Search results for: network group behavior
17066 Effects of Virgin Coconut Oil on the Histomorphometric Parameters in the Aortae and Hearts of Rats Fed with Repeatedly Heated Palm Oil
Authors: K. Subermaniam, Q. H. M. Saad, S. N. A. Bakhtiar, J. A. Hamid, F. Z .J. Sidek, F. Othman
Abstract:
Objective: To investigate the effects of virgin coconut oil (VCO) on histomorphometric changes in the aorta and heart of thermoxidized palm oil-fed rats. Methods: Thirty two male Sprague-Dawley rats were divided into four groups: control group fed with normal diet; 5 times heated palm oil-fed group (5HPO) fortified with 15% w/w of 5HPO; VCO group supplemented with 1.42 ml/kg of VCO; and 5HPO + VCO group. The treatment lasted for four months. Upon sacrifice, aortic and heart tissues were processed for light microscopic studies. Results: Light microscopic studies showed thickened intima and media of the aorta in two out of eight rats in the 5HPO group only, while the rest of the rats did not show any thickening of either the intima or media of the aorta. Intima media area (IMA) in the VCO, 5HPO and 5HPO+VCO was significantly increased compared to the control group. Circumferential wall tension (CWT) and tensile stress (TS) in the aorta of 5HPO showed significant increase compared to the other groups. Cardiomyofibre width in 5HPO group showed significant increase in size compared to the control, VCO and 5HPO+VCO groups. Cardiomyofibre nuclear size in the 5HPO group decreased in size significantly compared to the control, VCO and 5HPO+VCO groups. Conclusion: VCO supplementation at a dose of 1.42 ml/kg showed protectives effect on the aorta and heart of thermoxidized palm oil fed rats.Keywords: aorta, heart, histomorphometric changes, thermoxidized palm oil, virgin coconut oil
Procedia PDF Downloads 42517065 Antistress Effects of Hydrangeae Dulcis Folium on Net Handing Stress-Induced Anxiety-Like Behavior in Zebrafish: Possible Mechanism of Action of Adrenocorticotropin Hormone (ACTH) Receptor
Authors: Lee Seungheon, Kim Ba-Ro
Abstract:
In this study, the anti-stress effects of the ethanolic extract of Hydrangeae Dulcis Folium (EHDF) were investigated. To determine the effects of EHDF on physical stress, changes in the whole-body cortisol level and behaviour were monitored in zebrafish. To induce physical stress, we used the net handling stress (NHS). Fish were treated with EHDF for 6 min before they were exposed to stress, and the fish were either evaluated via behavioural tests, including a novel tank test and an open field test or sacrificed to collect body fluid from the whole body. The results indicate that increased anxiety-like behaviours in the novel tank test and open field test under stress were recovered by treatment with EHDF at 5, 10 and 20 mg/L (P < 0.05). Moreover, compared with the normal group, which was not treated with NHS, the whole-body cortisol level was significantly increased by treatment with NHS in the control group. Compared with the control group, pre-treatment with EHDF at concentrations of 5, 10 and 20 mg/L for 6 min significantly prevented the increase in the whole-body cortisol level induced by NHS (P < 0.05). In addition, adrenocorticotropin hormone (ACTH) challenge studies showed that EHDF completely blocked the effects of ACTH (0.2 IU/g, IP) on cortisol secretion. These results suggest that EHDF may be a good anti-stress candidate and that its mechanism of action may be related to its positive effects on cortisol release.Keywords: net handling stress, zebrafish, hydrangeae dulcis folium, whole-body cortisol, novel tank test, open field test
Procedia PDF Downloads 29917064 Postmortem Magnetic Resonance Imaging as an Objective Method for the Differential Diagnosis of a Stillborn and a Neonatal Death
Authors: Uliana N. Tumanova, Sergey M. Voevodin, Veronica A. Sinitsyna, Alexandr I. Shchegolev
Abstract:
An important part of forensic and autopsy research in perinatology is the answer to the question of life and stillbirth. Postmortem magnetic resonance imaging (MRI) is an objective non-invasive research method that allows to store data for a long time and not to exhume the body to clarify the diagnosis. The purpose of the research is to study the possibilities of a postmortem MRI to determine the stillbirth and death of a newborn who had spontaneous breathing and died on the first day after birth. MRI and morphological data of a study of 23 stillborn bodies, prenatally dead at a gestational age of 22-39 weeks (Group I) and the bodies of 16 newborns who died from 2 to 24 hours after birth (Group II) were compared. Before the autopsy, postmortem MRI was performed on the Siemens Magnetom Verio 3T device in the supine position of the body. The control group for MRI studies consisted of 7 live newborns without lung disease (Group III). On T2WI in the sagittal projection was measured MR-signal intensity (SI) in the lung tissue (L) and shoulder muscle (M). During the autopsy, a pulmonary swimming test was evaluated, and macro- and microscopic studies were performed. According to the postmortem MRI, the highest values of mean SI of the lung (430 ± 27.99) and of the muscle (405.5 ± 38.62) on T2WI were detected in group I and exceeded the corresponding value of group II by 2.7 times. The lowest values were found in the control group - 77.9 ± 12.34 and 119.7 ± 6.3, respectively. In the group II, the lung SI was 1.6 times higher than the muscle SI, whereas in the group I and in the control group, the muscle SI was 2.1 times and 1.8 times larger than the lung. On the basis of clinical and morphological data, we calculated the formula for determining the breathing index (BI) during postmortem MRI: BI = SIL x SIM / 100. The mean value of BI in the group I (1801.14 ± 241.6) (values ranged from 756 to 3744) significantly higher than the corresponding average value of BI in the group II (455.89 ± 137.32, p < 0.05) (305-638.4). In the control group, the mean BI value was 91.75 ± 13.3 (values ranged from 53 to 154). The BI with the results of pulmonary swimming tests and microscopic examination of the lungs were compared. The boundary value of BI for the differential diagnosis of stillborn and newborn death was 700. Using the postmortem MRI allows to differentiate the stillborn with the death of the breathing newborn.Keywords: lung, newborn, postmortem MRI, stillborn
Procedia PDF Downloads 12817063 Transport Related Air Pollution Modeling Using Artificial Neural Network
