest Amazon Region
Authors: Elaine Lima Da Fonseca, Eliomar Pereira Da Silva Filho
Abstract:
The modeling of areas susceptible to soil loss by hydro erosive processes consists of a simplified instrument of reality with the purpose of predicting future behaviors from the observation and interaction of a set of geoenvironmental factors. The models of potential areas for soil loss will be obtained through binary logistic regression, artificial neural networks, and support vector machines. The choice of the municipality of Colorado do Oeste in the south of the western Amazon is due to soil degradation due to anthropogenic activities, such as agriculture, road construction, overgrazing, deforestation, and environmental and socioeconomic configurations. Initially, a soil erosion inventory map constructed through various field investigations will be designed, including the use of remotely piloted aircraft, orbital imagery, and the PLANAFLORO/RO database. 100 sampling units with the presence of erosion will be selected based on the assumptions indicated in the literature, and, to complement the dichotomous analysis, 100 units with no erosion will be randomly designated. The next step will be the selection of the predictive parameters that exert, jointly, directly, or indirectly, some influence on the mechanism of occurrence of soil erosion events. The chosen predictors are altitude, declivity, aspect or orientation of the slope, curvature of the slope, composite topographic index, flow power index, lineament density, normalized difference vegetation index, drainage density, lithology, soil type, erosivity, and ground surface temperature. After evaluating the relative contribution of each predictor variable, the erosion susceptibility model will be applied to the municipality of Colorado do Oeste - Rondônia through the SPSS Statistic 26 software. Evaluation of the model will occur through the determination of the values of the R² of Cox & Snell and the R² of Nagelkerke, Hosmer and Lemeshow Test, Log Likelihood Value, and Wald Test, in addition to analysis of the Confounding Matrix, ROC Curve and Accumulated Gain according to the model specification. The validation of the synthesis map resulting from both models of the potential risk of soil erosion will occur by means of Kappa indices, accuracy, and sensitivity, as well as by field verification of the classes of susceptibility to erosion using drone photogrammetry. Thus, it is expected to obtain the mapping of the following classes of susceptibility to erosion very low, low, moderate, very high, and high, which may constitute a screening tool to identify areas where more detailed investigations need to be carried out, applying more efficient social resources.Keywords: modeling, susceptibility to erosion, artificial intelligence, Amazon
Procedia PDF Downloads 6863 Boredom in the Classroom: Sentiment Analysis on Teaching Practices and Related Outcomes
Authors: Elisa Santana-Monagas, Juan L. Núñez, Jaime León, Samuel Falcón, Celia Fernández, Rocío P. Solís
Abstract:
Students’ emotional experiences have been a widely discussed theme among researchers, proving a central role on students’ outcomes. Yet, up to now, far too little attention has been paid to teaching practices that negatively relate with students’ negative emotions in the higher education. The present work aims to examine the relationship between teachers’ teaching practices (i.e., students’ evaluations of teaching and autonomy support), the students’ feelings of boredom and agentic engagement and motivation in the higher education context. To do so, the present study incorporates one of the most popular tools in natural processing language to address students’ evaluations of teaching: sentiment analysis. Whereas most research has focused on the creation of SA models and assessing students’ satisfaction regarding teachers and courses to the author’s best knowledge, no research before has included results from SA into an explanatory model. A total of 225 university students (Mean age = 26.16, SD = 7.4, 78.7 % women) participated in the study. Students were enrolled in degree and masters’ studies at the faculty of Education of a public university of Spain. Data was collected using an online questionnaire students could access through a QR code they completed during a teaching period where the assessed teacher was not present. To assess students’ sentiments towards their teachers’ teaching, we asked them the following open-ended question: “If you had to explain a peer who doesn't know your teacher how he or she communicates in class, what would you tell them?”