Search results for: magnetic resonance imaging (MRI)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2779

Search results for: magnetic resonance imaging (MRI)

1609 A Comparative Analysis of an All-Optical Switch Using Chalcogenide Glass and Gallium Arsenide Based on Nonlinear Photonic Crystal

Authors: Priyanka Kumari Gupta, Punya Prasanna Paltani, Shrivishal Tripathi

Abstract:

This paper proposes a nonlinear photonic crystal ring resonator-based all-optical 2 × 2 switch. The nonlinear Kerr effect is used to evaluate the essential 2 x 2 components of the photonic crystal-based optical switch, including the bar and cross states. The photonic crystal comprises a two-dimensional square lattice of dielectric rods in an air background. In the background air, two different dielectric materials are used for this comparison study separately. Initially with chalcogenide glass rods, then with GaAs rods. For both materials, the operating wavelength, bandgap diagram, operating power intensities, and performance parameters, such as the extinction ratio, insertion loss, and cross-talk of an optical switch, have also been estimated using the plane wave expansion and the finite-difference time-domain method. The chalcogenide glass material (Ag20As32Se48) has a high refractive index of 3.1 which is highly suitable for switching operations. This dielectric material is immersed in an air background with a nonlinear Kerr coefficient of 9.1 x 10-17 m2/W. The resonance wavelength is at 1552 nm, with the operating power intensities at the cross-state and bar state around 60 W/μm2 and 690 W/μm2. The extinction ratio, insertion loss, and cross-talk value for the chalcogenide glass at the cross-state are 17.19 dB, 0.051 dB, and -17.14 dB, and the bar state, the values are 11.32 dB, 0.025 dB, and -11.35 dB respectively. The gallium arsenide (GaAs) dielectric material has a high refractive index of 3.4, a direct bandgap semiconductor material highly preferred nowadays for switching operations. This dielectric material is immersed in an air background with a nonlinear Kerr coefficient of 3.1 x 10-16 m2/W. The resonance wavelength is at 1558 nm, with the operating power intensities at the cross-state and bar state around 110 W/μm2 and 200 W/μm2. The extinction ratio, insertion loss, and cross-talk value for the chalcogenide glass at the cross-state are found to be 3.36.19 dB, 2.436 dB, and -5.8 dB, and for the bar state, the values are 15.60 dB, 0.985 dB, and -16.59 dB respectively. This paper proposes an all-optical 2 × 2 switch based on a nonlinear photonic crystal using a ring resonator. The two-dimensional photonic crystal comprises a square lattice of dielectric rods in an air background. The resonance wavelength is in the range of photonic bandgap. Later, another widely used material, GaAs, is also considered, and its performance is compared with the chalcogenide glass. Our presented structure can be potentially applicable in optical integration circuits and information processing.

Keywords: photonic crystal, FDTD, ring resonator, optical switch

Procedia PDF Downloads 79
1608 Organic Carbon Pools Fractionation of Lacustrine Sediment with a Stepwise Chemical Procedure

Authors: Xiaoqing Liu, Kurt Friese, Karsten Rinke

Abstract:

Lacustrine sediment archives rich paleoenvironmental information in lake and surrounding environment. Additionally, modern sediment is used as an effective medium for the monitoring of lake. Organic carbon in sediment is a heterogeneous mixture with varying turnover times and qualities which result from the different biogeochemical processes in the deposition of organic material. Therefore, the isolation of different carbon pools is important for the research of lacustrine condition in the lake. However, the numeric available fractionation procedures can hardly yield homogeneous carbon pools on terms of stability and age. In this work, a multi-step fractionation protocol that treated sediment with hot water, HCl, H2O2 and Na2S2O8 in sequence was adopted, the treated sediment from each step were analyzed for the isotopic and structural compositions with Isotope Ratio Mass Spectrometer coupled with element analyzer (IRMS-EA) and Solid-state 13C Nuclear Magnetic Resonance (NMR), respectively. The sequential extractions with hot-water, HCl, and H2O2 yielded a more homogeneous and C3 plant-originating OC fraction, which was characterized with an atomic C/N ratio shift from 12.0 to 20.8, and 13C and 15N isotopic signatures were 0.9‰ and 1.9‰ more depleted than the original bulk sediment, respectively. Additionally, the H2O2- resistant residue was dominated with stable components, such as the lignins, waxes, cutans, tannins, steroids and aliphatic proteins and complex carbohydrates. 6M HCl in the acid hydrolysis step was much more effective than 1M HCl to isolate a sedimentary OC fraction with higher degree of homogeneity. Owing to the extremely high removal rate of organic matter, the step of a Na2S2O8 oxidation is only suggested if the isolation of the most refractory OC pool is mandatory. We conclude that this multi-step chemical fractionation procedure is effective to isolate more homogeneous OC pools in terms of stability and functional structure, and it can be used as a promising method for OC pools fractionation of sediment or soil in future lake research.

Keywords: 13C-CPMAS-NMR, 13C signature, lake sediment, OC fractionation

Procedia PDF Downloads 299
1607 The Effect of Artificial Intelligence on Electric Machines and Welding

Authors: Mina Malak Zakaria Henin

Abstract:

The finite detail evaluation of magnetic fields in electromagnetic devices shows that the machine cores revel in extraordinary flux patterns consisting of alternating and rotating fields. The rotating fields are generated in different configurations variety, among circular and elliptical, with distinctive ratios between the fundamental and minor axes of the flux locus. Experimental measurements on electrical metal uncovered one-of-a-kind flux patterns that divulge distinctive magnetic losses in the samples below the test. Therefore, electric machines require unique interest throughout the core loss calculation technique to bear in mind the flux styles. In this look, a circular rotational unmarried sheet tester is employed to measure the middle losses in the electric-powered metallic pattern of M36G29. The sample becomes exposed to alternating fields, circular areas, and elliptical fields with axis ratios of zero.2, zero. Four, 0.6 and 0.8. The measured statistics changed into applied on 6-4 switched reluctance motors at 3 distinctive frequencies of interest to the industry 60 Hz, 400 Hz, and 1 kHz. The effects reveal an excessive margin of error, which can arise at some point in the loss calculations if the flux pattern difficulty is overlooked. The mistake in exceptional components of the gadget associated with considering the flux styles may be around 50%, 10%, and a couple of at 60Hz, 400Hz, and 1 kHz, respectively. The future paintings will focus on the optimization of gadget geometrical shape, which has a primary effect on the flux sample on the way to decrease the magnetic losses in system cores.

