Search results for: implementation of nep-2020. outcome based learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 35679

Search results for: implementation of nep-2020. outcome based learning

34509 SAP-Reduce: Staleness-Aware P-Reduce with Weight Generator

Authors: Lizhi Ma, Chengcheng Hu, Fuxian Wong

Abstract:

Partial reduce (P-Reduce) has set a state-of-the-art performance on distributed machine learning in the heterogeneous environment over the All-Reduce architecture. The dynamic P-Reduce based on the exponential moving average (EMA) approach predicts all the intermediate model parameters, which raises unreliability. It is noticed that the approximation trick leads the wrong way to obtaining model parameters in all the nodes. In this paper, SAP-Reduce is proposed, which is a variant of the All-Reduce distributed training model with staleness-aware dynamic P-Reduce. SAP-Reduce directly utilizes the EMA-like algorithm to generate the normalized weights. To demonstrate the effectiveness of the algorithm, the experiments are set based on a number of deep learning models, comparing the single-step training acceleration ratio and convergence time. It is found that SAP-Reduce simplifying dynamic P-Reduce outperforms the intermediate approximation one. The empirical results show SAP-Reduce is 1.3× −2.1× faster than existing baselines.

Keywords: collective communication, decentralized distributed training, machine learning, P-Reduce

Procedia PDF Downloads 33
34508 Treatment Outcome of Cutaneous Leishmaniasis and Its Associated Factors among Admitted Patients in All Africa Leprosy Rehabilitation and Training Center Hospital, Ethiopia

Authors: Kebede Mairie, Getahun Belete, Mitike Abeba

Abstract:

Background: Leishmania aethiopica is a peculiar parasite causing cutaneous leishmaniasis in Ethiopia and its mainstay treatment is Sodium Stibogluconate. However, its treatment outcome in Ethiopia is not well documented. Objectives: To determine the treatment outcome of admitted cutaneous leishmaniasis patients and its associated factors in Addis Ababa, Ethiopia. Methods: A retrospective study was conducted from 1st November 2021 to 30th March 2022. Medical records of all cutaneous leishmaniasis-diagnosed and admitted patients who received parenteral sodium stibogluconate at All Africa Leprosy Rehabilitation and Training Center (ALERT) hospital, the main Leishmania treatment center in Ethiopia from July 2011 to September 2021 were reviewed. Results: A total of 827 charts of admitted cases from July 2011 to September 2021 were retrieved, but 667 (80.65%) were reviewed. Improvement in the treatment outcome was recorded in 93.36 % in the first course of SSG treatment and 96.23%, 94.62%, and 96.97% subsequently in the second, third and fourth treatment courses, respectively. Female gender and diffuse cutaneous leishmaniasis were the two predictive determinants in the treatment of cutaneous leishmaniasis. Conclusion: The study shows that parenteral sodium stibogluconate therapy treats hospitalized cutaneous leishmaniasis patients well, with female gender and diffuse cutaneous leishmaniasis having poor outcomes suggesting the need for a different approach for diffuse cutaneous leishmaniasis patients.

Keywords: cutaneous leishmaniasis, leishmania aethiopica, sodium stibogluconate, diffuse cutaneous leishmaniasis, pentostam

Procedia PDF Downloads 77
34507 The effect of Reflective Thinking on Iranian EFL Learners’ Language Learning Strategy Use, L2 Proficiency, and Beliefs about Second Language Learning and Teaching

Authors: Mohammad Hadi Mahmoodi, Mojtaba Farahani

Abstract:

The present study aimed at investigating whether reflective thinking differentiates Iranian EFL learners regarding language learning strategy use, beliefs about language learning and teaching, and L2 proficiency. To this end, the researcher adopted a mixed method approach. First, 94 EFL learners were asked to complete Reflective Thinking Questionnaire (Kember et al., 2000), Beliefs about Language Learning and Teaching Inventory (Horwitz, 1985), Strategy Inventory for Language Learning (Oxford, 1990), and Oxford Quick Placement Test. The results of three separate one-way ANOVAs indicated that reflective thinking significantly differentiates Iranian EFL learners concerning: (a)language learning strategy use, (b) beliefs about language learning and teaching, and (c) general language proficiency. Furthermore, to see where the differences lay, three separate post-hoc Tukey tests were run the results of which showed that learners with different levels of reflectivity (high, mid, and low) were significantly different from each other in all three dependent variables. Finally, to increase the validity of the findings thirty of the participants were interviewed and the results were analyzed through template organizing style method (Crabtree & Miller, 1999). The results of the interview analysis supported the results of quantitative data analysis.