. Sentiment analysis was performed with Microsoft's pre-trained model. For this study, we relied on the probability of the students answer belonging to the negative category. To assess the reliability of the measure, inter-rater agreement between this NLP tool and one of the researchers, who independently coded all answers, was examined. The average pairwise percent agreement and the Cohen’s kappa were calculated with ReCal2. The agreement reached was of 90.8% and Cohen’s kappa .68, both considered satisfactory. To test the hypothesis relations a structural equation model (SEM) was estimated. Results showed that the model fit indices displayed a good fit to the data; χ² (134) = 351.129, p < .001, RMSEA = .07, SRMR = .09, TLI = .91, CFI = .92. Specifically, results show that boredom was negatively predicted by autonomy support practices (β = -.47[-.61, -.33]), whereas for the negative sentiment extracted from SET, this relation was positive (β = .23[.16, .30]). In other words, when students’ opinion towards their instructors’ teaching practices was negative, it was more likely for them to feel bored. Regarding the relations among boredom and student outcomes, results showed a negative predictive value of boredom on students’ motivation to study (β = -.46[-.63, -.29]) and agentic engagement (β = -.24[-.33, -.15]). Altogether, results show a promising future for sentiment analysis techniques in the field of education as they proved the usefulness of this tool when evaluating relations among teaching practices and student outcomes.Keywords: sentiment analysis, boredom, motivation, agentic engagement
Procedia PDF Downloads 9962 Urban Seismic Risk Reduction in Algeria: Adaptation and Application of the RADIUS Methodology
Authors: Mehdi Boukri, Mohammed Naboussi Farsi, Mounir Naili, Omar Amellal, Mohamed Belazougui, Ahmed Mebarki, Nabila Guessoum, Brahim Mezazigh, Mounir Ait-Belkacem, Nacim Yousfi, Mohamed Bouaoud, Ikram Boukal, Aboubakr Fettar, Asma Souki
Abstract:
The seismic risk to which the urban centres are more and more exposed became a world concern. A co-operation on an international scale is necessary for an exchange of information and experiments for the prevention and the installation of action plans in the countries prone to this phenomenon. For that, the 1990s was designated as 'International Decade for Natural Disaster Reduction (IDNDR)' by the United Nations, whose interest was to promote the capacity to resist the various natural, industrial and environmental disasters. Within this framework, it was launched in 1996, the RADIUS project (Risk Assessment Tools for Diagnosis of Urban Areas Against Seismic Disaster), whose the main objective is to mitigate seismic risk in developing countries, through the development of a simple and fast methodological and operational approach, allowing to evaluate the vulnerability as well as the socio-economic losses, by probable earthquake scenarios in the exposed urban areas. In this paper, we will present the adaptation and application of this methodology to the Algerian context for the seismic risk evaluation in urban areas potentially exposed to earthquakes. This application consists to perform an earthquake scenario in the urban centre of Constantine city, located at the North-East of Algeria, which will allow the building seismic damage estimation of this city. For that, an inventory of 30706 building units was carried out by the National Earthquake Engineering Research Centre (CGS). These buildings were digitized in a data base which comprises their technical information by using a Geographical Information system (GIS), and then they were classified according to the RADIUS methodology. The study area was subdivided into 228 meshes of 500m on side and Ten (10) sectors of which each one contains a group of meshes. The results of this earthquake scenario highlights that the ratio of likely damage is about 23%. This severe damage results from the high concentration of old buildings and unfavourable soil conditions. This simulation of the probable seismic damage of the building and the GIS damage maps generated provide a predictive evaluation of the damage which can occur by a potential earthquake near to Constantine city. These theoretical forecasts are important for decision makers in order to take the adequate preventive measures and to develop suitable strategies, prevention and emergency management plans to reduce these losses. They can also help to take the adequate emergency measures in the most impacted areas in the early hours and days after an earthquake occurrence.Keywords: seismic risk, mitigation, RADIUS, urban areas, Algeria, earthquake scenario, Constantine
Procedia PDF Downloads 26261 Contextual Toxicity Detection with Data Augmentation
Authors: Julia Ive, Lucia Specia
Abstract:
Understanding and detecting toxicity is an important problem to support safer human interactions online. Our work focuses on the important problem of contextual toxicity detection, where automated classifiers are tasked with determining whether a short textual segment (usually a sentence) is toxic within its conversational context. We use “toxicity” as an umbrella term to denote a number of variants commonly named in the literature, including hate, abuse, offence, among others. Detecting toxicity in context is a non-trivial problem and has been addressed by very few previous studies. These previous studies have analysed the influence of conversational context in human perception of toxicity in controlled experiments and concluded that humans rarely change their judgements in the presence of context. They have also evaluated contextual detection models based on state-of-the-art Deep Learning and Natural Language Processing (NLP) techniques. Counterintuitively, they reached the general conclusion that computational models tend to suffer performance degradation in the presence of context. We challenge these empirical observations by devising better contextual predictive models that also rely on NLP data augmentation techniques to create larger and better data. In our study, we start by further analysing the human perception of toxicity in conversational data (i.e., tweets), in