Search results for: malicious images detector
1710 Investigation of Different Machine Learning Algorithms in Large-Scale Land Cover Mapping within the Google Earth Engine
Authors: Amin Naboureh, Ainong Li, Jinhu Bian, Guangbin Lei, Hamid Ebrahimy
Abstract:
Large-scale land cover mapping has become a new challenge in land change and remote sensing field because of involving a big volume of data. Moreover, selecting the right classification method, especially when there are different types of landscapes in the study area is quite difficult. This paper is an attempt to compare the performance of different machine learning (ML) algorithms for generating a land cover map of the China-Central Asia–West Asia Corridor that is considered as one of the main parts of the Belt and Road Initiative project (BRI). The cloud-based Google Earth Engine (GEE) platform was used for generating a land cover map for the study area from Landsat-8 images (2017) by applying three frequently used ML algorithms including random forest (RF), support vector machine (SVM), and artificial neural network (ANN). The selected ML algorithms (RF, SVM, and ANN) were trained and tested using reference data obtained from MODIS yearly land cover product and very high-resolution satellite images. The finding of the study illustrated that among three frequently used ML algorithms, RF with 91% overall accuracy had the best result in producing a land cover map for the China-Central Asia–West Asia Corridor whereas ANN showed the worst result with 85% overall accuracy. The great performance of the GEE in applying different ML algorithms and handling huge volume of remotely sensed data in the present study showed that it could also help the researchers to generate reliable long-term land cover change maps. The finding of this research has great importance for decision-makers and BRI’s authorities in strategic land use planning.Keywords: land cover, google earth engine, machine learning, remote sensing
Procedia PDF Downloads 1131709 Preparation of Papers - Developing a Leukemia Diagnostic System Based on Hybrid Deep Learning Architectures in Actual Clinical Environments
Authors: Skyler Kim
Abstract:
An early diagnosis of leukemia has always been a challenge to doctors and hematologists. On a worldwide basis, it was reported that there were approximately 350,000 new cases in 2012, and diagnosing leukemia was time-consuming and inefficient because of an endemic shortage of flow cytometry equipment in current clinical practice. As the number of medical diagnosis tools increased and a large volume of high-quality data was produced, there was an urgent need for more advanced data analysis methods. One of these methods was the AI approach. This approach has become a major trend in recent years, and several research groups have been working on developing these diagnostic models. However, designing and implementing a leukemia diagnostic system in real clinical environments based on a deep learning approach with larger sets remains complex. Leukemia is a major hematological malignancy that results in mortality and morbidity throughout different ages. We decided to select acute lymphocytic leukemia to develop our diagnostic system since acute lymphocytic leukemia is the most common type of leukemia, accounting for 74% of all children diagnosed with leukemia. The results from this development work can be applied to all other types of leukemia. To develop our model, the Kaggle dataset was used, which consists of 15135 total images, 8491 of these are images of abnormal cells, and 5398 images are normal. In this paper, we design and implement a leukemia diagnostic system in a real clinical environment based on deep learning approaches with larger sets. The proposed diagnostic system has the function of detecting and classifying leukemia. Different from other AI approaches, we explore hybrid architectures to improve the current performance. First, we developed two independent convolutional neural network models: VGG19 and ResNet50. Then, using both VGG19 and ResNet50, we developed a hybrid deep learning architecture employing transfer learning techniques to extract features from each input image. In our approach, fusing the features from specific abstraction layers can be deemed as auxiliary features and lead to further improvement of the classification accuracy. In this approach, features extracted from the lower levels are combined into higher dimension feature maps to help improve the discriminative capability of intermediate features and also overcome the problem of network gradient vanishing or exploding. By comparing VGG19 and ResNet50 and the proposed hybrid model, we concluded that the hybrid model had a significant advantage in accuracy. The detailed results of each model’s performance and their pros and cons will be presented in the conference.Keywords: acute lymphoblastic leukemia, hybrid model, leukemia diagnostic system, machine learning
Procedia PDF Downloads 1871708 Impact of Marine Hydrodynamics and Coastal Morphology on Changes in Mangrove Forests (Case Study: West of Strait of Hormuz, Iran)
Authors: Fatemeh Parhizkar, Mojtaba Yamani, Abdolla Behboodi, Masoomeh Hashemi
Abstract:
The mangrove forests are natural and valuable gifts that exist in some parts of the world, including Iran. Regarding the threats faced by these forests and the declining area of them all over the world, as well as in Iran, it is very necessary to manage and monitor them. The current study aimed to investigate the changes in mangrove forests and the relationship between these changes and the marine hydrodynamics and coastal morphology in the area between qeshm island and the west coast of the Hormozgan province (i.e. the coastline between Mehran river and Bandar-e Pol port) in the 49-year period. After preprocessing and classifying satellite images using the SVM, MLC, and ANN classifiers and evaluating the accuracy of the maps, the SVM approach with the highest accuracy (the Kappa coefficient of 0.97 and overall accuracy of 98) was selected for preparing the classification map of all images. The results indicate that from 1972 to 1987, the area of these forests have had experienced a declining trend, and in the next years, their expansion was initiated. These forests include the mangrove forests of Khurkhuran wetland, Muriz Deraz Estuary, Haft Baram Estuary, the mangrove forest in the south of the Laft Port, and the mangrove forests between the Tabl Pier, Maleki Village, and Gevarzin Village. The marine hydrodynamic and geomorphological characteristics of the region, such as average intertidal zone, sediment data, the freshwater inlet of Mehran river, wave stability and calmness, topography and slope, as well as mangrove conservation projects make the further expansion of mangrove forests in this area possible. By providing significant and up-to-date information on the development and decline of mangrove forests in different parts of the coast, this study can significantly contribute to taking measures for the conservation and restoration of mangrove forests.Keywords: mangrove forests, marine hydrodynamics, coastal morphology, west of strait of Hormuz, Iran
Procedia PDF Downloads 961707 The Long-Term Leaching Behaviour of 137Cs, 60Co and 152Eu Radionuclides Incorporated in Mortar Matrices Made from Natural Aggregates and Recycled Aggregates
Authors: R. Deju, M. Mincu, D. Gurau
Abstract:
During the interim storage or final disposal of low level waste, migration/diffusion of radionuclides can occur when the waste comes in contact with water. The long-term leaching behaviour into surrounding fluid (demineralized water) of 137Cs, 60Co and 152Eu radionuclides, artificially incorporated in mortar matrices made from natural aggregates (river sand) and recycled radioactive concrete was studied. Results presented in this work are obtained in two years of mortar testing and will be used for the safety increasing in the storage of low level radioactive waste. The study involved the influence of curing time, type and size distribution of the aggregates on leaching behaviour. The mortar samples were immersed in distilled water for 30 days. The leached activity of the mortar samples was measured on samples from the immersing water and analyzed through a gamma-ray spectrometry method using an HPGe detector with a GESPECOR code for efficiency evaluation. The long-term leaching behaviour of the radionuclides was evaluated from the leaching data calculating the apparent diffusion coefficient.Keywords: gamma spectrometry, leaching behavior, reuse and recycling of radioactive concrete, waste management
Procedia PDF Downloads 2481706 The Trigger-DAQ System in the Mu2e Experiment
Authors: Antonio Gioiosa, Simone Doanti, Eric Flumerfelt, Luca Morescalchi, Elena Pedreschi, Gianantonio Pezzullo, Ryan A. Rivera, Franco Spinella
Abstract:
The Mu2e experiment at Fermilab aims to measure the charged-lepton flavour violating neutrino-less conversion of a negative muon into an electron in the field of an aluminum nucleus. With the expected experimental sensitivity, Mu2e will improve the previous limit of four orders of magnitude. The Mu2e data acquisition (DAQ) system provides hardware and software to collect digitized data from the tracker, calorimeter, cosmic ray veto, and beam monitoring systems. Mu2e’s trigger and data acquisition system (TDAQ) uses otsdaq as its solution. developed at Fermilab, otsdaq uses the artdaq DAQ framework and art analysis framework, under-the-hood, for event transfer, filtering, and processing. Otsdaq is an online DAQ software suite with a focus on flexibility and scalability while providing a multi-user, web-based interface accessible through the Chrome or Firefox web browser. The detector read out controller (ROC) from the tracker and calorimeter stream out zero-suppressed data continuously to the data transfer controller (DTC). Data is then read over the PCIe bus to a software filter algorithm that selects events which are finally combined with the data flux that comes from a cosmic ray veto system (CRV).Keywords: trigger, daq, mu2e, Fermilab
Procedia PDF Downloads 1551705 Characterization of White Spot Lesion Using Focused Ion Beam - Scanning Electron Microscopy
Authors: Malihe Moeinin, Robert Hill, Ferranti Wong
Abstract:
Background: A white spot lesion (WSL) is defined as subsurface enamel porosity from carious demineralisation on the smooth surfaces of the tooth. It appears as a milky white opacity. Lesions shown an apparently intact surface layer, followed underneath by the more porous lesion body. The small pores within the body of the lesion act as diffusion pathway for both acids and minerals, so allowing the demineralisation of enamel to occur at the advancing front of the lesion. Objectives: The objective is to mapthe porosity and its size on WSL with Focused Ion Bean- Scanning Electron Microscopy (FIB-SEM) Method: The basic method used for FIB-SEM consisted of depositing a one micron thick layer of platinum over 25μmx 25μm of the interest region of enamel. Then, making a rough cut (25μmx 5μmx 20μm) with 3nA current and 30Kv was applied with the help of drift suppression (DS), using a standard “cross-sectional” cutting pattern, which ended at the front of the deposited platinum layer. Two adjacent areas (25μmx 5μmx 20μm) on the both sides of the platinum layer were milled under the same conditions. Subsequent, cleaning cross-sections were applied to polish the sub-surface edge of interest running perpendicular to the surface. The "slice and view" was carried out overnight for milling almost 700 slices with 2Kv and 4nA and taking backscattered (BS) images. Then, images were imported into imageJ and analysed. Results: The prism structure is clearly apparent on FIB-SEM slices of WSL with the dissolution of prism boundaries as well as internal porosity within the prism itself. Porosity scales roughly 100-400nm, which is comparable to the light wavelength (500nm). Conclusion: FIB-SEM is useful to characterize the porosity of WSL and it clearly shows the difference between WSL and normal enamel.Keywords: white spot lesion, FIB-SEM, enamel porosity, porosity
Procedia PDF Downloads 941704 Arsenic and Mercury Levels in Scalp Hair of School Children of Three Villages in Kandal Province, Cambodia
Authors: Alireza Yavar, Sukiman Sarmani, Khoo Kok Siong
Abstract:
The residents of villages in Kandal province of Cambodia, because of dietary habits, lifestyle and ecological conditions, are exposed to toxic elements like arsenic (As) and mercury (Hg). For comparison purpose, scalp hair samples of 12-17 school children from three villages of Anglong Romiot (AR), Svay Romiot (SR) and Kampong Kong (KK) in Kandal province of Cambodia were considered using k0- instrumental neutron activation method (k0-INAA). The samples irradiated 6 hours with 750 kW power in Malaysian nuclear agency (MNA) research reactor and subsequently found gamma peaks of radionuclides in samples using HPGe detector. The average values of arsenic and mercury were 0.0 and 3.52 (mg/kg) in AR; 1.88 and 4.26 (mg/kg) in SR; 2.81 and 3.37 (mg/kg) in KK, respectively. The results indicate KK, SR, and AR villages were in high, medium and control level of arsenic pollution, respectively. However, Hg concentration were highest in SR, then KK and AR villages, respectively. The accuracy of the method was assessed by analyzing ERM-DB001-human hair as certified reference materials (CRMs), which experimental result of ERM-DB001 was consistent with certified values. In addition, correlation between As and Hg levels was found by Pearson’s correlation test.Keywords: Kandal province of Cambodia, k0- instrumental neutron activation method., scalp human hair, arsenic and mercury
Procedia PDF Downloads 981703 Skew Cyclic Codes over Fq+uFq+…+uk-1Fq
Abstract:
This paper studies a special class of linear codes, called skew cyclic codes, over the ring R= Fq+uFq+…+uk-1Fq, where q is a prime power. A Gray map ɸ from R to Fq and a Gray map ɸ' from Rn to Fnq are defined, as well as an automorphism Θ over R. It is proved that the images of skew cyclic codes over R under map ɸ' and Θ are cyclic codes over Fq, and they still keep the dual relation.Keywords: skew cyclic code, gray map, automorphism, cyclic code
Procedia PDF Downloads 2991702 The Challenges of Intercultural Transfer: The Italian Reception of Aotearoa/New Zealand Films
Authors: Martina Depentor
Abstract:
While the cinematic medium contributes to bringing images of a culture to foreign audiences, Audiovisual Translation contributes to deciphering those cultural representations to those same audiences. Through Audiovisual Translation, in fact, elements permeate the reception system and contribute to forging a cultural image of the original/source system in the target/reception system. By analyzing a number of Italian critical reviews, blogs and forum posts, this paper examines the impact and reception in Italy of five of the most successful and influential New Zealand films of the last two decades - An Angel at my Table (1990), The Piano (1993), Heavenly Creatures (1994), Once Were Warriors (1994), Whale Rider (2002) - with the aim of exploring how the adaptation of New Zealand films might condition the representation of New Zealand in the Italian imaginary. The analysis seeks to identify whether a certain degree of cultural loss results from the 'translation' of these films. The films selected share common ground in that they all reveal cultural, social and historical characteristics of New Zealand, from aspects that are unique to this country and that on the surface may render it difficult to penetrate (unfamiliar landscapes, aspects of indigenous culture) to more universal themes (intimate family stories, dysfunctional relationship). They contributed to situating New Zealand on an international stage and to bringing images of the country to many audiences, the Italian one included, with little previous cultural knowledge of the social and political history of New Zealand. Differences in film types pose clearly different levels of interpretative challenges to non-New Zealander audiences, and examples from the films will show how these challenges are or are not overcome if the adaptations display misinterpretations or rendition gaps, and how the process of intercultural transfer further 'domesticates' or 'exoticises' the source culture.Keywords: audiovisual translation, cultural representation, intercultural transfer, New Zealand Films