Keywords: converters, electric machines, MEA (more electric aircraft), PES (power electronics systems) synchronous machine, vector control Multi-machine/ Multi-inverter, matrix inverter, Railway tractionalternating core losses, finite element analysis, rotational core losses

Procedia PDF Downloads 30
1606 Resting-State Functional Connectivity Analysis Using an Independent Component Approach

Authors: Eric Jacob Bacon, Chaoyang Jin, Dianning He, Shuaishuai Hu, Lanbo Wang, Han Li, Shouliang Qi

Abstract:

Objective: Refractory epilepsy is a complicated type of epilepsy that can be difficult to diagnose. Recent technological advancements have made resting-state functional magnetic resonance (rsfMRI) a vital technique for studying brain activity. However, there is still much to learn about rsfMRI. Investigating rsfMRI connectivity may aid in the detection of abnormal activities. In this paper, we propose studying the functional connectivity of rsfMRI candidates to diagnose epilepsy. Methods: 45 rsfMRI candidates, comprising 26 with refractory epilepsy and 19 healthy controls, were enrolled in this study. A data-driven approach known as independent component analysis (ICA) was used to achieve our goal. First, rsfMRI data from both patients and healthy controls were analyzed using group ICA. The components that were obtained were then spatially sorted to find and select meaningful ones. A two-sample t-test was also used to identify abnormal networks in patients and healthy controls. Finally, based on the fractional amplitude of low-frequency fluctuations (fALFF), a chi-square statistic test was used to distinguish the network properties of the patient and healthy control groups. Results: The two-sample t-test analysis yielded abnormal in the default mode network, including the left superior temporal lobe and the left supramarginal. The right precuneus was found to be abnormal in the dorsal attention network. In addition, the frontal cortex showed an abnormal cluster in the medial temporal gyrus. In contrast, the temporal cortex showed an abnormal cluster in the right middle temporal gyrus and the right fronto-operculum gyrus. Finally, the chi-square statistic test was significant, producing a p-value of 0.001 for the analysis. Conclusion: This study offers evidence that investigating rsfMRI connectivity provides an excellent diagnosis option for refractory epilepsy.

Keywords: ICA, RSN, refractory epilepsy, rsfMRI

Procedia PDF Downloads 78
1605 Application of Zeolite Nanoparticles in Biomedical Optics

Authors: Vladimir Hovhannisyan, Chen Yuan Dong

Abstract:

Recently nanoparticles (NPs) have been introduced in biomedicine as effective agents for cancer-targeted drug delivery and noninvasive tissue imaging. The most important requirements to these agents are their non-toxicity, biocompatibility and stability. In view of these criteria, the zeolite (ZL) nanoparticles (NPs) may be considered as perfect candidates for biomedical applications. ZLs are crystalline aluminosilicates consisting of oxygen-sharing SiO4 and AlO4 tetrahedral groups united by common vertices in three-dimensional framework and containing pores with diameters from 0.3 to 1.2 nm. Generally, the behavior and physical properties of ZLs are studied by SEM, X-ray spectroscopy, and AFM, whereas optical spectroscopic and microscopic approaches are not effective enough, because of strong scattering in common ZL bulk materials and powders. The light scattering can be reduced by using of ZL NPs. ZL NPs have large external surface area, high dispersibility in both aqueous and organic solutions, high photo- and thermal stability, and exceptional ability to adsorb various molecules and atoms in their nanopores. In this report, using multiphoton microscopy and nonlinear spectroscopy, we investigate nonlinear optical properties of clinoptilolite type of ZL micro- and nanoparticles with average diameters of 2200 nm and 240 nm, correspondingly. Multiphoton imaging is achieved using a laser scanning microscope system (LSM 510 META, Zeiss, Germany) coupled to a femtosecond titanium:sapphire laser (repetition rate- 80 MHz, pulse duration-120 fs, radiation wavelength- 720-820 nm) (Tsunami, Spectra-Physics, CA). Two Zeiss, Plan-Neofluar objectives (air immersion 20×∕NA 0.5 and water immersion 40×∕NA 1.2) are used for imaging. For the detection of the nonlinear response, we use two detection channels with 380-400 nm and 435-700 nm spectral bandwidths. We demonstrate that ZL micro- and nanoparticles can produce nonlinear optical response under the near-infrared femtosecond laser excitation. The interaction of hypericine, chlorin e6 and other dyes with ZL NPs and their photodynamic activity is investigated. Particularly, multiphoton imaging shows that individual ZL NPs particles adsorb Zn-tetraporphyrin molecules, but do not adsorb fluorescein molecules. In addition, nonlinear spectral properties of ZL NPs in native biotissues are studied. Nonlinear microscopy and spectroscopy may open new perspectives in the research and application of ZL NP in biomedicine, and the results may help to introduce novel approaches into the clinical environment.

Keywords: multiphoton microscopy, nanoparticles, nonlinear optics, zeolite

Procedia PDF Downloads 417
1604 Dual-Channel Reliable Breast Ultrasound Image Classification Based on Explainable Attribution and Uncertainty Quantification

Authors: Haonan Hu, Shuge Lei, Dasheng Sun, Huabin Zhang, Kehong Yuan, Jian Dai, Jijun Tang

Abstract:

This paper focuses on the classification task of breast ultrasound images and conducts research on the reliability measurement of classification results. A dual-channel evaluation framework was developed based on the proposed inference reliability and predictive reliability scores. For the inference reliability evaluation, human-aligned and doctor-agreed inference rationals based on the improved feature attribution algorithm SP-RISA are gracefully applied. Uncertainty quantification is used to evaluate the predictive reliability via the test time enhancement. The effectiveness of this reliability evaluation framework has been verified on the breast ultrasound clinical dataset YBUS, and its robustness is verified on the public dataset BUSI. The expected calibration errors on both datasets are significantly lower than traditional evaluation methods, which proves the effectiveness of the proposed reliability measurement.

Keywords: medical imaging, ultrasound imaging, XAI, uncertainty measurement, trustworthy AI

Procedia PDF Downloads 103
1603 Surface Characterization and Femtosecond-Nanosecond Transient Absorption Dynamics of Bioconjugated Gold Nanoparticles: Insight into the Warfarin Drug-Binding Site of Human Serum Albumin

Authors: Osama K. Abou-Zied, Saba A. Sulaiman

Abstract:

We studied the spectroscopy of 25-nm diameter gold nanoparticles (AuNPs), coated with human serum albumin (HSA) as a model drug carrier. The morphology and coating of the AuNPs were examined using transmission electron microscopy and dynamic light scattering. Resonance energy transfer from the sole tryptophan of HSA (Trp214) to the AuNPs was observed in which the fluorescence quenching of Trp214 is dominated by a static mechanism. Using fluorescein (FL) to probe the warfarin drug-binding site in HSA revealed the unchanged nature of the binding cavity on the surface of the AuNPs, indicating the stability of the protein structure on the metal surface. The transient absorption results of the surface plasmonic resonance (SPR) band of the AuNPs show three ultrafast dynamics that are involved in the relaxation process after excitation at 460 nm. The three decay components were assigned to the electron-electron (~ 400 fs), electron-phonon (~ 2.0 ps) and phonon-phonon (200–250 ps) interactions. These dynamics were not changed upon coating the AuNPs with HSA which indicates the chemical and physical stability of the AuNPs upon bioconjugation. Binding of FL in HSA did not have any measurable effect on the bleach recovery dynamics of the SPR band, although both FL and AuNPs were excited at 460 nm. The current study is important for a better understanding of the physical and dynamical properties of protein-coated metal nanoparticles which are expected to help in optimizing their properties for critical applications in nanomedicine.