Authors: K. D. Sharma, M. Parida, S. S. Jain, Anju Saini, V. K. Katiyar
Abstract:
Air quality models form one of the most important components of an urban air quality management plan. Various statistical modeling techniques (regression, multiple regression and time series analysis) have been used to predict air pollution concentrations in the urban environment. These models calculate pollution concentrations due to observed traffic, meteorological and pollution data after an appropriate relationship has been obtained empirically between these parameters. Artificial neural network (ANN) is increasingly used as an alternative tool for modeling the pollutants from vehicular traffic particularly in urban areas. In the present paper, an attempt has been made to model traffic air pollution, specifically CO concentration using neural networks. In case of CO concentration, two scenarios were considered. First, with only classified traffic volume input and the second with both classified traffic volume and meteorological variables. The results showed that CO concentration can be predicted with good accuracy using artificial neural network (ANN).Keywords: air quality management, artificial neural network, meteorological variables, statistical modeling
Procedia PDF Downloads 52417062 Bullying Perpetration and Victimization in Juvenile Institutions
Authors: Nazirah Hassan, Andrew Kendrick
Abstract:
This study investigates the prevalence of perpetration behavior and victimization in juvenile correctional institutions. It investigates the dimensions of institutional environments and explores which environmental features relate to perpetration behaviors. The project focused on two hundred and eighty nine male and female young offenders aged 12 to 21 years old, in eight juvenile institutions in Malaysia. The research collected quantitative and qualitative data using a mixed-method approach. All participants completed the scale version of Direct and Indirect Prisoner behavior Checklist (DIPC-SCALED) and the Measuring the Quality of Prison life (MQPL). In addition, twenty-four interviews were carried out which involved sixteen residents and eight institutional staff. The findings showed that 95 per cent reported at least one behavior indicative of perpetration, and 99 per cent reported at least one behavior indicative of victimization in the past month. The DIPC-SCALED scored significantly higher on the verbal sub-scale. In addition, factors such as harmony, staff professionalism, security, family and wellbeing showed significant relation to the perpetration behavior. In the interviews, the residents identified circumstances, which affected their behavior within the institutions. This reflected the choices and decisions about how to confront the institutional life. These findings are discussed in terms of existing literature and their practical implications are considered.Keywords: juvenile institutions, incarcerated offenders, perpetration, victimization
Procedia PDF Downloads 30017061 Evolution of Bombings against Transportation Infrastructure
Authors: Jonathan K. Hill
Abstract:
The transportation networks throughout Africa remain the only transportation infrastructure system in the world that is attacked by terrorists at a high frequency, so the international community can learn from each attack. The targeting of transportation should be recognized as a direct attack against a civilian population, so the international community should work to better understand the types of attacks utilized, the types of improvised explosive device designs adapted to transportation targets, and the ways the various modes of transportation have been attacked throughout the continent. Some countries have seen grenade attacks that have resulted in only injuries, while some countries have experienced large vehicle bombings that have resulted in hundreds of injuries and numerous deaths. With insurgencies, explosive devices have been small, complex, and generally target an enemy of the insurgency. With terrorist bombings, the explosive devices have been large, brazen, and targeted at civilian populations. And, these civilian populations are easily targeted within the transportation system. The presentation provided by Assess Africa LLC is titled ‘Evolution of Bombings Against Transportation Infrastructure’ and covers improvised explosive device characteristics, how improvised explosive devices have been adapted to transportation targets in Africa, analyses recent incidents, and provides some advice for effective protective measures. A main component of the improvised explosive device characteristics portion of the presentation focuses on the link between explosive device components, the intelligence network, and the bomb-builder’s network. By understanding the components, how the use of various components can be linked to a terrorist group’s capabilities, and how the bomb-builder acquires materials, the analysis of improvised explosive device attacks takes on a new direction – one that focuses on defeating the network instead of merely reviewing incidents of the past.Keywords: Africa, bombings, critical infrastructure protection, transportation security
Procedia PDF Downloads 42517060 MegaProjects and the Governing Processes That Lead to Success and Failure: A Literature Review
Authors: Fangwei Zhu, Wei Tian, Linzhuo Wang, Miao Yu
Abstract:
Megaproject has long been a critical issue in project governance, for its low success rate and large impact on society. Although the extant literature on megaproject governance is vast, to our best knowledge, the lacking of a thorough literature review makes it hard for us to gain a holistic view on current scenario of megaproject governance. The study conducts a systematic literature review process to analyze the existing literatures on megaproject governance. The finding indicates that mega project governance needs to be handled at network level and forming a network level governance provides a holistic framework for governing megaproject towards sustainable development of the projects. Theoretical and practical implications, as well as future studies and limitations, were discussed.Keywords: megaproject, governance, literature review, network
Procedia PDF Downloads 20017059 Predicting the Success of Bank Telemarketing Using Artificial Neural Network
Authors: Mokrane Selma
Abstract:
The shift towards decision making (DM) based on artificial intelligence (AI) techniques will change the way in which consumer markets and our societies function. Through AI, predictive analytics is being used by businesses to identify these patterns and major trends with the objective to improve the DM and influence future business outcomes. This paper proposes an Artificial Neural Network (ANN) approach to predict the success of telemarketing calls for selling bank long-term deposits. To validate the proposed model, we uses the bank marketing data of 41188 phone calls. The ANN attains 98.93% of accuracy which outperforms other conventional classifiers and confirms that it is credible and valuable approach for telemarketing campaign managers.Keywords: bank telemarketing, prediction, decision making, artificial intelligence, artificial neural network
Procedia PDF Downloads 15917058 Forecast of Polyethylene Properties in the Gas Phase Polymerization Aided by Neural Network
Authors: Nasrin Bakhshizadeh, Ashkan Forootan
Abstract:
A major problem that affects the quality control of polymer in the industrial polymerization is the lack of suitable on-line measurement tools to evaluate the properties of the polymer such as melt and density indices. Controlling the polymerization in ordinary method is performed manually by taking samples, measuring the quality of polymer in the lab and registry of results. This method is highly time consuming and leads to producing large number of incompatible products. An online application for estimating melt index and density proposed in this study is a neural network based on the input-output data of the polyethylene production plant. Temperature, the level of reactors' bed, the intensity of ethylene mass flow, hydrogen and butene-1, the molar concentration of ethylene, hydrogen and butene-1 are used for the process to establish the neural model. The neural network is taught based on the actual operational data and back-propagation and Levenberg-Marquart techniques. The simulated results indicate that the neural network process model established with three layers (one hidden layer) for forecasting the density and the four layers for the melt index is able to successfully predict those quality properties.Keywords: polyethylene, polymerization, density, melt index, neural network
Procedia PDF Downloads 14417057 Study of Crashworthiness Behavior of Thin-Walled Tube under Axial Loading by Using Computational Mechanics
Authors: M. Kamal M. Shah, Noorhifiantylaily Ahmad, O. Irma Wani, J. Sahari
Abstract:
This paper presents the computationally mechanics analysis of energy absorption for cylindrical and square thin wall tubed structure by using ABAQUS/explicit. The crashworthiness behavior of AISI 1020 mild steel thin-walled tube under axial loading has been studied. The influence effects of different model’s cross-section, as well as model length on the crashworthiness behavior of thin-walled tube, are investigated. The model was placed on loading platform under axial loading with impact velocity of 5 m/s to obtain the deformation results of each model under quasi-static loading. The results showed that model undergoes different deformation mode exhibits different energy absorption performance.Keywords: axial loading, computational mechanics, energy absorption performance, crashworthiness behavior, deformation mode
Procedia PDF Downloads 44117056 Analysis and Prediction of COVID-19 by Using Recurrent LSTM Neural Network Model in Machine Learning
Authors: Grienggrai Rajchakit
Abstract:
As we all know that coronavirus is announced as a pandemic in the world by WHO. It is speeded all over the world with few days of time. To control this spreading, every citizen maintains social distance and self-preventive measures are the best strategies. As of now, many researchers and scientists are continuing their research in finding out the exact vaccine. The machine learning model finds that the coronavirus disease behaves in an exponential manner. To abolish the consequence of this pandemic, an efficient step should be taken to analyze this disease. In this paper, a recurrent neural network model is chosen to predict the number of active cases in a particular state. To make this prediction of active cases, we need a database. The database of COVID-19 is downloaded from the KAGGLE website and is analyzed by applying a recurrent LSTM neural network with univariant features to predict the number of active cases of patients suffering from the corona virus. The downloaded database is divided into training and testing the chosen neural network model. The model is trained with the training data set and tested with a testing dataset to predict the number of active cases in a particular state; here, we have concentrated on Andhra Pradesh state.Keywords: COVID-19, coronavirus, KAGGLE, LSTM neural network, machine learning
Procedia PDF Downloads 16017055 Performance Evaluation of DSR and OLSR Routing Protocols in MANET Using Varying Pause Time
Authors: Yassine Meraihi, Dalila Acheli, Rabah Meraihi
Abstract:
MANET for Mobile Ad hoc NETwork is a collection of wireless mobile nodes that communicates with each other without using any existing infrastructure, access point or centralized administration, due to the higher mobility and limited radio transmission range, routing is an important issue in ad hoc network, so in order to ensure reliable and efficient route between to communicating nodes quickly, an appropriate routing protocol is needed. In this paper, we present the performance analysis of two mobile ad hoc network routing protocols namely DSR and OLSR using NS2.34, the performance is determined on the basis of packet delivery ratio, throughput, average jitter and end to end delay with varying pause time.Keywords: DSR, OLSR, quality of service, routing protocols, MANET
Procedia PDF Downloads 55217054 Moral Identity and Moral Attentiveness as Predictors of Ethical Leadership in Financial Sector
Authors: Pilar Gamarra Gamarra, Michele Girotto
Abstract:
In the expanding field of leaders’ ethical behavior research, little attention has been paid to the association between finance leaders’ ethical traits (beyond personality) and ethical leadership, and more importantly, how these ethical characteristics can be predictors of ethical behavior at the leadership level in the financial sector. In this study, we tested a theoretical model based on uponsocial cognitive theory (Bandura, 1986) and the cognitive-developmental model (Piaget, 1932) to examine leaders’ moral identity and moral attentiveness as antecedents of ethical leadership. After the 2008 economic crisis, the marketplace has awakened to the potential dangers of unethical behavior. The unethical behavior of the leaders of the financial sector was identified as guilty of this economic catastrophe. For that reason, it seems increasingly prudent for organizations to have leaders who are cognitively inclined toward ethical behavior. This evidence suggests that moral attentiveness and moral identity is perhaps one way of identifying those kinds of leaders. For leaders who are morally attentive and have a high moral identity, themes of ethics interventions are consistent with their way of seeing the word. As a result, these leaders could become critical components of change in organizations and could provide the energy and skills necessary for these efforts to be successful. Ethical behavior of leader from the financial sector and marketing sectors must be joined to manage the change. In this study, a leader’s moral identity, leader’s moral attentiveness, and self-importance of Ethical Leadership are measured for financial and marketing leaders to be compared to determine the relationship between the three variables in each sector. Other conclusion related to gender, educational level or generation are obtained.Keywords: ethical leadership, moral identity, moral attentiveness, financial leaders, marketing leaders, ethical behavior
Procedia PDF Downloads 17517053 A Neural Network for the Prediction of Contraction after Burn Injuries
Authors: Ginger Egberts, Marianne Schaaphok, Fred Vermolen, Paul van Zuijlen
Abstract:
A few years ago, a promising morphoelastic model was developed for the simulation of contraction formation after burn injuries. Contraction can lead to a serious reduction in physical mobility, like a reduction in the range-of-motion of joints. If this is the case in a healing burn wound, then this is referred to as a contracture that needs medical intervention. The morphoelastic model consists of a set of partial differential equations describing both a chemical part and a mechanical part in dermal wound healing. These equations are solved with the numerical finite element method (FEM). In this method, many calculations are required on each of the chosen elements. In general, the more elements, the more accurate the solution. However, the number of elements increases rapidly if simulations are performed in 2D and 3D. In that case, it not only takes longer before a prediction is available, the computation also becomes more expensive. It is therefore important to investigate alternative possibilities to generate the same results, based on the input parameters only. In this study, a surrogate neural network has been designed to mimic the results of the one-dimensional morphoelastic model. The neural network generates predictions quickly, is easy to implement, and there is freedom in the choice of input and output. Because a neural network requires extensive training and a data set, it is ideal that the one-dimensional FEM code generates output quickly. These feed-forward-type neural network results are very promising. Not only can the network give faster predictions, but it also has a performance of over 99%. It reports on the relative surface area of the wound/scar, the total strain energy density, and the evolutions of the densities of the chemicals and mechanics. It is, therefore, interesting to investigate the applicability of a neural network for the two- and three-dimensional morphoelastic model for contraction after burn injuries.Keywords: biomechanics, burns, feasibility, feed-forward NN, morphoelasticity, neural network, relative surface area wound
Procedia PDF Downloads 5517052 Assessment of Energy Consumption in Cluster Redevelopment: A Case Study of Bhendi Bazar in Mumbai
Authors: Insiya Kapasi, Roshni Udyavar Yehuda
Abstract:
Cluster Redevelopment is a new concept in the city of Mumbai. Its regulations were laid down by the government in 2009. The concept of cluster redevelopment encompasses a group of buildings defined by a boundary as specified by the municipal authority (in this case, Mumbai), which may be dilapidated or approved for redevelopment. The study analyses the effect of cluster redevelopment in the form of renewal of old group of buildings as compared to refurbishment or restoration - on energy consumption. The methodology includes methods of assessment to determine increase or decrease in energy consumption in cluster redevelopment based on different criteria such as carpet area of the units, building envelope and its architectural elements. Results show that as the area and number of units increase the Energy consumption increases and the EPI (energy performance index) decreases as compared to the base case. The energy consumption per unit area declines by 29% in the proposed cluster redevelopment as compared to the original settlement. It is recommended that although the development is spacious and provides more light and ventilation, aspects such as glass type, traditional architectural features and consumer behavior are critical in the reduction of energy consumption.Keywords: Cluster Redevelopment, Energy Consumption, Energy Efficiency, Typologies
Procedia PDF Downloads 15217051 Phenological and Molecular Genetic Diversity Analysis among Saudi durum Wheat Landraces
Authors: Naser B. Almari, Salem S. Alghamdi, Muhammad Afzal, Mohamed Helmy El Shal
Abstract:
Wheat landraces are a rich genetic resource for boosting agronomic qualities in breeding programs while also providing diversity and unique adaptation to local environmental conditions. These genotypes have grown increasingly important in the face of recent climate change challenges. This research aimed to look at the genetic diversity of Saudi Durum wheat landraces using morpho-phenological and molecular data. The principal components analysis (PCA) analysis recorded 78.47 % variance and 1.064 eigenvalues for the first six PCs of the total, respectively. The significant characters contributed more to the diversity are the length of owns at the tip relative to the length of the ear, culm: glaucosity of the neck, flag leaf: glaucosity of the sheath, flag leaf: anthocyanin coloration of auricles, plant: frequency of plants with recurved flag leaves, ear: length, and ear: shape in profile in the PC1. The significant wheat genotypes contributed more in the PC1 (8, 14, 497, 650, 569, 590, 594, 598, 600, 601, and 604). The cluster analysis recorded an 85.42 cophenetic correlation among the 22 wheat genotypes and grouped the genotypes into two main groups. Group, I contain 8 genotypes, however, the 2nd group contains 12 wheat genotypes, while two genotypes (13 and 497) are standing alone in the dendrogram and unable to make a group with any one of the genotypes. The second group was subdivided into two subgroups. The genotypes (14, 602, and 600) were present in the second sub-group. The genotypes were grouped into two main groups. The first group contains 17 genotypes, while the second group contains 3 (8, 977, and 594) wheat genotypes. The genotype (602) was standing alone and unable to make a group with any wheat genotype. The genotypes 650 and 13 also stand alone in the first group. Using the Mantel test, the data recorded a significant (R2 = 0.0006) correlation (phenotypic and genetic) among 22 wheat durum genotypes.Keywords: durum wheat, PCA, cluster analysis, SRAP, genetic diversity
Procedia PDF Downloads 11517050 Cardio Autonomic Response during Mental Stress in the Wards of Normal and Hypertensive Parents
Authors: Sheila R. Pai, Rekha D. Kini, Amrutha Mary
Abstract:
Objective: To assess and compare the cardiac autonomic activity after mental stress among the wards of normal and hypertensive parents. Methods: The study included 67 subjects, 30 of them had a parental history of hypertension and rest 37 had normotensive parents. Subjects were divided into control group (wards of normotensive parents) and Study group (wards of hypertensive parents). The height, weight were noted, and Body Mass Index (BMI) was also calculated. The mental stress test was carried out. Blood pressure (BP) and electro cardiogram (ECG) was recorded during normal breathing and after mental stress test. Heart rate variability (HRV) analysis was done by time domain method HRV was recorded and analyzed by the time-domain method. Analysis of HRV in the time-domain was done using the software version 1.1 AIIMS, New Delhi. The data obtained was analyzed using student’s t-test followed by Mann-Whitney U-test and P < 0.05 was considered significant. Results: There was no significant difference in systolic blood pressure and diastolic blood pressure (DBP) between study group and control group following mental stress. In the time domain analysis, the mean value of pNN50 and RMSSD of the study group was not significantly different from the control group after the mental stress test. Conclusion: The study thus concluded that there was no significant difference in HRV between study group and control group following mental stress.Keywords: heart rate variability, time domain analysis, mental stress, hypertensive
Procedia PDF Downloads 27317049 Dynamic Building Simulation Based Study to Understand Thermal Behavior of High-Rise Structural Timber Buildings
Authors: Timothy O. Adekunle, Sigridur Bjarnadottir
Abstract:
Several studies have investigated thermal behavior of buildings with limited studies focusing on high-rise buildings. Of the limited investigations that have considered thermal performance of high-rise buildings, only a few studies have considered thermal behavior of high-rise structural sustainable buildings. As a result, this study investigates the thermal behavior of a high-rise structural timber building. The study aims to understand the thermal environment of a high-rise structural timber block of apartments located in East London, UK by comparing the indoor environmental conditions at different floors (ground and upper floors) of the building. The environmental variables (temperature and relative humidity) were measured at 15-minute intervals for a few weeks in the summer of 2012 to generate data that was considered for calibration and validation of the simulated results. The study employed mainly dynamic thermal building simulation using DesignBuilder by EnergyPlus and supplemented with environmental monitoring as major techniques for data collection and analysis. The weather file (Test Reference Years- TRYs) for the 2000s from the weather generator carried out by the Prometheus Group was considered for the simulation since the study focuses on investigating thermal behavior of high-rise structural timber buildings in the summertime and not in extreme summertime. In this study, the simulated results (May-September of the 2000s) will be the focus of discussion, but the results will be briefly compared with the environmental monitoring results. The simulated results followed a similar trend with the findings obtained from the short period of the environmental monitoring at the building. The results revealed lower temperatures are often predicted (at least 1.1°C lower) at the ground floor than the predicted temperatures at the upper floors. The simulated results also showed that higher temperatures are predicted in spaces at southeast facing (at least 0.5°C higher) than spaces in other orientations across the floors considered. There is, however, a noticeable difference between the thermal environment of spaces when the results obtained from the environmental monitoring are compared with the simulated results. The field survey revealed higher temperatures were recorded in the living areas (at least 1.0°C higher) while higher temperatures are predicted in bedrooms (at least 0.9°C) than living areas for the simulation. In addition, the simulated results showed spaces on lower floors of high-rise structural timber buildings are predicted to provide more comfortable thermal environment than spaces on upper floors in summer, but this may not be the same in wintertime due to high upward movement of hot air to spaces on upper floors.Keywords: building simulation, high-rise, structural timber buildings, sustainable, temperatures, thermal behavior
Procedia PDF Downloads 17617048 Evaluation of Collect Tree Protocol for Structural Health Monitoring System Using Wireless Sensor Networks
Authors: Amira Zrelli, Tahar Ezzedine
Abstract:
Routing protocol may enhance the lifetime of sensor network, it has a highly importance, especially in wireless sensor network (WSN). Therefore, routing protocol has a big effect in these networks, thus the choice of routing protocol must be studied before setting up our network. In this work, we implement the routing protocol collect tree protocol (CTP) which is one of the hierarchic protocols used in structural health monitoring (SHM). Therefore, to evaluate the performance of this protocol, we choice to work with Contiki system and Cooja simulator. By throughput and RSSI evaluation of each node, we will deduce about the utility of CTP in structural monitoring system.Keywords: CTP, WSN, SHM, routing protocol
Procedia PDF Downloads 29617047 Simulation of Propagation of Cos-Gaussian Beam in Strongly Nonlocal Nonlinear Media Using Paraxial Group Transformation
Authors: A. Keshavarz, Z. Roosta
Abstract:
In this paper, propagation of cos-Gaussian beam in strongly nonlocal nonlinear media has been stimulated by using paraxial group transformation. At first, cos-Gaussian beam, nonlocal nonlinear media, critical power, transfer matrix, and paraxial group transformation are introduced. Then, the propagation of the cos-Gaussian beam in strongly nonlocal nonlinear media is simulated. Results show that beam propagation has periodic structure during self-focusing effect in this case. However, this simple method can be used for investigation of propagation of kinds of beams in ABCD optical media.Keywords: paraxial group transformation, nonlocal nonlinear media, cos-Gaussian beam, ABCD law
Procedia PDF Downloads 34217046 A Multi Agent Based Protection Scheme for Smart Distribution Network in Presence of Distributed Energy Resources
Authors: M. R. Ebrahimi, B. Mahdaviani
Abstract:
Conventional electric distribution systems are radial in nature, supplied at one end through a main source. These networks generally have a simple protection system usually implemented using fuses, re-closers, and over-current relays. Recently, great attention has been paid to applying Distributed energy resources (DERs) throughout electric distribution systems. Presence of such generation in a network leads to losing coordination of protection devices. Therefore, it is desired to develop an algorithm which is capable of protecting distribution systems that include DER. On the other hand smart grid brings opportunities to the power system. Fast advancement in communication and measurement techniques accelerates the development of multi agent system (MAS). So in this paper, a new approach for the protection of distribution networks in the presence of DERs is presented base on MAS. The proposed scheme has been implemented on a sample 27-bus distribution network.Keywords: distributed energy resource, distribution network, protection, smart grid, multi agent system
Procedia PDF Downloads 60817045 DeepLig: A de-novo Computational Drug Design Approach to Generate Multi-Targeted Drugs
Authors: Anika Chebrolu
Abstract:
Mono-targeted drugs can be of limited efficacy against complex diseases. Recently, multi-target drug design has been approached as a promising tool to fight against these challenging diseases. However, the scope of current computational approaches for multi-target drug design is limited. DeepLig presents a de-novo drug discovery platform that uses reinforcement learning to generate and optimize novel, potent, and multitargeted drug candidates against protein targets. DeepLig’s model consists of two networks in interplay: a generative network and a predictive network. The generative network, a Stack- Augmented Recurrent Neural Network, utilizes a stack memory unit to remember and recognize molecular patterns when generating novel ligands from scratch. The generative network passes each newly created ligand to the predictive network, which then uses multiple Graph Attention Networks simultaneously to forecast the average binding affinity of the generated ligand towards multiple target proteins. With each iteration, given feedback from the predictive network, the generative network learns to optimize itself to create molecules with a higher average binding affinity towards multiple proteins. DeepLig was evaluated based on its ability to generate multi-target ligands against two distinct proteins, multi-target ligands against three distinct proteins, and multi-target ligands against two distinct binding pockets on the same protein. With each test case, DeepLig was able to create a library of valid, synthetically accessible, and novel molecules with optimal and equipotent binding energies. We propose that DeepLig provides an effective approach to design multi-targeted drug therapies that can potentially show higher success rates during in-vitro trials.Keywords: drug design, multitargeticity, de-novo, reinforcement learning
Procedia PDF Downloads 9717044 Insights on Behavior of Tunisian Auditors
Authors: Dammak Saida, Mbarek Sonia
Abstract:
This paper aims to examine the impact of public interest commitment, the attitude towards independence enforcement, and organizational ethical culture on auditors' ethical behavior. It also tests the moderating effect of gender diversity on these relationships. The sample consisted of 100 Tunisian chartered accountants. An online survey was used to collect the data. Data analysis techniques used to test hypotheses The findings of this study provide practical implications for accounting professionals, regulators, and audit firms as they help understand auditors' beliefs and behaviors, which implies more effective mechanisms for improving their ethical values.Keywords: public interest, independence, organizational culture, professional behavior, Tunisian auditors
Procedia PDF Downloads 7417043 Time Truncated Group Acceptance Sampling Plans for Exponentiated Half Logistic Distribution
Authors: Srinivasa Rao Gadde
Abstract:
In this article, we considered a group acceptance sampling plans for exponentiated half logistic distribution when the life-test is truncated at a pre-specified time. It is assumed that the index parameter of the exponentiated half logistic distribution is known. The design parameters such as the number of groups and the acceptance number are obtained by satisfying the producer’s and consumer’s risks at the specified quality levels in terms of medians and 10th percentiles under the assumption that the termination time and the number of items in each group are pre-fixed. Finally, an example is given to illustration the methodology.Keywords: group acceptance sampling plan, operating characteristic, consumer and producer’s risks, truncated life-test