Keywords: reflective thinking, language learning strategy use, beliefs toward language learning and teaching

Procedia PDF Downloads 656
34506 The Effect of Diet Intervention for Breast Cancer: A Meta-Analysis

Authors: Bok Yae Chung, Eun Hee Oh

Abstract:

Breast cancer patients require more nutritional interventions than others. However, a few studies have attempted to assess the overall nutritional status, to reduce body weight and BMI by improving diet, and to improve the prognosis of cancer for breast cancer patients. The purpose of this study was to evaluate the effect of diet intervention in the breast cancer patients through meta-analysis. For the study purpose, 16 studies were selected by using PubMed, ScienceDirect, ProQuest and CINAHL. Meta-analysis was performed using a random-effects model, and the effect size on outcome variables in breast cancer was calculated. The effect size for outcome variables of diet intervention was a large effect size. For heterogeneity, moderator analysis was performed using intervention type and intervention duration. All moderators did not significant difference. Diet intervention has significant positive effects on outcome variables in breast cancer. As a result, it is suggested that the timing of the intervention should be no more than six months, but a strategy for sustaining long-term intervention effects should be added if nutritional intervention is to be administered for breast cancer patients in the future.

Keywords: breast cancer, diet, mete-analysis, intervention

Procedia PDF Downloads 435
34505 The Relationship between Organization Culture and Organization Learning in Three Different Types of Companies

Authors: Mahmoud Timar, Javad Joukar Borazjani

Abstract:

A dynamic organization helps the management to overcome both internal and external uncertainties and complexities of the organization with more confidence and efficiency. Regarding this issue, in this paper, the influence of organizational culture factors over organizational learning components, which both of them are considered as important characteristics of a dynamic organization, has been studied in three subsidiary companies (production, consultation and service) of National Iranian Oil Company, and moreover we also tried to identify the most dominant culture in these three subsidiaries. Analysis of 840 received questionnaires by SPSS shows that there is a significant relationship between the components of organizational culture and organizational learning; however the rate of relationship between these two factors was different among the examined companies. By the use of Regression, it has been clarified that in the servicing company the highest relationship is between mission and learning environment, while in production division, there is a significant relationship between adaptability and learning needs satisfaction and however in consulting company the highest relationship is between involvement and applying learning in workplace.

Keywords: denison model, culture, leaning, organizational culture, organizational learning

Procedia PDF Downloads 376
34504 Investigating the Influences of Preschool Teachers’ Self-Efficacy on Their Perceptions of National Preschool Standard Curriculum (NPSC) Implementation in Selangor and Kuala Lumpur

Authors: Pei Xin Ker

Abstract:

The purpose of this study is to examine the influence of teachers’ self-efficacy (TSE) on teachers’ perceptions of the levels of implementation of the NPSC. A total of 187 respondents were selected by using purposive homogeneous sampling to represent preschool teachers in Selangor and Kuala Lumpur. This study involved a cross-sectional survey in which quantitative data were collected and analysed using descriptive statistics. The survey was containing 74 questionnaire items created using Google Form and distributed through online platforms such as WhatsApp, Telegram, and Facebook Messenger. The results indicated a high level of overall self-efficacy among the preschool teachers and the overall teachers' perceived level of NPSC. The findings also showed a significant and positive relationship at a high level between TSE and teachers' perceptions of the level of implementation of NPSC. Student involvement was one of the TSE factors that had the greatest influence in shaping teachers' perceptions of the level of implementation of NPSC. The findings of the predictors to teachers' perceptions of the implementation of NPSC within this study can be used as an indication to the researchers to reassure the validity of this study by repeating with similar research settings. Further studies to include other factors are also encouraged to explore the possible factors that may influence the teachers' perceptions of the implementation of NPSC.