Keywords: gold nanoparticles, human serum albumin, fluorescein, femtosecond transient absorption

Procedia PDF Downloads 333
1602 Study on Electromagnetic Plasma Acceleration Using Rotating Magnetic Field Scheme

Authors: Takeru Furuawa, Kohei Takizawa, Daisuke Kuwahara, Shunjiro Shinohara

Abstract:

In the field of a space propulsion, an electric propulsion system has been developed because its fuel efficiency is much higher than a conventional chemical one. However, the practical electric propulsion systems, e.g., an ion engine, have a problem of short lifetime due to a damage of generation and acceleration electrodes of the plasma. A helicon plasma thruster is proposed as a long-lifetime electric thruster which has non-direct contact electrodes. In this system, both generation and acceleration methods of a dense plasma are executed by antennas from the outside of a discharge tube. Development of the helicon plasma thruster has been conducting under the Helicon Electrodeless Advanced Thruster (HEAT) project. Our helicon plasma thruster has two important processes. First, we generate a dense source plasma using a helicon wave with an excitation frequency between an ion and an electron cyclotron frequencies, fci and fce, respectively, applied from the outside of a discharge using a radio frequency (RF) antenna. The helicon plasma source can provide a high-density (~1019 m-3), a high-ionization ratio (up to several tens of percent), and a high particle generation efficiency. Second, in order to achieve high thrust and specific impulse, we accelerate the dense plasma by the axial Lorentz force fz using the product of the induced azimuthal current jθ and the static radial magnetic field Br, shown as fz = jθ × Br. The HEAT project has proposed several kinds of electrodeless acceleration schemes, and in our particular case, a Rotating Magnetic Field (RMF) method has been extensively studied. The RMF scheme was originally developed as a concept to maintain the Field Reversed Configuration (FRC) in a magnetically confined fusion research. Here, RMF coils are expected to generate jθ due to a nonlinear effect shown below. First, the rotating magnetic field Bω is generated by two pairs of RMF coils with AC currents, which have a phase difference of 90 degrees between the pairs. Due to the Faraday’s law, an axial electric field is induced. Second, an axial current is generated by the effects of an electron-ion and an electron-neutral collisions through the Ohm’s law. Third, the azimuthal electric field is generated by the nonlinear term, and the retarding torque generated by the collision effects again. Then, azimuthal current jθ is generated as jθ = - nₑ er ∙ 2π fRMF. Finally, the axial Lorentz force fz for plasma acceleration is generated. Here, jθ is proportional to nₑ and frequency of RMF coil current fRMF, when Bω is fully penetrated into the plasma. Our previous study has achieved 19 % increase of ion velocity using the 5 MHz and 50 A of the RMF coil power supply. In this presentation, we will show the improvement of the ion velocity using the lower frequency and higher current supplied by RMF power supply. In conclusion, helicon high-density plasma production and electromagnetic acceleration by the RMF scheme with a concept of electrodeless condition have been successfully executed.

Keywords: electric propulsion, electrodeless thruster, helicon plasma, rotating magnetic field

Procedia PDF Downloads 262
1601 Effect of Citric Acid on Hydrogen-Bond Interactions and Tensile Retention Properties of Citric Acid Modified Thermoplastic Starch Biocomposites

Authors: Da-Wei Wang, Liang Yang, Xuan-Long Peng, Mei-Chuan Kuo, Jen-Taut Yeh

Abstract:

The tensile retention and waterproof properties of thermoplastic starch (TPS) resins were significantly enhanced by modifying with proper amounts of citric acid (CA) and by melt-blending with poly(lactic acid) (PLA), although no distinguished chemical reaction occurred between CA and starch molecules. As evidenced by Fourier transform infrared spectroscopy and Solid-state 13C Nuclear Magnetic Resonance analyses, disruption of intra and interhydrogen-bondings within starch molecules did occur during the modification processes of CA modified TPS (i.e. TPS100CAx) specimens. The tensile strength (σf) retention values of TPS specimens reduced rapidly from 27.8 to 20.5 and 0.4 MPa, respectively, as the conditioning time at 20°C/50% relative humidity (RH) increased from 0 to 7 and 70 days, respectively. While the elongation at break (εf) retention values of TPS specimens increased rapidly from 5.9 to 6.5 and 34.8%, respectively, as the conditioning time increased from 0 to 7 and 70 days. After conditioning at 20°C/50% RH for 70 days, the σf and εf retention values of the best prepared (TPS100CA0.1)30PLA70 specimen are equivalent to 85% and 167% of its initial σf and εf values, respectively, and are more than 105 times higher but 48% lower than those of TPS specimens conditioned at 20°C/50% RH for the same amount of time. Demarcated diffraction peaks, new melting endotherms of recrystallized starch crystals and distinguished ductile characteristics with drawn debris were found for many conditioned TPS specimens, however, only slight retrogradation effect and much less drawn debris was found for most conditioned TPS100CAx and/or (TPS100CA0.1)xPLAy specimens. The significantly improved water proof, tensile retention properties and relatively unchanged in retrogradation effect found for most conditioned TPS100CAx and/or (TPS100CA0.1)xPLAy specimens are apparently due to the efficient blocking of the moisture-absorbing hydroxyl groups (free or hydrogen bonded) by hydrogen-bonding CA with starch molecules during their modification processes.

Keywords: thermoplastic starch, hydrogen-bonding, water proof, strength retention

Procedia PDF Downloads 306
1600 Covalently Conjugated Gold–Porphyrin Nanostructures

Authors: L. Spitaleri, C. M. A. Gangemi, R. Purrello, G. Nicotra, G. Trusso Sfrazzetto, G. Casella, M. Casarin, A. Gulino

Abstract:

Hybrid molecular–nanoparticle materials, obtained with a bottom-up approach, are suitable for the fabrication of functional nanostructures showing structural control and well-defined properties, i.e., optical, electronic or catalytic properties, in the perspective of applications in different fields of nanotechnology. Gold nanoparticles (Au NPs) exhibit important chemical, electronic and optical properties due to their size, shape and electronic structures. In fact, Au NPs containing no more than 30-40 atoms are only luminescent because they can be considered as large molecules with discrete energy levels, while nano-sized Au NPs only show the surface plasmon resonance. Hence, it appears that gold nanoparticles can alternatively be luminescent or plasmonic, and this represents a severe constraint for their use as an optical material. The aim of this work was the fabrication of nanoscale assembly of Au NPs covalently anchored to each other by means of novel bi-functional porphyrin molecules that work as bridges between different gold nanoparticles. This functional architecture shows a strong surface plasmon due to the Au nanoparticles and a strong luminescence signal coming from porphyrin molecules, thus, behaving like an artificial organized plasmonic and fluorescent network. The self-assembly geometry of this porphyrin on the Au NPs was studied by investigation of the conformational properties of the porphyrin derivative at the DFT level. The morphology, electronic structure and optical properties of the conjugated Au NPs – porphyrin system were investigated by TEM, XPS, UV–vis and Luminescence. The present nanostructures can be used for plasmon-enhanced fluorescence, photocatalysis, nonlinear optics, etc., under atmospheric conditions since our system is not reactive to air nor water and does not need to be stored in a vacuum or inert gas.