the absence versus presence of context, in this case, previous tweets in the same conversational thread. We observed that the conclusions of previous work on human perception are mainly due to data issues: The contextual data available does not provide sufficient evidence that context is indeed important (even for humans). The data problem is common in current toxicity datasets: cases labelled as toxic are either obviously toxic (i.e., overt toxicity with swear, racist, etc. words), and thus context does is not needed for a decision, or are ambiguous, vague or unclear even in the presence of context; in addition, the data contains labeling inconsistencies. To address this problem, we propose to automatically generate contextual samples where toxicity is not obvious (i.e., covert cases) without context or where different contexts can lead to different toxicity judgements for the same tweet. We generate toxic and non-toxic utterances conditioned on the context or on target tweets using a range of techniques for controlled text generation(e.g., Generative Adversarial Networks and steering techniques). On the contextual detection models, we posit that their poor performance is due to limitations on both of the data they are trained on (same problems stated above) and the architectures they use, which are not able to leverage context in effective ways. To improve on that, we propose text classification architectures that take the hierarchy of conversational utterances into account. In experiments benchmarking ours against previous models on existing and automatically generated data, we show that both data and architectural choices are very important. Our model achieves substantial performance improvements as compared to the baselines that are non-contextual or contextual but agnostic of the conversation structure.Keywords: contextual toxicity detection, data augmentation, hierarchical text classification models, natural language processing
Procedia PDF Downloads 17160 Design of a Small and Medium Enterprise Growth Prediction Model Based on Web Mining
Authors: Yiea Funk Te, Daniel Mueller, Irena Pletikosa Cvijikj
Abstract:
Small and medium enterprises (SMEs) play an important role in the economy of many countries. When the overall world economy is considered, SMEs represent 95% of all businesses in the world, accounting for 66% of the total employment. Existing studies show that the current business environment is characterized as highly turbulent and strongly influenced by modern information and communication technologies, thus forcing SMEs to experience more severe challenges in maintaining their existence and expanding their business. To support SMEs at improving their competitiveness, researchers recently turned their focus on applying data mining techniques to build risk and growth prediction models. However, data used to assess risk and growth indicators is primarily obtained via questionnaires, which is very laborious and time-consuming, or is provided by financial institutes, thus highly sensitive to privacy issues. Recently, web mining (WM) has emerged as a new approach towards obtaining valuable insights in the business world. WM enables automatic and large scale collection and analysis of potentially valuable data from various online platforms, including companies’ websites. While WM methods have been frequently studied to anticipate growth of sales volume for e-commerce platforms, their application for assessment of SME risk and growth indicators is still scarce. Considering that a vast proportion of SMEs own a website, WM bears a great potential in revealing valuable information hidden in SME websites, which can further be used to understand SME risk and growth indicators, as well as to enhance current SME risk and growth prediction models. This study aims at developing an automated system to collect business-relevant data from the Web and predict future growth trends of SMEs by means of WM and data mining techniques. The envisioned system should serve as an 'early recognition system' for future growth opportunities. In an initial step, we examine how structured and semi-structured Web data in governmental or SME websites can be used to explain the success of SMEs. WM methods are applied to extract Web data in a form of additional input features for the growth prediction model. The data on SMEs provided by a large Swiss insurance company is used as ground truth data (i.e. growth-labeled data) to train the growth prediction model. Different machine learning classification algorithms such as the Support Vector Machine, Random Forest and Artificial Neural Network are applied and compared, with the goal to optimize the prediction performance. The results are compared to those from previous studies, in order to assess the contribution of growth indicators retrieved from the Web for increasing the predictive power of the model.Keywords: data mining, SME growth, success factors, web mining
Procedia PDF Downloads 26959 The Impact of Gestational Weight Gain on Subclinical Atherosclerosis, Placental Circulation and Neonatal Complications
Authors: Marina Shargorodsky
Abstract:
Aim: Gestational weight gain (GWG) has been related to altering future weight-gain curves and increased risks of obesity later in life. Obesity may contribute to vascular atherosclerotic changes as well as excess cardiovascular morbidity and mortality observed in these patients. Noninvasive arterial testing, such as ultrasonographic measurement of carotid IMT, is considered a surrogate for systemic atherosclerotic disease burden and is predictive of cardiovascular events in asymptomatic individuals as well as recurrent events in patients with known cardiovascular disease. Currently, there is no consistent evidence regarding the vascular impact of excessive GWG. The present study was designed to investigate the impact of GWG on early atherosclerotic changes during late pregnancy, using intima-media thickness, as well as placental vascular circulation and inflammatory lesions and pregnancy outcomes. Methods: The study group consisted of 59 pregnant women who gave birth and underwent a placental histopathological examination at the Department of Obstetrics and Gynecology, Edith Wolfson Medical Center, Israel, in 2019. According to the IOM guidelines the study group has been divided into two groups: Group 1 included 32 women with pregnancy weight gain within recommended range; Group 2 included 27 women with excessive weight gain during pregnancy. The IMT was measured from non-diseased intimal and medial wall layers of the carotid artery on both sides, visualized by high-resolution 7.5 MHz ultrasound (Apogee CX Color, ATL). Placental histology subdivided placental findings to lesions consistent with maternal vascular and fetal vascular malperfusion according to the criteria of the Society for Pediatric Pathology, subdividing placental findings to lesions consistent with maternal vascular and fetal vascular malperfusion, as well as the inflammatory response of maternal and fetal origin. Results: IMT levels differed between groups and were significantly higher in Group 1 compared to Group 2 (0.7+/-0.1 vs 0.6+/-0/1, p=0.028). Multiple linear regression analysis of IMT included variables based on their associations in univariate analyses with a backward approach. Included in the model were pre-gestational BMI, HDL cholesterol and fasting glucose. The model was significant (p=0.001) and correctly classified 64.7% of study patients. In this model, pre-pregnancy BMI remained a significant independent predictor of subclinical atherosclerosis assessed by IMT (OR 4.314, 95% CI 0.0599-0.674, p=0.044). Among placental lesions related to fetal vascular malperfusion, villous changes consistent with fetal thrombo-occlusive disease (FTOD) were significantly higher in Group 1 than in Group 2, p=0.034). In Conclusion, the present study demonstrated that excessive weight gain during pregnancy is associated with an adverse effect on early stages of subclinical atherosclerosis, placental vascular circulation and neonatal complications. The precise mechanism for these vascular changes, as well as the overall clinical impact of weight control during pregnancy on IMT, placental vascular circulation as well as pregnancy outcomes, deserves further investigation.Keywords: obesity, pregnancy, complications, weight gain
Procedia PDF Downloads 5458 Generic Early Warning Signals for Program Student Withdrawals: A Complexity Perspective Based on Critical Transitions and Fractals
Authors: Sami Houry
Abstract:
Complex systems exhibit universal characteristics as they near a tipping point. Among them are common generic early warning signals which precede critical transitions. These signals include: critical slowing down in which the rate of recovery from perturbations decreases over time; an increase in the variance of the state variable; an increase in the skewness of the state variable; an increase in the autocorrelations of the state variable; flickering between different states; and an increase in spatial correlations over time. The presence of the signals has management implications, as the identification of the signals near the tipping point could allow management to identify intervention points. Despite the applications of the generic early warning signals in various scientific fields, such as fisheries, ecology and finance, a review of literature did not identify any applications that address the program student withdrawal problem at the undergraduate distance universities. This area could benefit from the application of generic early warning signals as the program withdrawal rate amongst distance students is higher than the program withdrawal rate at face-to-face conventional universities. This research specifically assessed the generic early warning signals through an intensive case study of undergraduate program student withdrawal at a Canadian distance university. The university is non-cohort based due to its system of continuous course enrollment where students can enroll in a course at the beginning of every month. The assessment of the signals was achieved through the comparison of the incidences of generic early warning signals among students who withdrew or simply became inactive in their undergraduate program of study, the true positives, to the incidences of the generic early warning signals among graduates, the false positives. This was achieved through significance testing. Research findings showed support for the signal pertaining to the rise in flickering which is represented in the increase in the student’s non-pass rates prior to withdrawing from a program; moderate support for the signals of critical slowing down as reflected in the increase in the time a student spends in a course; and