Keywords: teachers’ self-efficacy, national preschool standard curriculum, preschool teachers, preschool education

Procedia PDF Downloads 193
34503 A Game-Theory-Based Price-Optimization Algorithm for the Simulation of Markets Using Agent-Based Modelling

Authors: Juan Manuel Sanchez-Cartas, Gonzalo Leon

Abstract:

A price competition algorithm for ABMs based on game theory principles is proposed to deal with the simulation of theoretical market models. The algorithm is applied to the classical Hotelling’s model and to a two-sided market model to show it leads to the optimal behavior predicted by theoretical models. However, when theoretical models fail to predict the equilibrium, the algorithm is capable of reaching a feasible outcome. Results highlight that the algorithm can be implemented in other simulation models to guarantee rational users and endogenous optimal behaviors. Also, it can be applied as a tool of verification given that is theoretically based.

Keywords: agent-based models, algorithmic game theory, multi-sided markets, price optimization

Procedia PDF Downloads 456
34502 Disruptions to Medical Education during COVID-19: Perceptions and Recommendations from Students at the University of the West, Indies, Jamaica

Authors: Charléa M. Smith, Raiden L. Schodowski, Arletty Pinel

Abstract:

Due to the COVID-19 pandemic, the Faculty of Medical Sciences of The University of the West Indies (UWI) Mona in Kingston, Jamaica, had to rapidly migrate to digital and blended learning. Students in the preclinical stage of the program transitioned to full-time online learning, while students in the clinical stage experienced decreased daily patient contact and the implementation of a blend of online lectures and virtual clinical practice. Such sudden changes were coupled with the institutional pressure of the need to introduce a novel approach to education without much time for preparation, as well as additional strain endured by the faculty, who were overwhelmed by serving as frontline workers. During the period July 20 to August 23, 2021, this study surveyed preclinical and clinical students to capture their experiences with these changes and their recommendations for future use of digital modalities of learning to enhance medical education. It was conducted with a fellow student of the 2021 cohort of the MultiPod mentoring program. A questionnaire was developed and distributed digitally via WhatsApp to all medical students of the UWI Mona campus to assess students’ experiences and perceptions of the advantages, challenges, and impact on individual knowledge proficiencies brought about by the transition to predominantly digital learning environments. 108 students replied, 53.7% preclinical and 46.3% clinical. 67.6% of the total were female and 30.6 % were male; 1.8% did not identify themselves by gender. 67.2% of preclinical students preferred blended learning and 60.3% considered that the content presented did not prepare them for clinical work. Only 31% considered that the online classes were interactive and encouraged student participation. 84.5% missed socialization with classmates and friends and 79.3% missed a focused environment for learning. 80% of the clinical students felt that they had not learned all that they expected and only 34% had virtual interaction with patients, mostly by telephone and video calls. Observing direct consultations was considered the most useful, yet this was the least-used modality. 96% of the preclinical students and 100% of the clinical ones supplemented their learning with additional online tools. The main recommendations from the survey are the use of interactive teaching strategies, more discussion time with lecturers, and increased virtual interactions with patients. Universities are returning to face-to-face learning, yet it is unlikely that blended education will disappear. This study demonstrates that students’ perceptions of their experience during mobility restrictions must be taken into consideration in creating more effective, inclusive, and efficient blended learning opportunities.

Keywords: blended learning, digital learning, medical education, student perceptions

Procedia PDF Downloads 166
34501 Vision-Based Daily Routine Recognition for Healthcare with Transfer Learning

Authors: Bruce X. B. Yu, Yan Liu, Keith C. C. Chan

Abstract:

We propose to record Activities of Daily Living (ADLs) of elderly people using a vision-based system so as to provide better assistive and personalization technologies. Current ADL-related research is based on data collected with help from non-elderly subjects in laboratory environments and the activities performed are predetermined for the sole purpose of data collection. To obtain more realistic datasets for the application, we recorded ADLs for the elderly with data collected from real-world environment involving real elderly subjects. Motivated by the need to collect data for more effective research related to elderly care, we chose to collect data in the room of an elderly person. Specifically, we installed Kinect, a vision-based sensor on the ceiling, to capture the activities that the elderly subject performs in the morning every day. Based on the data, we identified 12 morning activities that the elderly person performs daily. To recognize these activities, we created a HARELCARE framework to investigate into the effectiveness of existing Human Activity Recognition (HAR) algorithms and propose the use of a transfer learning algorithm for HAR. We compared the performance, in terms of accuracy, and training progress. Although the collected dataset is relatively small, the proposed algorithm has a good potential to be applied to all daily routine activities for healthcare purposes such as evidence-based diagnosis and treatment.