Keywords: gold nanoparticle, porphyrin, surface plasmon resonance, luminescence, nanostructures

Procedia PDF Downloads 155
1599 A Multi-Output Network with U-Net Enhanced Class Activation Map and Robust Classification Performance for Medical Imaging Analysis

Authors: Jaiden Xuan Schraut, Leon Liu, Yiqiao Yin

Abstract:

Computer vision in medical diagnosis has achieved a high level of success in diagnosing diseases with high accuracy. However, conventional classifiers that produce an image to-label result provides insufficient information for medical professionals to judge and raise concerns over the trust and reliability of a model with results that cannot be explained. In order to gain local insight into cancerous regions, separate tasks such as imaging segmentation need to be implemented to aid the doctors in treating patients, which doubles the training time and costs which renders the diagnosis system inefficient and difficult to be accepted by the public. To tackle this issue and drive AI-first medical solutions further, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional convolutional neural networks (CNN) module for auxiliary classification output. Class activation maps are a method of providing insight into a convolutional neural network’s feature maps that leads to its classification but in the case of lung diseases, the region of interest is enhanced by U-net-assisted Class Activation Map (CAM) visualization. Therefore, our proposed model combines image segmentation models and classifiers to crop out only the lung region of a chest X-ray’s class activation map to provide a visualization that improves the explainability and is able to generate classification results simultaneously which builds trust for AI-led diagnosis systems. The proposed U-Net model achieves 97.61% accuracy and a dice coefficient of 0.97 on testing data from the COVID-QU-Ex Dataset which includes both diseased and healthy lungs.

Keywords: multi-output network model, U-net, class activation map, image classification, medical imaging analysis

Procedia PDF Downloads 205
1598 Radiofrequency and Near-Infrared Responsive Core-Shell Multifunctional Nanostructures Using Lipid Templates for Cancer Theranostics

Authors: Animesh Pan, Geoffrey D. Bothun

Abstract:

With the development of nanotechnology, research in multifunctional delivery systems has a new pace and dimension. An incipient challenge is to design an all-in-one delivery system that can be used for multiple purposes, including tumor targeting therapy, radio-frequency (RF-), near-infrared (NIR-), light-, or pH-induced controlled release, photothermal therapy (PTT), photodynamic therapy (PDT), and medical diagnosis. In this regard, various inorganic nanoparticles (NPs) are known to show great potential as the 'functional components' because of their fascinating and tunable physicochemical properties and the possibility of multiple theranostic modalities from individual NPs. Magnetic, luminescent, and plasmonic properties are the three most extensively studied and, more importantly biomedically exploitable properties of inorganic NPs. Although successful attempts of combining any two of them above mentioned functionalities have been made, integrating them in one system has remained challenge. Keeping those in mind, controlled designs of complex colloidal nanoparticle system are one of the most significant challenges in nanoscience and nanotechnology. Therefore, systematic and planned studies providing better revelation are demanded. We report a multifunctional delivery platform-based liposome loaded with drug, iron-oxide magnetic nanoparticles (MNPs), and a gold shell on the surface of liposomes, were synthesized using a lipid with polyelectrolyte (layersomes) templating technique. MNPs and the anti-cancer drug doxorubicin (DOX) were co-encapsulated inside liposomes composed by zwitterionic phophatidylcholine and anionic phosphatidylglycerol using reverse phase evaporation (REV) method. The liposomes were coated with positively charge polyelectrolyte (poly-L-lysine) to enrich the interface with gold anion, exposed to a reducing agent to form a gold nanoshell, and then capped with thio-terminated polyethylene glycol (SH-PEG2000). The core-shell nanostructures were characterized by different techniques like; UV-Vis/NIR scanning spectrophotometer, dynamic light scattering (DLS), transmission electron microscope (TEM). This multifunctional system achieves a variety of functions, such as radiofrequency (RF)-triggered release, chemo-hyperthermia, and NIR laser-triggered for photothermal therapy. Herein, we highlight some of the remaining major design challenges in combination with preliminary studies assessing therapeutic objectives. We demonstrate an efficient loading and delivery system to significant cell death of human cancer cells (A549) with therapeutic capabilities. Coupled with RF and NIR excitation to the doxorubicin-loaded core-shell nanostructure helped in securing targeted and controlled drug release to the cancer cells. The present core-shell multifunctional system with their multimodal imaging and therapeutic capabilities would be eminent candidates for cancer theranostics.

Keywords: cancer thernostics, multifunctional nanostructure, photothermal therapy, radiofrequency targeting

Procedia PDF Downloads 128
1597 Elastodynamic Response of Shear Wave Dispersion in a Multi-Layered Concentric Cylinders Composed of Reinforced and Piezo-Materials

Authors: Sunita Kumawat, Sumit Kumar Vishwakarma

Abstract:

The present study fundamentally focuses on analyzing the limitations and transference of horizontally polarized Shear waves(SH waves) in a four-layered compounded cylinder. The geometrical structure comprises of concentric cylinders of infinite length composed of self-reinforced (SR), fibre-reinforced (FR), piezo-magnetic (PM), and piezo-electric(PE) materials. The entire structure is assumed to be pre stressed along the azimuthal direction. In order to make the structure sensitive to the application pertaining to sensors and actuators, the PM and PE cylinders have been categorically placed in the outer part of the geometry. Whereas in order to provide stiffness and stability to the structure, the inner part consists of self-reinforced and fibre-reinforced media. The common boundary between each of the cylinders has been essentially considered as imperfectly bounded. At the interface of PE and PM media, mechanical, electrical, magnetic, and inter-coupled types of imperfections have been exhibited. The closed-form of dispersion relation has been deduced for two contrast cases i.e. electrically open magnetically short(EOMS) and electrically short and magnetically open ESMO circuit conditions. Dispersion curves have been plotted to illustrate the salient features of parameters like normalized imperfect interface parameters, initial stresses, and radii of the concentric cylinders. The comparative effect of each one of these parameters on the phase velocity of the wave has been enlisted and marked individually. Every graph has been presented with two consecutive modes in succession for a comprehensive understanding. This theoretical study may be implemented to improvise the performance of surface acoustic wave (SAW) sensors and actuators consisting of piezo-electric quartz and piezo-composite concentric cylinders.