moderate support for the signals on increase in autocorrelation and increase in variance in the grade variable. The findings did not support the signal on the increase in skewness of the grade variable. The research also proposes a new signal based on the fractal-like characteristic of student behavior. The research also sought to extend knowledge by investigating whether the emergence of a program withdrawal status is self-similar or fractal-like at multiple levels of observation, specifically the program level and the course level. In other words, whether the act of withdrawal at the program level is also present at the course level. The findings moderately supported self-similarity as a potential signal. Overall, the assessment of the signals suggests that the signals, with the exception with the increase of skewness, could be utilized as a predictive management tool and potentially add one more tool, the fractal-like characteristic of withdrawal, as an additional signal in addressing the student program withdrawal problem.Keywords: critical transitions, fractals, generic early warning signals, program student withdrawal
Procedia PDF Downloads 18557 Geovisualisation for Defense Based on a Deep Learning Monocular Depth Reconstruction Approach
Authors: Daniel R. dos Santos, Mateus S. Maldonado, Estevão J. R. Batista
Abstract:
The military commanders increasingly dependent on spatial awareness, as knowing where enemy are, understanding how war battle scenarios change over time, and visualizing these trends in ways that offer insights for decision-making. Thanks to advancements in geospatial technologies and artificial intelligence algorithms, the commanders are now able to modernize military operations on a universal scale. Thus, geovisualisation has become an essential asset in the defense sector. It has become indispensable for better decisionmaking in dynamic/temporal scenarios, operation planning and management for the war field, situational awareness, effective planning, monitoring, and others. For example, a 3D visualization of war field data contributes to intelligence analysis, evaluation of postmission outcomes, and creation of predictive models to enhance decision-making and strategic planning capabilities. However, old-school visualization methods are slow, expensive, and unscalable. Despite modern technologies in generating 3D point clouds, such as LIDAR and stereo sensors, monocular depth values based on deep learning can offer a faster and more detailed view of the environment, transforming single images into visual information for valuable insights. We propose a dedicated monocular depth reconstruction approach via deep learning techniques for 3D geovisualisation of satellite images. It introduces scalability in terrain reconstruction and data visualization. First, a dataset with more than 7,000 satellite images and associated digital elevation model (DEM) is created. It is based on high resolution optical and radar imageries collected from Planet and Copernicus, on which we fuse highresolution topographic data obtained using technologies such as LiDAR and the associated geographic coordinates. Second, we developed an imagery-DEM fusion strategy that combine feature maps from two encoder-decoder networks. One network is trained with radar and optical bands, while the other is trained with DEM features to compute dense 3D depth. Finally, we constructed a benchmark with sparse depth annotations to facilitate future research. To demonstrate the proposed method's versatility, we evaluated its performance on no annotated satellite images and implemented an enclosed environment useful for Geovisualisation applications. The algorithms were developed in Python 3.0, employing open-source computing libraries, i.e., Open3D, TensorFlow, and Pythorch3D. The proposed method provides fast and accurate decision-making with GIS for localization of troops, position of the enemy, terrain and climate conditions. This analysis enhances situational consciousness, enabling commanders to fine-tune the strategies and distribute the resources proficiently.Keywords: depth, deep learning, geovisualisation, satellite images
Procedia PDF Downloads 1256 Risk Assessment Tools Applied to Deep Vein Thrombosis Patients Treated with Warfarin
Authors: Kylie Mueller, Nijole Bernaitis, Shailendra Anoopkumar-Dukie
Abstract:
Background: Vitamin K antagonists particularly warfarin is the most frequently used oral medication for deep vein thrombosis (DVT) treatment and prophylaxis. Time in therapeutic range (TITR) of the international normalised ratio (INR) is widely accepted as a measure to assess the quality of warfarin therapy. Multiple factors can affect warfarin control and the subsequent adverse outcomes including thromboembolic and bleeding events. Predictor models have been developed to assess potential contributing factors and measure the individual risk of these adverse events. These predictive models have been validated in atrial fibrillation (AF) patients, however, there is a lack of literature on whether these can be successfully applied to other warfarin users including DVT patients. Therefore, the aim of the study was to assess the ability of these risk models (HAS BLED and CHADS2) to predict haemorrhagic and ischaemic incidences in DVT patients treated with warfarin. Methods: A retrospective analysis of DVT patients receiving warfarin management