Procedia PDF Downloads 34017042 Artificial Neural Network for Forecasting of Daily Reservoir Inflow: Case Study of the Kotmale Reservoir in Sri Lanka
Authors: E. U. Dampage, Ovindi D. Bandara, Vinushi S. Waraketiya, Samitha S. R. De Silva, Yasiru S. Gunarathne
Abstract:
The knowledge of water inflow figures is paramount in decision making on the allocation for consumption for numerous purposes; irrigation, hydropower, domestic and industrial usage, and flood control. The understanding of how reservoir inflows are affected by different climatic and hydrological conditions is crucial to enable effective water management and downstream flood control. In this research, we propose a method using a Long Short Term Memory (LSTM) Artificial Neural Network (ANN) to assist the aforesaid decision-making process. The Kotmale reservoir, which is the uppermost reservoir in the Mahaweli reservoir complex in Sri Lanka, was used as the test bed for this research. The ANN uses the runoff in the Kotmale reservoir catchment area and the effect of Sea Surface Temperatures (SST) to make a forecast for seven days ahead. Three types of ANN are tested; Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN), and LSTM. The extensive field trials and validation endeavors found that the LSTM ANN provides superior performance in the aspects of accuracy and latency.Keywords: convolutional neural network, CNN, inflow, long short-term memory, LSTM, multi-layer perceptron, MLP, neural network
Procedia PDF Downloads 15117041 One-Stage Conversion of Adjustable Gastric Band to One-Anastomosis Gastric Bypass Versus Sleeve Gastrectomy : A Single-Center Experience With a Short and Mid-term Follow-up
Authors: Basma Hussein Abdelaziz Hassan, Kareem Kamel, Philobater Bahgat Adly Awad, Karim Fahmy
Abstract:
Background: Laparoscopic adjustable gastric band was one of the most applied and common bariatric procedures in the last 8 years. However; the failure rate was very high, reaching approximately 60% of the patients not achieving the desired weight loss. Most patients sought another revisional surgery. In which, we compared two of the most common weight loss surgeries performed nowadays: the laparoscopic sleeve gastrectomy and laparoscopic one- anastomosis gastric bypass. Objective: To compare the weight loss and postoperative outcomes among patients undergoing conversion laparoscopic one-anastomosis gastric bypass (cOAGB) and laparoscopic sleeve gastrectomy (cSG) after a failed laparoscopic adjustable gastric band (LAGB). Patients and Methods: A prospective cohort study was conducted from June 2020 to June 2022 at a single medical center, which included 77 patients undergoing single-stage conversion to (cOAGB) vs (cSG). Patients were reassessed for weight loss, comorbidities remission, and post-operative complications at 6, 12, and 18 months. Results: There were 77 patients with failed LAGB in our study. Group (I) was 43 patients who underwent cOAGB and Group (II) was 34 patients who underwent cSG. The mean age of the cOAGB group was 38.58. While in the cSG group, the mean age was 39.47 (p=0.389). Of the 77 patients, 10 (12.99%) were males and 67 (87.01%) were females. Regarding Body mass index (BMI), in the cOAGB group the mean BMI was 41.06 and in the cSG group the mean BMI was 40.5 (p=0.042). The two groups were compared postoperative in relation to EBWL%, BMI, and the co-morbidities remission within 18 months follow-up. The BMI was calculated post-operative at three visits. After 6 months of follow-up, the mean BMI in the cOAGB group was 34.34, and the cSG group was 35.47 (p=0.229). In 12-month follow-up, the mean BMI in the cOAGB group was 32.69 and the cSG group was 33.79 (p=0.2). Finally, the mean BMI after 18 months of follow-up in the cOAGB group was 30.02, and in the cSG group was 31.79 (p=0.001). Both groups had no statistically significant values at 6 and 12 months follow-up with p-values of 0.229, and 0.2 respectively. However, patients who underwent cOAGB after 18 months of follow-up achieved lower BMI than those who underwent cSG with a statistically significant p-value of 0.005. Regarding EBWL% there was a statistically significant difference between the two groups. After 6 months of follow-up, the mean EBWL% in the cOAGB group was 35.9% and the cSG group was 33.14%. In the 12-month follow-up, the EBWL % mean in the cOAGB group was 52.35 and the cSG group was 48.76 (p=0.045). Finally, the mean EBWL % after 18 months of follow-up in the cOAGB group was 62.06 ±8.68 and in the cSG group was 55.58 ±10.87 (p=0.005). Regarding comorbidities remission; Diabetes mellitus remission was found in 22 (88%) patients in the cOAGB group and 10 (71.4%) patients in the cSG group with (p= 0.225). Hypertension remission was found in 20 (80%) patients in the cOAGB group and 14 (82.4%) patients in the cSG group with (p=1). In addition, dyslipidemia remission was found in 27(87%) patients in cOAGB group and 17(70%) patients in the cSG group with (p=0.18). Finally, GERD remission was found in about 15 (88.2%) patients in the cOAGB group and 6 (60%) patients in the cSG group with (p=0.47). There are no statistically significant differences between the two groups in the post-operative data outcomes. Conclusion: This study suggests that the conversion of LAGB to either cOAGB or cSG could be feasibly performed in a single-stage operation. cOAGB had a significant difference as regards the weight loss results than cSG among the mid-term follow-up. However, there is no significant difference in the postoperative complications and the resolution of the co-morbidities. Therefore, cOAGB could provide a reliable alternative but needs to be substantiated in future long-term studies.Keywords: laparoscopic, gastric banding, one-anastomosis gastric bypass, Sleeve gastrectomy, revisional surgery, weight loss
Procedia PDF Downloads 6117040 Combining an Optimized Closed Principal Curve-Based Method and Evolutionary Neural Network for Ultrasound Prostate Segmentation
Authors: Tao Peng, Jing Zhao, Yanqing Xu, Jing Cai
Abstract:
Due to missing/ambiguous boundaries between the prostate and neighboring structures, the presence of shadow artifacts, as well as the large variability in prostate shapes, ultrasound prostate segmentation is challenging. To handle these issues, this paper develops a hybrid method for ultrasound prostate segmentation by combining an optimized closed principal curve-based method and the evolutionary neural network; the former can fit curves with great curvature and generate a contour composed of line segments connected by sorted vertices, and the latter is used to express an appropriate map function (represented by parameters of evolutionary neural network) for generating the smooth prostate contour to match the ground truth contour. Both qualitative and quantitative experimental results showed that our proposed method obtains accurate and robust performances.Keywords: ultrasound prostate segmentation, optimized closed polygonal segment method, evolutionary neural network, smooth mathematical model, principal curve
Procedia PDF Downloads 20017039 The Role of Risk Attitudes and Networks on the Migration Decision: Empirical Evidence from the United States
Authors: Tamanna Rimi
Abstract:
A large body of literature has discussed the determinants of migration decision. However, the potential role of individual risk attitudes on migration decision has so far been overlooked. The research on migration literature has studied how the expected income differential influences migration flows for a risk neutral individual. However, migration takes place when there is no expected income differential or even the variability of income appears as lower than in the current location. This migration puzzle motivates a recent trend in the literature that analyzes how attitudes towards risk influence the decision to migrate. However, the significance of risk attitudes on migration decision has been addressed mostly in a theoretical perspective in the mainstream migration literature. The efficient outcome of labor market and overall economy are largely influenced by migration in many countries. Therefore, attitudes towards risk as a determinant of migration should get more attention in empirical studies. To author’s best knowledge, this is the first study that has examined the relationship between relative risk aversion and migration decision in US market. This paper considers movement across United States as a means of migration. In addition, this paper also explores the network effect due to the increasing size of one’s own ethnic group to a source location on the migration decision and how attitudes towards risk vary with network effect. Two ethnic groups (i.e. Asian and Hispanic) have been considered in this regard. For the empirical estimation, this paper uses two sources of data: 1) U.S. census data for social, economic, and health research, 2010 (IPUMPS) and 2) University of Michigan Health and Retirement Study, 2010 (HRS). In order to measure relative risk aversion, this study uses the ‘Two Sample Two-Stage Instrumental Variable (TS2SIV)’ technique. This is a similar method of Angrist (1990) and Angrist and Kruegers’ (1992) ‘Two Sample Instrumental Variable (TSIV)’ technique. Using a probit model, the empirical investigation yields the following results: (i) risk attitude has a significantly large impact on migration decision where more risk averse people are less likely to migrate; (ii) the impact of risk attitude on migration varies by other demographic characteristics such as age and sex; (iii) people with higher concentration of same ethnic households living in a particular place are expected to migrate less from their current place; (iv) the risk attitudes on migration vary with network effect. The overall findings of this paper relating risk attitude, migration decision and network effect can be a significant contribution addressing the gap between migration theory and empirical study in migration literature.Keywords: migration, network effect, risk attitude, U.S. market
Procedia PDF Downloads 16217038 A Statistical Study on Young UAE Driver’s Behavior towards Road Safety
Authors: Sadia Afroza, Rakiba Rouf
Abstract:
Road safety and associated behaviors have received significant attention in recent years, reflecting general public concern. This paper portrays a statistical scenario of the young drivers in UAE with emphasis on various concern points of young driver’s behavior and license issuance. Although there are many factors contributing to road accidents, statistically it is evident that age plays a major role in road accidents. Despite ensuring strict road safety laws enforced by the UAE government, there is a staggering correlation among road accidents and young driver’s at UAE. However, private organizations like BMW and RoadSafetyUAE have extended its support on conducting surveys on driver’s behavior with an aim to ensure road safety. Various strategies such as road safety law enforcement, license issuance, adapting new technologies like safety cameras and raising awareness can be implemented to improve the road safety concerns among young drivers.Keywords: driving behavior, Graduated Driver Licensing System (GLDS), road safety, UAE drivers, young drivers
Procedia PDF Downloads 26117037 Forecasting Optimal Production Program Using Profitability Optimization by Genetic Algorithm and Neural Network
Authors: Galal H. Senussi, Muamar Benisa, Sanja Vasin
Abstract:
In our business field today, one of the most important issues for any enterprises is cost minimization and profit maximization. Second issue is how to develop a strong and capable model that is able to give us desired forecasting of these two issues. Many researches deal with these issues using different methods. In this study, we developed a model for multi-criteria production program optimization, integrated with Artificial Neural Network. The prediction of the production cost and profit per unit of a product, dealing with two obverse functions at same time can be extremely difficult, especially if there is a great amount of conflict information about production parameters. Feed-Forward Neural Networks are suitable for generalization, which means that the network will generate a proper output as a result to input it has never seen. Therefore, with small set of examples the network will adjust its weight coefficients so the input will generate a proper output. This essential characteristic is of the most important abilities enabling this network to be used in variety of problems spreading from engineering to finance etc. From our results as we will see later, Feed-Forward Neural Networks has a strong ability and capability to map inputs into desired outputs.Keywords: project profitability, multi-objective optimization, genetic algorithm, Pareto set, neural networks
Procedia PDF Downloads 445