Keywords: self-reinforced, fibre-reinforced, piezo-electric, piezo-magnetic, interfacial imperfection

Procedia PDF Downloads 109
1596 Design and Synthesis of Fully Benzoxazine-Based Porous Organic Polymer Through Sonogashira Coupling Reaction for CO₂ Capture and Energy Storage Application

Authors: Mohsin Ejaz, Shiao-Wei Kuo

Abstract:

The growing production and exploitation of fossil fuels have placed human society in serious environmental issues. As a result, it's critical to design efficient and eco-friendly energy production and storage techniques. Porous organic polymers (POPs) are multi-dimensional porous network materials developed through the formation of covalent bonds between different organic building blocks that possess distinct geometries and topologies. POPs have tunable porosities and high surface area making them a good candidate for an effective electrode material in energy storage applications. Herein, we prepared a fully benzoxazine-based porous organic polymers (TPA–DHTP–BZ POP) through sonogashira coupling of dihydroxyterephthalaldehyde (DHPT) and triphenylamine (TPA) containing benzoxazine (BZ) monomers. Firstly, both BZ monomers (TPA-BZ-Br and DHTP-BZ-Ea) were synthesized by three steps, including Schiff base, reduction, and mannich condensation reaction. Finally, the TPA–DHTP–BZ POP was prepared through the sonogashira coupling reaction of brominated monomer (TPA-BZ-Br) and ethynyl monomer (DHTP-BZ-Ea). Fourier transform infrared (FTIR) and solid-state nuclear magnetic resonance (NMR) spectroscopy confirmed the successful synthesis of monomers as well as POP. The porosity of TPA–DHTP–BZ POP was investigated by the N₂ absorption technique and showed a Brunauer–Emmett–Teller (BET) surface area of 196 m² g−¹, pore size 2.13 nm and pore volume of 0.54 cm³ g−¹, respectively. The TPA–DHTP–BZ POP experienced thermal ring-opening polymerization, resulting in poly (TPA–DHTP–BZ) POP having strong inter and intramolecular hydrogen bonds formed by phenolic groups and Mannich bridges, thereby enhancing CO₂ capture and supercapacitive performance. The poly(TPA–DHTP–BZ) POP demonstrated a remarkable CO₂ capture of 3.28 mmol g−¹ and a specific capacitance of 67 F g−¹ at 0.5 A g−¹. Thus, poly(TPA–DHTP–BZ) POP could potentially be used for energy storage and CO₂ capture applications.

Keywords: porous organic polymer, benzoxazine, sonogashira coupling, CO₂, supercapacitor

Procedia PDF Downloads 74
1595 An Audit on the Quality of Pre-Operative Intra-Oral Digital Radiographs Taken for Dental Extractions in a General Practice Setting

Authors: Gabrielle O'Donoghue

Abstract:

Background: Pre-operative radiographs facilitate assessment and treatment planning in minor oral surgery. Quality assurance for dental radiography advocates the As Low As Reasonably Achievable (ALARA) principle in collecting accurate diagnostic information. Aims: To audit the quality of digital intraoral periapicals (IOPAs) taken prior to dental extractions in a metropolitan general dental practice setting. Standards: The National Radiological Protection Board (NRPB) guidance outlines three grades of radiograph quality: excellent (Grade 1 > 70% of total exposures), diagnostically acceptable (Grade 2 <20%), and unacceptable (Grade 3 <10%). Methodology: A study of pre-operative radiographs taken prior to dental extractions across 12 private general dental practices in a large metropolitan area by 44 practitioners. A total of 725 extractions were assessed, allowing 258 IOPAs to be reviewed in one audit cycle. Results: First cycle: Of 258 IOPAs: 223(86.4%) scored Grade 1, 27(10.5%) Grade 2, and 8(3.1%) Grade 3. The standard was met. 35 dental extractions were performed without an available pre-operative radiograph. Action Plan & Recommendations: Results were distributed to all staff and a continuous professional development evening organized to outline recommendations to improve image quality. A second audit cycle is proposed at a six-month interval to review the recommendations and appraise results. Conclusion: The overall standard of radiographs met the published guidelines. A significant improvement in the number of procedures undertaken without pre-operative imaging is expected at a six-month interval period. An investigation into undiagnostic imaging and associated adverse patient outcomes is being considered. Maintenance of the standards achieved is predicted in the second audit cycle to ensure consistent high quality imaging.

Keywords: audit, oral radiology, oral surgery, periapical radiographs, quality assurance

Procedia PDF Downloads 166
1594 Transcranial Magnetic Stimulation as a Potentiator in the Rehabilitation of Fine Motor Skills: A Literature Review

Authors: Ana Lucia Molina

Abstract:

Introduction: Fine motor skills refer to the use of the hands and coordination of the small muscles that control the fingers. A deficiency in fine motor skills is as important as a change in global movements, as fine motor skills directly affect activities of daily living. Fine movements are involved in some functions, such as motor control of the extremities, sensitivity, strength and tonus of the hands. A growing interest in the effects of non-invasive neuromodulation, such as transcranial stimulation technologies, through transcranial magnetic stimulation (TMS), has been observed in the scientific literature, with promising results in fine motor rehabilitation, as it provides modulation of the corresponding cortical activity in the area primary motor skills of the hands in both hemispheres (according to the International System 10-20, corresponding to C3 and C4). Objectives: to carry out a literature review about the effects of TMS on the cortical motor area corresponding to hand motricity. Methodology: This is a bibliographic survey carried out between October 2022 and March 2023 at Pubmed, Google Scholar, Lillacs and Virtual Health Library (BVS), with a national and international database. Some books on neuromodulation were included. Results: 28 articles and 5 books were initially found, and after reading the abstracts, only 14 articles and 3 books were selected, with publication dates between 2008 and 2022, to compose the literature review since it suited the purpose of this study. Conclusion: TMS has shown promising results in the treatment of fine motor rehabilitation, such as improving coordination, muscle strength and range of motion of the hands, being a complementary technique to existing treatments and thus providing more potent results for manual skills in activities of daily living. It is important to emphasize the need for more specific studies on the application of TMS for the treatment of manual disorders, which describe the uniqueness of each movement.

Keywords: transcranial magnetic stimulation, fine motor skills, motor rehabilitation, non-invasive neuromodulation

Procedia PDF Downloads 73
1593 Comparison of FASTMAP and B0 Field Map Shimming for 4T MRI

Authors: Mohan L. Jayatiake, Judd Storrs, Jing-Huei Lee

Abstract:

The optimal MRI resolution relies on a homogeneous magnetic field. However, local susceptibility variations can lead to field inhomogeneities that cause artifacts such as image distortion and signal loss. The effects of local susceptibility variation notoriously increase with magnetic field strength. Active shimming improves homogeneity by applying corrective fields generated from shim coils, but requires calculation of optimal current for each shim coil. FASTMAP (fast automatic shimming technique by mapping along projections) is an effective technique for finding optimal currents works well at high-field, but is restricted to shimming spherical regions of interest. The 3D gradient-echo pulse sequence was modified to reduce sensitivity to eddy currents and used to obtain susceptibility field maps at 4T. Measured fields were projected onto first-and second-order spherical harmonic functions corresponding to shim hardware. A spherical phantom was used to calibrate the shim currents. Susceptibility maps of a volunteer’s brain with and without FASTMAP shimming were obtained. Simulations indicate that optimal shim currents derived from the field map may provide better overall shimming of the human brain.