Procedia PDF Downloads 3021701 Efficient Video Compression Technique Using Convolutional Neural Networks and Generative Adversarial Network
Authors: P. Karthick, K. Mahesh
Abstract:
Video has become an increasingly significant component of our digital everyday contact. With the advancement of greater contents and shows of the resolution, its significant volume poses serious obstacles to the objective of receiving, distributing, compressing, and revealing video content of high quality. In this paper, we propose the primary beginning to complete a deep video compression model that jointly upgrades all video compression components. The video compression method involves splitting the video into frames, comparing the images using convolutional neural networks (CNN) to remove duplicates, repeating the single image instead of the duplicate images by recognizing and detecting minute changes using generative adversarial network (GAN) and recorded with long short-term memory (LSTM). Instead of the complete image, the small changes generated using GAN are substituted, which helps in frame level compression. Pixel wise comparison is performed using K-nearest neighbours (KNN) over the frame, clustered with K-means, and singular value decomposition (SVD) is applied for each and every frame in the video for all three color channels [Red, Green, Blue] to decrease the dimension of the utility matrix [R, G, B] by extracting its latent factors. Video frames are packed with parameters with the aid of a codec and converted to video format, and the results are compared with the original video. Repeated experiments on several videos with different sizes, duration, frames per second (FPS), and quality results demonstrate a significant resampling rate. On average, the result produced had approximately a 10% deviation in quality and more than 50% in size when compared with the original video.Keywords: video compression, K-means clustering, convolutional neural network, generative adversarial network, singular value decomposition, pixel visualization, stochastic gradient descent, frame per second extraction, RGB channel extraction, self-detection and deciding system
Procedia PDF Downloads 1871700 Scientific Investigation for an Ancient Egyptian Polychrome Wooden Stele
Authors: Ahmed Abdrabou, Medhat Abdalla
Abstract:
The studied stele dates back to Third Intermediate Period (1075-664) B.C in an ancient Egypt. It is made of wood and covered with painted gesso layers. This study aims to use a combination of multi spectral imaging {visible, infrared (IR), Visible-induced infrared luminescence (VIL), Visible-induced ultraviolet luminescence (UVL) and ultraviolet reflected (UVR)}, along with portable x-ray fluorescence in order to map and identify the pigments as well as to provide a deeper understanding of the painting techniques. Moreover; the authors were significantly interested in the identification of wood species. Multispectral imaging acquired in 3 spectral bands, ultraviolet (360-400 nm), visible (400-780 nm) and infrared (780-1100 nm) using (UV Ultraviolet-induced luminescence (UVL), UV Reflected (UVR), Visible (VIS), Visible-induced infrared luminescence (VIL) and Infrared photography. False color images are made by digitally editing the VIS with IR or UV images using Adobe Photoshop. Optical Microscopy (OM), potable X-ray fluorescence spectroscopy (p-XRF) and Fourier Transform Infrared Spectroscopy (FTIR) were used in this study. Mapping and imaging techniques provided useful information about the spatial distribution of pigments, in particular visible-induced luminescence (VIL) which allowed the spatial distribution of Egyptian blue pigment to be mapped and every region containing Egyptian blue, even down to single crystals in some instances, is clearly visible as a bright white area; however complete characterization of the pigments requires the use of p. XRF spectroscopy. Based on the elemental analysis found by P.XRF, we conclude that the artists used mixtures of the basic mineral pigments to achieve a wider palette of hues. Identification of wood species Microscopic identification indicated that the wood used was Sycamore Fig (Ficus sycomorus L.) which is recorded as being native to Egypt and was used to make wooden artifacts since at least the Fifth Dynasty.Keywords: polychrome wooden stele, multispectral imaging, IR luminescence, Wood identification, Sycamore Fig, p-XRF
Procedia PDF Downloads 2641699 Expert System: Debugging Using MD5 Process Firewall
Authors: C. U. Om Kumar, S. Kishore, A. Geetha
Abstract:
An Operating system (OS) is software that manages computer hardware and software resources by providing services to computer programs. One of the important user expectations of the operating system is to provide the practice of defending information from unauthorized access, disclosure, modification, inspection, recording or destruction. Operating system is always vulnerable to the attacks of malwares such as computer virus, worm, Trojan horse, backdoors, ransomware, spyware, adware, scareware and more. And so the anti-virus software were created for ensuring security against the prominent computer viruses by applying a dictionary based approach. The anti-virus programs are not always guaranteed to provide security against the new viruses proliferating every day. To clarify this issue and to secure the computer system, our proposed expert system concentrates on authorizing the processes as wanted and unwanted by the administrator for execution. The Expert system maintains a database which consists of hash code of the processes which are to be allowed. These hash codes are generated using MD5 message-digest algorithm which is a widely used cryptographic hash function. The administrator approves the wanted processes that are to be executed in the client in a Local Area Network by implementing Client-Server architecture and only the processes that match with the processes in the database table will be executed by which many malicious processes are restricted from infecting the operating system. The add-on advantage of this proposed Expert system is that it limits CPU usage and minimizes resource utilization. Thus data and information security is ensured by our system along with increased performance of the operating system.Keywords: virus, worm, Trojan horse, back doors, Ransomware, Spyware, Adware, Scareware, sticky software, process table, MD5, CPU usage and resource utilization
Procedia PDF Downloads 4271698 Applying Multiplicative Weight Update to Skin Cancer Classifiers
Authors: Animish Jain
Abstract:
This study deals with using Multiplicative Weight Update within artificial intelligence and machine learning to create models that can diagnose skin cancer using microscopic images of cancer samples. In this study, the multiplicative weight update method is used to take the predictions of multiple models to try and acquire more accurate results. Logistic Regression, Convolutional Neural Network (CNN), and Support Vector Machine Classifier (SVMC) models are employed within the Multiplicative Weight Update system. These models are trained on pictures of skin cancer from the ISIC-Archive, to look for patterns to label unseen scans as either benign or malignant. These models are utilized in a multiplicative weight update algorithm which takes into account the precision and accuracy of each model through each successive guess to apply weights to their guess. These guesses and weights are then analyzed together to try and obtain the correct predictions. The research hypothesis for this study stated that there would be a significant difference in the accuracy of the three models and the Multiplicative Weight Update system. The SVMC model had an accuracy of 77.88%. The CNN model had an accuracy of 85.30%. The Logistic Regression model had an accuracy of 79.09%. Using Multiplicative Weight Update, the algorithm received an accuracy of 72.27%. The final conclusion that was drawn was that there was a significant difference in the accuracy of the three models and the Multiplicative Weight Update system. The conclusion was made that using a CNN model would be the best option for this problem rather than a Multiplicative Weight Update system. This is due to the possibility that Multiplicative Weight Update is not effective in a binary setting where there are only two possible classifications. In a categorical setting with multiple classes and groupings, a Multiplicative Weight Update system might become more proficient as it takes into account the strengths of multiple different models to classify images into multiple categories rather than only two categories, as shown in this study. This experimentation and computer science project can help to create better algorithms and models for the future of artificial intelligence in the medical imaging field.Keywords: artificial intelligence, machine learning, multiplicative weight update, skin cancer
Procedia PDF Downloads 791697 Assessment of Kinetic Trajectory of the Median Nerve from Wrist Ultrasound Images Using Two Dimensional Baysian Speckle Tracking Technique
Authors: Li-Kai Kuo, Shyh-Hau Wang
Abstract:
The kinetic trajectory of the median nerve (MN) in the wrist has shown to be capable of being applied to assess the carpal tunnel syndrome (CTS), and was found able to be detected by high-frequency ultrasound image via motion tracking technique. Yet, previous study may not quickly perform the measurement due to the use of a single element transducer for ultrasound image scanning. Therefore, previous system is not appropriate for being applied to clinical application. In the present study, B-mode ultrasound images of the wrist corresponding to movements of fingers from flexion to extension were acquired by clinical applicable real-time scanner. The kinetic trajectories of MN were off-line estimated utilizing two dimensional Baysian speckle tracking (TDBST) technique. The experiments were carried out from ten volunteers by ultrasound scanner at 12 MHz frequency. Results verified from phantom experiments have demonstrated that TDBST technique is able to detect the movement of MN based on signals of the past and present information and then to reduce the computational complications associated with the effect of such image quality as the resolution and contrast variations. Moreover, TDBST technique tended to be more accurate than that of the normalized cross correlation tracking (NCCT) technique used in previous study to detect movements of the MN in the wrist. In response to fingers’ flexion movement, the kinetic trajectory of the MN moved toward the ulnar-palmar direction, and then toward the radial-dorsal direction corresponding to the extensional movement. TDBST technique and the employed ultrasound image scanner have verified to be feasible to sensitively detect the kinetic trajectory and displacement of the MN. It thus could be further applied to diagnose CTS clinically and to improve the measurements to assess 3D trajectory of the MN.Keywords: baysian speckle tracking, carpal tunnel syndrome, median nerve, motion tracking
Procedia PDF Downloads 4951696 Chemical Profile of Extra Virgin Olive Oil from Frantoio Cultivar Growing in Calabria, Italy
Authors: Monica Rosa Loizzo, Tiziana Falco, Marco Bonesi, Maria Concetta Tenuta, Mariarosaria Leporini, Rosa Tundis
Abstract:
Extra Virgin Olive Oil (EVOO) is a major source of fat in the Mediterranean diet and its nutritional properties are the main reason for the increment of its consumption all over the world in recent years. In terms of olive oil production, Italy ranks the second in the world. EVOO is obtained exclusively by physical methods from the fruit of Olea europea L. Frantoio cv is spread in all the Italian territory. The aim of this work is to identify the phenolic and fatty acids profile of EVOO from Frantoio cv growing in different area of Calabria (Italy). The phenolic profile was obtained by HPLC coupled to a diode array detector and mass spectrometry. Analyses revealed the presence of phenolic alcohols, phenolic acid, several secoiridoids, and two flavones as main components. Hydroxytyrosol and tyrosol are present in reasonable content. Fatty acids were monitored by gas chromatography. Oleic acid was the most abundant compounds. A moderate level of linoleic acid, in accordance with the general observations for oils derived from Mediterranean countries, was also found.Keywords: extra virgin olive oils, frantoio cv, phenolic compounds, fatty acids
Procedia PDF Downloads 3631695 Strength Evaluation by Finite Element Analysis of Mesoscale Concrete Models Developed from CT Scan Images of Concrete Cube
Authors: Nirjhar Dhang, S. Vinay Kumar
Abstract:
Concrete is a non-homogeneous mix of coarse aggregates, sand, cement, air-voids and interfacial transition zone (ITZ) around aggregates. Adoption of these complex structures and material properties in numerical simulation would lead us to better understanding and design of concrete. In this work, the mesoscale model of concrete has been prepared from X-ray computerized tomography (CT) image. These images are converted into computer model and numerically simulated using commercially available finite element software. The mesoscale models are simulated under the influence of compressive displacement. The effect of shape and distribution of aggregates, continuous and discrete ITZ thickness, voids, and variation of mortar strength has been investigated. The CT scan of concrete cube consists of series of two dimensional slices. Total 49 slices are obtained from a cube of 150mm and the interval of slices comes approximately 3mm. In CT scan images, the same cube can be CT scanned in a non-destructive manner and later the compression test can be carried out in a universal testing machine (UTM) for finding its strength. The image processing and extraction of mortar and aggregates from CT scan slices are performed by programming in Python. The digital colour image consists of red, green and blue (RGB) pixels. The conversion of RGB image to black and white image (BW) is carried out, and identification of mesoscale constituents is made by putting value between 0-255. The pixel matrix is created for modeling of mortar, aggregates, and ITZ. Pixels are normalized to 0-9 scale considering the relative strength. Here, zero is assigned to voids, 4-6 for mortar and 7-9 for aggregates. The value between 1-3 identifies boundary between aggregates and mortar. In the next step, triangular and quadrilateral elements for plane stress and plane strain models are generated depending on option given. Properties of materials, boundary conditions, and analysis scheme are specified in this module. The responses like displacement, stresses, and damages are evaluated by ABAQUS importing the input file. This simulation evaluates compressive strengths of 49 slices of the cube. The model is meshed with more than sixty thousand elements. The effect of shape and distribution of aggregates, inclusion of voids and variation of thickness of ITZ layer with relation to load carrying capacity, stress-strain response and strain localizations of concrete have been studied. The plane strain condition carried more load than plane stress condition due to confinement. The CT scan technique can be used to get slices from concrete cores taken from the actual structure, and the digital image processing can be used for finding the shape and contents of aggregates in concrete. This may be further compared with test results of concrete cores and can be used as an important tool for strength evaluation of concrete.Keywords: concrete, image processing, plane strain, interfacial transition zone