by a private pathology clinic was conducted. Data was collected from November 2007 to September 2014 and included demographics, medical and drug history, INR targets and test results. Patients receiving continuous warfarin therapy with an INR reference range between 2.0 and 3.0 were included in the study with mean TITR calculated using the Rosendaal method. Bleeding and thromboembolic events were recorded and reported as incidences per patient. The haemorrhagic risk model HAS BLED and ischaemic risk model CHADS2 were applied to the data. Patients were then stratified into either the low, moderate, or high-risk categories. The analysis was conducted to determine if a correlation existed between risk assessment tool and patient outcomes. Data was analysed using GraphPad Instat Version 3 with a p value of <0.05 considered to be statistically significant. Patient characteristics were reported as mean and standard deviation for continuous data and categorical data reported as number and percentage. Results: Of the 533 patients included in the study, there were 268 (50.2%) female and 265 (49.8%) male patients with a mean age of 62.5 years (±16.4). The overall mean TITR was 78.3% (±12.7) with an overall haemorrhagic incidence of 0.41 events per patient. For the HAS BLED model, there was a haemorrhagic incidence of 0.08, 0.53, and 0.54 per patient in the low, moderate and high-risk categories respectively showing a statistically significant increase in incidence with increasing risk category. The CHADS2 model showed an increase in ischaemic events according to risk category with no ischaemic events in the low category, and an ischaemic incidence of 0.03 in the moderate category and 0.47 high-risk categories. Conclusion: An increasing haemorrhagic incidence correlated to an increase in the HAS BLED risk score in DVT patients treated with warfarin. Furthermore, a greater incidence of ischaemic events occurred in patients with an increase in CHADS2 category. In an Australian population of DVT patients, the HAS BLED and CHADS2 accurately predicts incidences of haemorrhage and ischaemic events respectively.Keywords: anticoagulant agent, deep vein thrombosis, risk assessment, warfarin
Procedia PDF Downloads 26455 Predicting Provider Service Time in Outpatient Clinics Using Artificial Intelligence-Based Models
Authors: Haya Salah, Srinivas Sharan
Abstract:
Healthcare facilities use appointment systems to schedule their appointments and to manage access to their medical services. With the growing demand for outpatient care, it is now imperative to manage physician's time effectively. However, high variation in consultation duration affects the clinical scheduler's ability to estimate the appointment duration and allocate provider time appropriately. Underestimating consultation times can lead to physician's burnout, misdiagnosis, and patient dissatisfaction. On the other hand, appointment durations that are longer than required lead to doctor idle time and fewer patient visits. Therefore, a good estimation of consultation duration has the potential to improve timely access to care, resource utilization, quality of care, and patient satisfaction. Although the literature on factors influencing consultation length abound, little work has done to predict it using based data-driven approaches. Therefore, this study aims to predict consultation duration using supervised machine learning algorithms (ML), which predicts an outcome variable (e.g., consultation) based on potential features that influence the outcome. In particular, ML algorithms learn from a historical dataset without explicitly being programmed and uncover the relationship between the features and outcome variable. A subset of the data used in this study has been obtained from the electronic medical records (EMR) of four different outpatient clinics located in central Pennsylvania, USA. Also, publicly available information on doctor's characteristics such as gender and experience has been extracted from online sources. This research develops three popular ML algorithms (deep learning, random forest, gradient boosting machine) to predict the treatment time required for a patient and conducts a comparative analysis of these algorithms with respect to predictive performance. The findings of this study indicate that ML algorithms have the potential to predict the provider service time with superior accuracy. While the current approach of experience-based appointment duration estimation adopted by the clinic resulted in a mean absolute percentage error of 25.8%, the Deep learning algorithm developed in this study yielded the best performance with a MAPE of 12.24%, followed by gradient boosting machine (13.26%) and random forests (14.71%). Besides, this research also identified the critical variables affecting consultation duration to be patient type (new vs. established), doctor's experience, zip code, appointment day, and doctor's specialty. Moreover, several practical insights are obtained based on the comparative analysis of the ML algorithms. The machine learning approach presented in this study can serve as a decision support tool and could be integrated into the appointment system for effectively managing patient scheduling.Keywords: clinical decision support system, machine learning algorithms, patient scheduling, prediction models, provider service time
Procedia PDF Downloads 122