Keywords: shimming, high-field, active, passive

Procedia PDF Downloads 511
1592 3D Simulation of the Twin-Aperture IRON Superconducting Quadrupole for Charm-Tau Factory

Authors: K. K. Riabchenko, T. V Rybitskaya, A. A. Starostenko

Abstract:

Sper Charm-Tau Factory is a double ring e+e- collider to be operated in the center-of-mass energy range from 2 to 6 GeV, with a peak luminosity of about 1035 cm-2s-1 (Crab Waist collision) and with longitudinally polarized electrons at the IP (interaction point). One of the important elements of the cτ-factory is the superconducting two-aperture quadrupole of the final focus. It was decided to make a full-scale prototype quadrupole. The main objectives of our study included: 1) 3D modeling of the quadrupole in the Opera program, 2) Optimization of the geometry of the quadrupole lens, 3) Study of the influence of magnetic properties and geometry of a quadrupole on integral harmonics. In addition to this, the ways of producing unwanted harmonics have been studied. In the course of this work, a 3D model of a two-aperture iron superconducting quadrupole lens was created. A three-dimensional simulation of the magnetic field was performed, and the geometrical parameters of the lens were selected. Calculations helped to find sources of possible errors and methods for correcting unwanted harmonics. In addition to this, calculations show that there are no obstacles to the production of a prototype lens.

Keywords: super cτ-factory, final focus, twin aperture quadrupole lens, integral harmonics

Procedia PDF Downloads 126
1591 Effectiveness of Office-Based Occupational Therapy for Office Workers with Low Back Pain: A Public Health Approach

Authors: Dina Jalalvand, Joshua A. Cleland

Abstract:

This double-blind, randomized control trial with parallel groups aimed to examine the effectiveness of office-based occupational therapy for office workers with low back pain on the intensity of pain and range of motion. Seventy-two male office workers (age: 20-50 years) with chronic low back pain (more than three months with at least two symptoms of chronic low back pain) satisfied eligibility criteria and agreed to participate in this study. The absence of joint burst following magnetic resonance imagining (MRI) was considered as an important inclusion criterion as well. Subjects were randomly assigned to a control or experimental group. The experimental group received the modified package of exercise-based occupational therapy, which included 11 simple exercise movements (derived from Williams and McKenzie), and the control group just received the conventional therapy, which included their routine physiotherapy sessions. The subjects completed the exercises three times a week for a duration of six weeks. Each exercise session was 10-15 minutes. Pain intensity and range of motion were the primary outcomes and were measured at baseline, 6 weeks, and 12 weeks after the end of the intervention using the numerical rating scale (NRS) and goniometer accordingly. Repeated measure ANOVA was used for analyzing data. The results of this study showed that significant decreases in pain intensity (p ≤ 0.05) and an increase in range of motion (p ≤ 0.001) in the experimental group in comparison with the control group after 6 and 12 weeks of intervention (between-group comparisons). In addition, there was a significant decrease in intensity of the pain (p ≤ 0.05) and an increase (p ≤ 0.001) in range of motion in the intervention group in comparison with baseline after 6 and 12 weeks (within-group comparison). This showed a positive effect of exercise-based occupational therapy that could potentially be used with low cost among office workers who suffer from low back pain. In addition, it should be noted that the introduced package of exercise training is easy to do, and there is not a need for a specific introduction.

Keywords: public health, office workers, low back pain, occupational therapy

Procedia PDF Downloads 220
1590 Thermal Imaging of Aircraft Piston Engine in Laboratory Conditions

Authors: Lukasz Grabowski, Marcin Szlachetka, Tytus Tulwin

Abstract:

The main task of the engine cooling system is to maintain its average operating temperatures within strictly defined limits. Too high or too low average temperatures result in accelerated wear or even damage to the engine or its individual components. In order to avoid local overheating or significant temperature gradients, leading to high stresses in the component, the aim is to ensure an even flow of air. In the case of analyses related to heat exchange, one of the main problems is the comparison of temperature fields because standard measuring instruments such as thermocouples or thermistors only provide information about the course of temperature at a given point. Thermal imaging tests can be helpful in this case. With appropriate camera settings and taking into account environmental conditions, we are able to obtain accurate temperature fields in the form of thermograms. Emission of heat from the engine to the engine compartment is an important issue when designing a cooling system. Also, in the case of liquid cooling, the main sources of heat in the form of emissions from the engine block, cylinders, etc. should be identified. It is important to redesign the engine compartment ventilation system. Ensuring proper cooling of aircraft reciprocating engine is difficult not only because of variable operating range but mainly because of different cooling conditions related to the change of speed or altitude of flight. Engine temperature also has a direct and significant impact on the properties of engine oil, which under the influence of this parameter changes, in particular, its viscosity. Too low or too high, its value can be a result of fast wear of engine parts. One of the ways to determine the temperatures occurring on individual parts of the engine is the use of thermal imaging measurements. The article presents the results of preliminary thermal imaging tests of aircraft piston diesel engine with a maximum power of about 100 HP. In order to perform the heat emission tests of the tested engine, the ThermaCAM S65 thermovision monitoring system from FLIR (Forward-Looking Infrared) together with the ThermaCAM Researcher Professional software was used. The measurements were carried out after the engine warm up. The engine speed was 5300 rpm The measurements were taken for the following environmental parameters: air temperature: 17 °C, ambient pressure: 1004 hPa, relative humidity: 38%. The temperatures distribution on the engine cylinder and on the exhaust manifold were analysed. Thermal imaging tests made it possible to relate the results of simulation tests to the real object by measuring the rib temperature of the cylinders. The results obtained are necessary to develop a CFD (Computational Fluid Dynamics) model of heat emission from the engine bay. The project/research was financed in the framework of the project Lublin University of Technology-Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19).