Procedia PDF Downloads 2411694 On Elastic Anisotropy of Fused Filament Fabricated Acrylonitrile Butadiene Styrene Structures
Authors: Joseph Marae Djouda, Ashraf Kasmi, François Hild
Abstract:
Fused filament fabrication is one of the most widespread additive manufacturing techniques because of its low-cost implementation. Its initial development was based on part fabrication with thermoplastic materials. The influence of the manufacturing parameters such as the filament orientation through the nozzle, the deposited layer thickness, or the speed deposition on the mechanical properties of the parts has been widely experimentally investigated. It has been recorded the remarkable variations of the anisotropy in the function of the filament path during the fabrication process. However, there is a lack in the development of constitutive models describing the mechanical properties. In this study, integrated digital image correlation (I-DIC) is used for the identification of mechanical constitutive parameters of two configurations of ABS samples: +/-45° and so-called “oriented deposition.” In this last, the filament was deposited in order to follow the principal strain of the sample. The identification scheme based on the gap reduction between simulation and the experiment directly from images recorded from a single sample (single edge notched tension specimen) is developed. The macroscopic and mesoscopic analysis are conducted from images recorded in both sample surfaces during the tensile test. The elastic and elastoplastic models in isotropic and orthotropic frameworks have been established. It appears that independently of the sample configurations (filament orientation during the fabrication), the elastoplastic isotropic model gives the correct description of the behavior of samples. It is worth noting that in this model, the number of constitutive parameters is limited to the one considered in the elastoplastic orthotropic model. This leads to the fact that the anisotropy of the architectured 3D printed ABS parts can be neglected in the establishment of the macroscopic behavior description.Keywords: elastic anisotropy, fused filament fabrication, Acrylonitrile butadiene styrene, I-DIC identification
Procedia PDF Downloads 1261693 Multimodal Rhetoric in the Wildlife Documentary, “My Octopus Teacher”
Authors: Visvaganthie Moodley
Abstract:
While rhetoric goes back as far as Aristotle who focalised its meaning as the “art of persuasion”, most scholars have focused on elocutio and dispositio canons, neglecting the rhetorical impact of multimodal texts, such as documentaries. Film documentaries are being increasingly rhetoric, often used by wildlife conservationists for influencing people to become more mindful about humanity’s connection with nature. This paper examines the award-winning film documentary, “My Octopus Teacher”, which depicts naturalist, Craig Foster’s unique discovery and relationship with a female octopus in the southern tip of Africa, the Cape of Storms in South Africa. It is anchored in Leech and Short’s (2007) framework of linguistic and stylistic categories – comprising lexical items, grammatical features, figures of speech and other rhetoric features, and cohesiveness – with particular foci on diction, anthropomorphic language, metaphors and symbolism. It also draws on Kress and van Leeuwen’s (2006) multimodal analysis to show how verbal cues (the narrator’s commentary), visual images in motion, visual images as metaphors and symbolism, and aural sensory images such as music and sound synergise for rhetoric effect. In addition, the analysis of “My Octopus Teacher” is guided by Nichol’s (2010) narrative theory; features of a documentary which foregrounds the credibility of the narrative as a text that represents real events with real people; and its modes of construction, viz., the poetic mode, the expository mode, observational mode and participatory mode, and their integration – forging documentaries as multimodal texts. This paper presents a multimodal rhetoric discussion on the sequence of salient episodes captured in the slow moving one-and-a-half-hour documentary. These are: (i) The prologue: on the brink of something extraordinary; (ii) The day it all started; (iii) The narrator’s turmoil: getting back into the ocean; (iv) The incredible encounter with the octopus; (v) Establishing a relationship; (vi) Outwitting the predatory pyjama shark; (vii) The cycle of life; and (viii) The conclusion: lessons from an octopus. The paper argues that wildlife documentaries, characterized by plausibility and which provide researchers the lens to examine the ideologies about animals and humans, offer an assimilation of the various senses – vocal, visual and audial – for engaging viewers in stylized compelling way; they have the ability to persuade people to think and act in particular ways. As multimodal texts, with its use of lexical items; diction; anthropomorphic language; linguistic, visual and aural metaphors and symbolism; and depictions of anthropocentrism, wildlife documentaries are powerful resources for promoting wildlife conservation and conscientizing people of the need for establishing a harmonious relationship with nature and humans alike.Keywords: documentaries, multimodality, rhetoric, style, wildlife, conservation
Procedia PDF Downloads 941692 Object Detection in Digital Images under Non-Standardized Conditions Using Illumination and Shadow Filtering
Authors: Waqqas-ur-Rehman Butt, Martin Servin, Marion Pause
Abstract:
In recent years, object detection has gained much attention and very encouraging research area in the field of computer vision. The robust object boundaries detection in an image is demanded in numerous applications of human computer interaction and automated surveillance systems. Many methods and approaches have been developed for automatic object detection in various fields, such as automotive, quality control management and environmental services. Inappropriately, to the best of our knowledge, object detection under illumination with shadow consideration has not been well solved yet. Furthermore, this problem is also one of the major hurdles to keeping an object detection method from the practical applications. This paper presents an approach to automatic object detection in images under non-standardized environmental conditions. A key challenge is how to detect the object, particularly under uneven illumination conditions. Image capturing conditions the algorithms need to consider a variety of possible environmental factors as the colour information, lightening and shadows varies from image to image. Existing methods mostly failed to produce the appropriate result due to variation in colour information, lightening effects, threshold specifications, histogram dependencies and colour ranges. To overcome these limitations we propose an object detection algorithm, with pre-processing methods, to reduce the interference caused by shadow and illumination effects without fixed parameters. We use the Y CrCb colour model without any specific colour ranges and predefined threshold values. The segmented object regions are further classified using morphological operations (Erosion and Dilation) and contours. Proposed approach applied on a large image data set acquired under various environmental conditions for wood stack detection. Experiments show the promising result of the proposed approach in comparison with existing methods.Keywords: image processing, illumination equalization, shadow filtering, object detection
Procedia PDF Downloads 2161691 Characterization of Anisotropic Deformation in Sandstones Using Micro-Computed Tomography Technique
Authors: Seyed Mehdi Seyed Alizadeh, Christoph Arns, Shane Latham
Abstract:
Geomechanical characterization of rocks in detail and its possible implications on flow properties is an important aspect of reservoir characterization workflow. In order to gain more understanding of the microstructure evolution of reservoir rocks under stress a series of axisymmetric triaxial tests were performed on two different analogue rock samples. In-situ compression tests were coupled with high resolution micro-Computed Tomography to elucidate the changes in the pore/grain network of the rocks under pressurized conditions. Two outcrop sandstones were chosen in the current study representing a various cementation status of well-consolidated and weakly-consolidated granular system respectively. High resolution images were acquired while the rocks deformed in a purpose-built compression cell. A detailed analysis of the 3D images in each series of step-wise compression tests (up to the failure point) was conducted which includes the registration of the deformed specimen images with the reference pristine dry rock image. Digital Image Correlation (DIC) technique based on the intensity of the registered 3D subsets and particle tracking are utilized to map the displacement fields in each sample. The results suggest the complex architecture of the localized shear zone in well-cemented Bentheimer sandstone whereas for the weakly-consolidated Castlegate sandstone no discernible shear band could be observed even after macroscopic failure. Post-mortem imaging a sister plug from the friable rock upon undergoing continuous compression reveals signs of a shear band pattern. This suggests that for friable sandstones at small scales loading mode may affect the pattern of deformation. Prior to mechanical failure, the continuum digital image correlation approach can reasonably capture the kinematics of deformation. As failure occurs, however, discrete image correlation (i.e. particle tracking) reveals superiority in both tracking the grains as well as quantifying their kinematics (in terms of translations/rotations) with respect to any stage of compaction. An attempt was made to quantify the displacement field in compression using continuum Digital Image Correlation which is based on the reference and secondary image intensity correlation. Such approach has only been previously applied to unconsolidated granular systems under pressure. We are applying this technique to sandstones with various degrees of consolidation. Such element of novelty will set the results of this study apart from previous attempts to characterize the deformation pattern in consolidated sands.Keywords: deformation mechanism, displacement field, shear behavior, triaxial compression, X-ray micro-CT
Procedia PDF Downloads 1901690 Semi-Automatic Segmentation of Mitochondria on Transmission Electron Microscopy Images Using Live-Wire and Surface Dragging Methods
Authors: Mahdieh Farzin Asanjan, Erkan Unal Mumcuoglu
Abstract:
Mitochondria are cytoplasmic organelles of the cell, which have a significant role in the variety of cellular metabolic functions. Mitochondria act as the power plants of the cell and are surrounded by two membranes. Significant morphological alterations are often due to changes in mitochondrial functions. A powerful technique in order to study the three-dimensional (3D) structure of mitochondria and its alterations in disease states is Electron microscope tomography. Detection of mitochondria in electron microscopy images due to the presence of various subcellular structures and imaging artifacts is a challenging problem. Another challenge is that each image typically contains more than one mitochondrion. Hand segmentation of mitochondria is tedious and time-consuming and also special knowledge about the mitochondria is needed. Fully automatic segmentation methods lead to over-segmentation and mitochondria are not segmented properly. Therefore, semi-automatic segmentation methods with minimum manual effort are required to edit the results of fully automatic segmentation methods. Here two editing tools were implemented by applying spline surface dragging and interactive live-wire segmentation tools. These editing tools were applied separately to the results of fully automatic segmentation. 3D extension of these tools was also studied and tested. Dice coefficients of 2D and 3D for surface dragging using splines were 0.93 and 0.92. This metric for 2D and 3D for live-wire method were 0.94 and 0.91 respectively. The root mean square symmetric surface distance values of 2D and 3D for surface dragging was measured as 0.69, 0.93. The same metrics for live-wire tool were 0.60 and 2.11. Comparing the results of these editing tools with the results of automatic segmentation method, it shows that these editing tools, led to better results and these results were more similar to ground truth image but the required time was higher than hand-segmentation timeKeywords: medical image segmentation, semi-automatic methods, transmission electron microscopy, surface dragging using splines, live-wire
Procedia PDF Downloads 1691689 Normalized P-Laplacian: From Stochastic Game to Image Processing
Authors: Abderrahim Elmoataz
Abstract:
More and more contemporary applications involve data in the form of functions defined on irregular and topologically complicated domains (images, meshs, points clouds, networks, etc). Such data are not organized as familiar digital signals and images sampled on regular lattices. However, they can be conveniently represented as graphs where each vertex represents measured data and each edge represents a relationship (connectivity or certain affinities or interaction) between two vertices. Processing and analyzing these types of data is a major challenge for both image and machine learning communities. Hence, it is very important to transfer to graphs and networks many of the mathematical tools which were initially developed on usual Euclidean spaces and proven to be efficient for many inverse problems and applications dealing with usual image and signal domains. Historically, the main tools for the study of graphs or networks come from combinatorial and graph theory. In recent years there has been an increasing interest in the investigation of one of the major mathematical tools for signal and image analysis, which are Partial Differential Equations (PDEs) variational methods on graphs. The normalized p-laplacian operator has been recently introduced to model a stochastic game called tug-of-war-game with noise. Part interest of this class of operators arises from the fact that it includes, as particular case, the infinity Laplacian, the mean curvature operator and the traditionnal Laplacian operators which was extensiveley used to models and to solve problems in image processing. The purpose of this paper is to introduce and to study a new class of normalized p-Laplacian on graphs. The introduction is based on the extension of p-harmonious function introduced in as discrete approximation for both infinity Laplacian and p-Laplacian equations. Finally, we propose to use these operators as a framework for solving many inverse problems in image processing.Keywords: normalized p-laplacian, image processing, stochastic game, inverse problems
Procedia PDF Downloads 5121688 Image Segmentation Using 2-D Histogram in RGB Color Space in Digital Libraries
Authors: El Asnaoui Khalid, Aksasse Brahim, Ouanan Mohammed
Abstract:
This paper presents an unsupervised color image segmentation method. It is based on a hierarchical analysis of 2-D histogram in RGB color space. This histogram minimizes storage space of images and thus facilitates the operations between them. The improved segmentation approach shows a better identification of objects in a color image and, at the same time, the system is fast.Keywords: image segmentation, hierarchical analysis, 2-D histogram, classification
Procedia PDF Downloads 3801687 Applications of Digital Tools, Satellite Images and Geographic Information Systems in Data Collection of Greenhouses in Guatemala
Authors: Maria A. Castillo H., Andres R. Leandro, Jose F. Bienvenido B.