Keywords: aircraft, piston engine, heat, emission

Procedia PDF Downloads 119
1589 Preventing Neurodegenerative Diseases by Stabilization of Superoxide Dismutase by Natural Polyphenolic Compounds

Authors: Danish Idrees, Vijay Kumar, Samudrala Gourinath

Abstract:

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease caused by misfolding and aggregation of Cu, Zn superoxide dismutase (SOD1). The use of small molecules has been shown to stabilize the SOD1 dimer and preventing its dissociation and aggregation. In this study, we employed molecular docking, molecular dynamics simulation and surface plasmon resonance (SPR) to study the interactions between SOD1 and natural polyphenolic compounds. In order to explore the noncovalent interaction between SOD1 and natural polyphenolic compounds, molecular docking and molecular dynamic (MD) simulations were employed to gain insights into the binding modes and free energies of SOD1-polyphenolic compounds. MM/PBSA methods were used to calculate free energies from obtained MD trajectories. The compounds, Hesperidin, Ergosterol, and Rutin showed the excellent binding affinity in micromolar range with SOD1. Ergosterol and Hesperidin have the strongest binding affinity to SOD1 and was subjected to further characterization. Biophysical experiments using Circular Dichroism and Thioflavin T fluorescence spectroscopy results show that the binding of these two compounds can stabilize SOD1 dimer and inhibit the aggregation of SOD1. Molecular simulation results also suggest that these compounds reduce the dissociation of SOD1 dimers through direct interaction with the dimer interface. This study will be helpful to develop other drug-like molecules which may have the effect to reduce the aggregation of SOD1.

Keywords: amyotrophic lateral sclerosis, molecular dynamics simulation, surface plasmon resonance, superoxide dismutase

Procedia PDF Downloads 139
1588 Design of Process Parameters in Electromagnetic Forming Apparatus by FEM

Authors: Hyeong-Gyu Park, Hak-Gon Noh, Beom-Soo Kang, Jeong Kim

Abstract:

Electromagnetic forming (EMF) process is one of a high-speed forming process, which uses an electromagnetic body (Lorentz) force to deform work-piece. Advantages of EMF are summarized as improvement of formability, reduction in wrinkling, non-contact forming. In this study, the spiral coil is considered to evaluate formability in terms of pressure distribution of the forming process. It also is represented forming results of numerical analysis using ANSYS code. In the numerical simulation, RLC circuit coupled with spiral coil was made to consider the design parameters such as system input current and electromagnetic force. The simulation results show that even though input peak currents level are same level in each case, forming condition is certainly different because of frequency of input current and magnitude of current density and magnetic flux density. Finally, the simulation results appear that electromagnetic forming force apparently affected by input current frequency which determines magnitude of current density and magnetic flux density.

Keywords: electromagnetic forming, high-speed forming, RLC circuit, Lorentz force

Procedia PDF Downloads 456
1587 Electrical and Magnetic Properties of Neodymium and Erbium Doped Bismuth Ferrite Multifunctional Materials for Spintronic Devices

Authors: Ravinder Dachepalli, Naveena Gadwala, K. Vani

Abstract:

Nd and Er substituted bismuth nano crystalline multifunctional materials were prepared by citrate gel autocombution technique. The structural characterization was carried out by XRD and SEM. Electrical properties such are electrical conductivity and dielectric properties have been measured. Plots of electrical conductivity versus temperature increases with increasing temperature and shown a transition near Curie temperature. Dielectric properties such are dielectric constant and dielectric loss tangent have been measured from 20Hz to 2 MHz at room temperature. Plots of dielectric constant versus frequency show a normal dielectric behaviour of multifunctional materials. Temperature dependence of magnetic properties of Bi-Nd and Bi-Er multi-functional materials were carried out by using Vibrating sample magnetometer (VSM). The magnetization as a function of an applied field ±100 Oe was carried out at 3K and 360 K. Zero field Cooled (ZFC) and Field Cooled (FC) magnetization measurements under an applied field of 100Oe a in the temperature range of 5-375K. The observed results can be explained for spintronic devices.

Keywords: Bi-Nd and Bi-Er Multifunctional Materia, Citrate Gel Auto combustion Technique, FC-ZFC magnetization, Dielectric constant

Procedia PDF Downloads 402
1586 Synthesis of Highly Stable Near-Infrared FAPbI₃ Perovskite Doped with 5-AVA and Its Applications in NIR Light-Emitting Diodes for Bioimaging

Authors: Nasrud Din, Fawad Saeed, Sajid Hussain, Rai Muhammad Dawood Sultan, Premkumar Sellan, Qasim Khan, Wei Lei

Abstract:

The continuously increasing external quantum efficiencies of Perovskite light-emitting diodes (LEDs) have received significant interest in the scientific community. The need for monitoring and medical diagnostics has experienced a steady growth in recent years, primarily caused by older people and an increasing number of heart attacks, tumors, and cancer disorders among patients. The application of Perovskite near-infrared light-emitting diode (PeNIRLEDs) has exhibited considerable efficacy in bioimaging, particularly in the visualization and examination of blood arteries, blood clots, and tumors. PeNIRLEDs exhibit exciting potential in the field of blood vessel imaging because of their advantageous attributes, including improved depth penetration and less scattering in comparison to visible light. In this study, we synthesized FAPbI₃ Perovskite doped with different concentrations of 5-Aminovaleric acid (5-AVA) 1-6 mg. The incorporation of 5-AVA as a dopant during the FAPbI₃ Perovskite formation influences the FAPbI3 Perovskite’s structural and optical properties, improving its stability, photoluminescence efficiency, and charge transport characteristics. We found a resulting PL emission peak wavelength of 850 nm and bandwidth of 44 nm, along with a calculated quantum yield of 75%. The incorporation of 5-AVA-modified FAPbI₃ Perovskite into LEDs will show promising results, enhancing device efficiency, color purity, and stability. Making it suitable for various medical applications, including subcutaneous deep vein imaging, blood flow visualization, and tumor illumination.

Keywords: perovskite light-emitting diodes, deep vein imaging, blood flow visualization, tumor illumination

Procedia PDF Downloads 60
1585 Generation Y Leaders in Radiology Nursing - Changing the Culture by Understanding the Challenges of a Multi-Generational Workforce

Authors: Amie Smith, Jodi-Lyn Benjamin

Abstract:

In 2020, there are currently four generations in the nursing workforce: The Veterans, Boomers, Generation X and Generation Y (Gen Y). Understanding each generation and their growing needs will equip the workforce for when the Boomers prepare for retirement, with majority of nursing leadership positions to be potentially replaced with Gen Y nurses. In SA Medical Imaging(SAMI), at Flinders Medical Centre (FMC), it has been proven that despite challenges in succession planning, Gen Y nurse leaders are able to overcome these obstacles and provide the leadership necessary to meet the changing needs in healthcare and across organisations. Changing the culture in radiology nursing has been seen as an obstacle due to the historical nursing practices and resistance to adapt to current/future practice. As radiology advances so does the role of the nurse in imaging, this has required resilience and strong support through leadership as we change and develop the culture to keep up with the evolution of technology and standard of patient care. As a result of supporting Gen Y nurses in leadership roles, SAMI, FMC has seen a positive change in culture by creating a healthy work environment which has allowed Gen Y nurses to make long lasting contributions to the nursing profession.

Keywords: changing culture, Generation Y, radiology, nursing, leadership

Procedia PDF Downloads 138
1584 Genetically Encoded Tool with Time-Resolved Fluorescence Readout for the Calcium Concentration Measurement

Authors: Tatiana R. Simonyan, Elena A. Protasova, Anastasia V. Mamontova, Eugene G. Maksimov, Konstantin A. Lukyanov, Alexey M. Bogdanov

Abstract:

Here, we describe two variants of the calcium indicators based on the GCaMP sensitive core and BrUSLEE fluorescent protein (GCaMP-BrUSLEE and GCaMP-BrUSLEE-145). In contrast to the conventional GCaMP6-family indicators, these fluorophores are characterized by the well-marked responsiveness of their fluorescence decay kinetics to external calcium concentration both in vitro and in cellulo. Specifically, we show that the purified GCaMP-BrUSLEE and GCaMP-BrUSLEE-145 exhibit three-component fluorescence decay kinetics, with the amplitude-normalized lifetime component (t3*A3) of GCaMP-BrUSLEE-145 changing four-fold (500-2000 a.u.) in response to a Ca²⁺ concentration shift in the range of 0—350 nM. Time-resolved fluorescence microscopy of live cells displays the two-fold change of the GCaMP-BrUSLEE-145 mean lifetime upon histamine-stimulated calcium release. The aforementioned Ca²⁺-dependence calls considering the GCaMP-BrUSLEE-145 as a prospective Ca²⁺-indicator with the signal read-out in the time domain.

Keywords: calcium imaging, fluorescence lifetime imaging microscopy, fluorescent proteins, genetically encoded indicators

Procedia PDF Downloads 158
1583 Local Radial Basis Functions for Helmholtz Equation in Seismic Inversion

Authors: Hebert Montegranario, Mauricio Londoño

Abstract:

Solutions of Helmholtz equation are essential in seismic imaging methods like full wave inversion, which needs to solve many times the wave equation. Traditional methods like Finite Element Method (FEM) or Finite Differences (FD) have sparse matrices but may suffer the so called pollution effect in the numerical solutions of Helmholtz equation for large values of the wave number. On the other side, global radial basis functions have a better accuracy but produce full matrices that become unstable. In this research we combine the virtues of both approaches to find numerical solutions of Helmholtz equation, by applying a meshless method that produce sparse matrices by local radial basis functions. We solve the equation with absorbing boundary conditions of the kind Clayton-Enquist and PML (Perfect Matched Layers) and compared with results in standard literature, showing a promising performance by tackling both the pollution effect and matrix instability.

Keywords: Helmholtz equation, meshless methods, seismic imaging, wavefield inversion

Procedia PDF Downloads 548
1582 Study of Electro Magnetic Acoustic Transducer to Detect Flaw in Pipeline

Authors: Yu-Lin Shen, Ming-Kuen Chang

Abstract:

In addition to a considerable amount of machinery and equipment, intricacies of the transmission pipeline exist in Petrochemical plants. Long term corrosion may lead to pipeline thinning and rupture, causing serious safety concerns. With the advances in non-destructive testing technology, more rapid and long-range ultrasonic detection techniques are often used for pipeline inspection, EMAT without coupling to detect, it is a non-contact ultrasonic, suitable for detecting elevated temperature or roughened e surface of line. In this study, we prepared artificial defects in pipeline for Electro Magnetic Acoustic Transducer Testing (EMAT) to survey the relationship between the defect location, sizing and the EMAT signal. It was found that the signal amplitude of EMAT exhibited greater signal attenuation with larger defect depth and length.. In addition, with bigger flat hole diameter, greater amplitude attenuation was obtained. In summary, signal amplitude attenuation of EMAT was affected by the defect depth, defect length and the hole diameter and size.

Keywords: EMAT, NDT, artificial defect, ultrasonic testing

Procedia PDF Downloads 475
1581 Functionalization of Carbon-Coated Iron Nanoparticles with Fluorescent Protein

Authors: A. G. Pershina, P. S. Postnikov, M. E. Trusova, D. O. Burlakova, A. E. Sazonov

Abstract:

Invention of magnetic-fluorescent nanocomposites is a rapidly developing area of research. The magnetic-fluorescent nanocomposite attractiveness is connected with the ability of simultaneous management and control of such nanocomposites by two independent methods based on different physical principles. These nanocomposites are applied for the solution of various essential scientific and experimental biomedical problems. The aim of this research is development of principle approach to nanobiohybrid structures with magnetic and fluorescent properties design. The surface of carbon-coated iron nanoparticles (Fe@C) were covalently modified by 4-carboxy benzenediazonium tosylate. Recombinant fluorescent protein TagGFP2 (Eurogen) was obtained in E. coli (Rosetta DE3) by standard laboratory techniques. Immobilization of TagGFP2 on the nanoparticles surface was provided by the carbodiimide activation. The amount of COOH-groups on the nanoparticle surface was estimated by elemental analysis (Elementar Vario Macro) and TGA-analysis (SDT Q600, TA Instruments. Obtained nanocomposites were analyzed by FTIR spectroscopy (Nicolet Thermo 5700) and fluorescence microscopy (AxioImager M1, Carl Zeiss). Amount of the protein immobilized on the modified nanoparticle surface was determined by fluorimetry (Cary Eclipse) and spectrophotometry (Unico 2800) with the help of preliminary obtained calibration plots. In the FTIR spectra of modified nanoparticles the adsorption band of –COOH group around 1700 cm-1 and bands in the region of 450-850 cm-1 caused by bending vibrations of benzene ring were observed. The calculated quantity of active groups on the surface was equal to 0,1 mmol/g of material. The carbodiimide activation of COOH-groups on nanoparticles surface results to covalent immobilization of TagGFP2 fluorescent protein (0.2 nmol/mg). The success of immobilization was proved by FTIR spectroscopy. Protein characteristic adsorption bands in the region of 1500-1600 cm-1 (amide I) were presented in the FTIR spectrum of nanocomposite. The fluorescence microscopy analysis shows that Fe@C-TagGFP2 nanocomposite possesses fluorescence properties. This fact confirms that TagGFP2 protein retains its conformation due to immobilization on nanoparticles surface. Magnetic-fluorescent nanocomposite was obtained as a result of unique design solution implementation – the fluorescent protein molecules were fixed to the surface of superparamagnetic carbon-coated iron nanoparticles using original diazonium salts.

Keywords: carbon-coated iron nanoparticles, diazonium salts, fluorescent protein, immobilization

Procedia PDF Downloads 342
1580 Dipole and Quadrupole Scattering of Ultra Short Pulses on Metal Nanospheres

Authors: Sergey Svita, Valeriy Astapenko

Abstract:

The presentation is devoted to the theoretical analysis of ultrashort electromagnetic pulses (USP) scattering on metallic nanospheres in a dielectric medium in the vicinity of surface plasmon resonance due to excitation of dipole and quadrupole surface plasmons.

Keywords: surface plasmon, scattering, metallic nanosphere

Procedia PDF Downloads 380