Abstract:
During the last 20 years, the globalization of economies, population growth, and the increase in the consumption of fresh agricultural products have generated greater demand for ornamentals, flowers, fresh fruits, and vegetables, mainly from tropical areas. This market situation has demanded greater competitiveness and control over production, with more efficient protected agriculture technologies, which provide greater productivity and allow us to guarantee the quality and quantity that is required in a constant and sustainable way. Guatemala, located in the north of Central America, is one of the largest exporters of agricultural products in the region and exports fresh vegetables, flowers, fruits, ornamental plants, and foliage, most of which were grown in greenhouses. Although there are no official agricultural statistics on greenhouse production, several thesis works, and congress reports have presented consistent estimates. A wide range of protection structures and roofing materials are used, from the most basic and simple ones for rain control to highly technical and automated structures connected with remote sensors for monitoring and control of crops. With this breadth of technological models, it is necessary to analyze georeferenced data related to the cultivated area, to the different existing models, and to the covering materials, integrated with altitude, climate, and soil data. The georeferenced registration of the production units, the data collection with digital tools, the use of satellite images, and geographic information systems (GIS) provide reliable tools to elaborate more complete, agile, and dynamic information maps. This study details a methodology proposed for gathering georeferenced data of high protection structures (greenhouses) in Guatemala, structured in four phases: diagnosis of available information, the definition of the geographic frame, selection of satellite images, and integration with an information system geographic (GIS). It especially takes account of the actual lack of complete data in order to obtain a reliable decision-making system; this gap is solved through the proposed methodology. A summary of the results is presented in each phase, and finally, an evaluation with some improvements and tentative recommendations for further research is added. The main contribution of this study is to propose a methodology that allows to reduce the gap of georeferenced data in protected agriculture in this specific area where data is not generally available and to provide data of better quality, traceability, accuracy, and certainty for the strategic agricultural decision öaking, applicable to other crops, production models and similar/neighboring geographic areas.Keywords: greenhouses, protected agriculture, GIS, Guatemala, satellite image, digital tools, precision agriculture
Procedia PDF Downloads 1941686 An Investigation on Smartphone-Based Machine Vision System for Inspection
Authors: They Shao Peng
Abstract:
Machine vision system for inspection is an automated technology that is normally utilized to analyze items on the production line for quality control purposes, it also can be known as an automated visual inspection (AVI) system. By applying automated visual inspection, the existence of items, defects, contaminants, flaws, and other irregularities in manufactured products can be easily detected in a short time and accurately. However, AVI systems are still inflexible and expensive due to their uniqueness for a specific task and consuming a lot of set-up time and space. With the rapid development of mobile devices, smartphones can be an alternative device for the visual system to solve the existing problems of AVI. Since the smartphone-based AVI system is still at a nascent stage, this led to the motivation to investigate the smartphone-based AVI system. This study is aimed to provide a low-cost AVI system with high efficiency and flexibility. In this project, the object detection models, which are You Only Look Once (YOLO) model and Single Shot MultiBox Detector (SSD) model, are trained, evaluated, and integrated with the smartphone and webcam devices. The performance of the smartphone-based AVI is compared with the webcam-based AVI according to the precision and inference time in this study. Additionally, a mobile application is developed which allows users to implement real-time object detection and object detection from image storage.Keywords: automated visual inspection, deep learning, machine vision, mobile application
Procedia PDF Downloads 1241685 Structural and Morphological Characterization of Inorganic Deposits in Spinal Ligaments
Authors: Sylwia Orzechowska, Andrzej Wróbel, Eugeniusz Rokita
Abstract:
The mineralization is a curious problem of connective tissues. Factors which may play a decisive role in the regulation of the yellow ligaments (YL) mineralization are still open questions. The aim of the studies was a detailed description of the chemical composition and morphology of mineral deposits in the human yellow ligaments. Investigations of the structural features of deposits were used to explain the impact of various factors on mineralization process. The studies were carried out on 24 YL samples, surgically removed from patients suffer from spinal canal stenosis and the patients who sustained a trauma. The micro-computed tomography was used to describe the morphology of mineral deposits. The X-ray fluorescence method and Fourier transform infrared spectroscopy were applied to determine the chemical composition of the samples. In order to eliminate the effect of blur in microtomographic images, the correction method of partial volume effect was used. The mineral deposits appear in 60% of YL samples, both in patients with a stenosis and following injury. The mineral deposits have a heterogeneous structure and they are a mixture of the tissue and mineral grains. The volume of mineral grains amounts to (1.9 ± 3.4)*10-3 mm3 while the density distribution of grains occurs in two distinct ranges (1.75 - 2.15 and 2.15-2.5) g/cm3. Application of the partial volume effect correction allows accurate calculations by eliminating the averaging effect of gray levels in tomographic images. The B-type carbonate-containing hydroxyapatite constitutes the mineral phase of majority YLs. The main phase of two samples was calcium pyrophosphate dihydrate (CPPD). The elemental composition of minerals in all samples is almost identical. This pathology may be independent on the spine diseases and it does not evoke canal stenosis. The two ranges of grains density indicate two stages of grains growth and the degree of maturity. The presence of CPPD crystals may coexist with other pathologies.Keywords: FTIR, micro-tomography, mineralization, spinal ligaments
Procedia PDF Downloads 3771684 Changing Misconceptions in Heat Transfer: A Problem Based Learning Approach for Engineering Students
Authors: Paola Utreras, Yazmina Olmos, Loreto Sanhueza
Abstract:
This work has the purpose of study and incorporate Problem Based Learning (PBL) for engineering students, through the analysis of several thermal images of dwellings located in different geographical points of the Region de los Ríos, Chile. The students analyze how heat is transferred in and out of the houses and how is the relation between heat transfer and climatic conditions that affect each zone. As a result of this activity students are able to acquire significant learning in the unit of heat and temperature, and manage to reverse previous conceptual errors related with energy, temperature and heat. In addition, student are able to generate prototype solutions to increase thermal efficiency using low cost materials. Students make public their results in a report using scientific writing standards and in a science fair open to the entire university community. The methodology used to measure previous Conceptual Errors has been applying diagnostic tests with everyday questions that involve concepts of heat, temperature, work and energy, before the unit. After the unit the same evaluation is done in order that themselves are able to evidence the evolution in the construction of knowledge. As a result, we found that in the initial test, 90% of the students showed deficiencies in the concepts previously mentioned, and in the subsequent test 47% showed deficiencies, these percent ages differ between students who carry out the course for the first time and those who have performed this course previously in a traditional way. The methodology used to measure Significant Learning has been by comparing results in subsequent courses of thermodynamics among students who have received problem based learning and those who have received traditional training. We have observe that learning becomes meaningful when applied to the daily lives of students promoting internalization of knowledge and understanding through critical thinking.Keywords: engineering students, heat flow, problem-based learning, thermal images
Procedia PDF Downloads 2321683 Assessment of the Tectonic Effects on Soil Radon Activity along the Margin of the Arabian Plate Boundary in Northwestern Syria
Authors: Mohamed Al-Hilal
Abstract:
The main purpose of the present study is to assess the role of active tectonics in influencing the emanation level of soil radon across two tectonically active structures of the Northern Dead Sea Fault (NDSF) in northwestern Syria: namely, the Qastoon and Al-Harif fault segments. The radon measurements were basically directed by the results drawn from earlier studies of archaeoseismic and paleoseismic investigation in Al-Harif, besides integrated geophysical and morphotectonic survey at the Qastoon site. In view of that, a total of 80 soil gas radon points were measured in this work with a sampling depth of 75 cm, using the AlphaGUARD PQ 2000Pro radon detector. The background range of normal radon emission from local soil was determined in area located away from the influence of the tectonic disturbances. The obtained radon data were statistically analyzed, and the mean values have been standardized in terms of probability of magnitude, which enhances the comparison process and so facilitating the separation of normal radon variations from other anomalous or geotectonic related values. The overall results revealed remarkable occurrences of fault-associated radon anomalies with maximum peak values of ~6 to 7 times above the background, trending in accordance with the predicted traces of the fault ruptures at the Qastoon and Al-Harif, respectively.Keywords: soil gas radon, active tectonic structure, northern dead sea fault, western Syria
Procedia PDF Downloads 1751682 Characterization of Penicillin V Acid and Its Related Compounds by HPLC
Authors: Bahdja Guerfi, N. Hadhoum, I. Azouz, M. Bendoumia, S. Bouafia, F. Z. Hadjadj Aoul
Abstract:
Background: 'Penicillin V' is a narrow, bactericidal antibiotic of the beta-lactam family of the naturally occurring penicillin group. It is limited to infections due to the germs defined as sensitive. The objective of this work was to identify and to characterize Penicillin V acid and its related compounds by High-performance liquid chromatography (HPLC). Methods: Firstly phenoxymethylpenicillin was identified by an infrared absorption. The organoleptic characteristics, pH, and determination of water content were also studied. The dosage of Penicillin V acid active substance and the determination of its related compounds were carried on waters HPLC, equipped with a UV detector at 254 nm and Discovery HS C18 column (250 mm X 4.6 mm X 5 µm) which is maintained at room temperature. The flow rate was about 1 ml per min. A mixture of water, acetonitrile and acetic acid (65:35:01) was used as mobile phase for phenoxyacetic acid ‘impurity B' and a mixture of water, acetonitrile and acetic acid (650:150:5.75) for the assay and 4-hydroxypenicillin V 'impurity D'. Results: The identification of Penicillin V acid active substance and the evaluation of its chemical quality showed conformity with USP 35th edition. The Penicillin V acid content in the raw material is equal to 1692.22 UI/mg. The percentage content of phenoxyacetic acid and 4-hydroxypenicillin V was respectively: 0.035% and 0.323%. Conclusion: Through these results, we can conclude that the Penicillin V acid active substance tested is of good physicochemical quality.Keywords: characterization, HPLC, Penicillin V acid, related substances
Procedia PDF Downloads 2781681 A Machine Learning Pipeline for Real-Time Activity Detection on Low Computational Power Devices for Metaverse Applications
Authors: Amit Kumar, Amanpreet Chander, Ashish Sahani
Abstract:
This paper presents our recent work on real-time human activity detection based on the media pipe pipeline and machine learning algorithms. The proposed system can detect human activities, including running, jumping, squatting, bending to the left or right, and standing still. This is a robust solution for developing a yoga, dance, metaverse, and fitness application that checks for the correction of the pose without having any additional monitor like a personal trainer. MediaPipe solution offers an open-source cross-platform which utilizes a two-step detector-tracker ML pipeline for live detection of key landmarks on our body which can be used for motion data collection. The prediction of real-time poses uses a variety of machine learning techniques and different types of analysis. Without primarily relying on powerful desktop environments for inference, our method achieves real-time performance on the majority of contemporary mobile phones, desktops/laptops, Python, or even the web. Experimental results show that our method outperforms the existing method in terms of accuracy and real-time capability, achieving an accuracy of 99.92% on testing datasets.Keywords: human activity detection, media pipe, machine learning, metaverse applications
Procedia PDF Downloads 179