Keywords: daily activity recognition, healthcare, IoT sensors, transfer learning

Procedia PDF Downloads 132
34500 On the Problems of Human Concept Learning within Terminological Systems

Authors: Farshad Badie

Abstract:

The central focus of this article is on the fact that knowledge is constructed from an interaction between humans’ experiences and over their conceptions of constructed concepts. Logical characterisation of ‘human inductive learning over human’s constructed concepts’ within terminological systems and providing a logical background for theorising over the Human Concept Learning Problem (HCLP) in terminological systems are the main contributions of this research. This research connects with the topics ‘human learning’, ‘epistemology’, ‘cognitive modelling’, ‘knowledge representation’ and ‘ontological reasoning’.

Keywords: human concept learning, concept construction, knowledge construction, terminological systems

Procedia PDF Downloads 325
34499 Using AI Based Software as an Assessment Aid for University Engineering Assignments

Authors: Waleed Al-Nuaimy, Luke Anastassiou, Manjinder Kainth

Abstract:

As the process of teaching has evolved with the advent of new technologies over the ages, so has the process of learning. Educators have perpetually found themselves on the lookout for new technology-enhanced methods of teaching in order to increase learning efficiency and decrease ever expanding workloads. Shortly after the invention of the internet, web-based learning started to pick up in the late 1990s and educators quickly found that the process of providing learning material and marking assignments could change thanks to the connectivity offered by the internet. With the creation of early web-based virtual learning environments (VLEs) such as SPIDER and Blackboard, it soon became apparent that VLEs resulted in higher reported computer self-efficacy among students, but at the cost of students being less satisfied with the learning process . It may be argued that the impersonal nature of VLEs, and their limited functionality may have been the leading factors contributing to this reported dissatisfaction. To this day, often faced with the prospects of assigning colossal engineering cohorts their homework and assessments, educators may frequently choose optimally curated assessment formats, such as multiple-choice quizzes and numerical answer input boxes, so that automated grading software embedded in the VLEs can save time and mark student submissions instantaneously. A crucial skill that is meant to be learnt during most science and engineering undergraduate degrees is gaining the confidence in using, solving and deriving mathematical equations. Equations underpin a significant portion of the topics taught in many STEM subjects, and it is in homework assignments and assessments that this understanding is tested. It is not hard to see that this can become challenging if the majority of assignment formats students are engaging with are multiple-choice questions, and educators end up with a reduced perspective of their students’ ability to manipulate equations. Artificial intelligence (AI) has in recent times been shown to be an important consideration for many technologies. In our paper, we explore the use of new AI based software designed to work in conjunction with current VLEs. Using our experience with the software, we discuss its potential to solve a selection of problems ranging from impersonality to the reduction of educator workloads by speeding up the marking process. We examine the software’s potential to increase learning efficiency through its features which claim to allow more customized and higher-quality feedback. We investigate the usability of features allowing students to input equation derivations in a range of different forms, and discuss relevant observations associated with these input methods. Furthermore, we make ethical considerations and discuss potential drawbacks to the software, including the extent to which optical character recognition (OCR) could play a part in the perpetuation of errors and create disagreements between student intent and their submitted assignment answers. It is the intention of the authors that this study will be useful as an example of the implementation of AI in a practical assessment scenario insofar as serving as a springboard for further considerations and studies that utilise AI in the setting and marking of science and engineering assignments.

Keywords: engineering education, assessment, artificial intelligence, optical character recognition (OCR)

Procedia PDF Downloads 123
34498 An Improved Discrete Version of Teaching–Learning-Based ‎Optimization for Supply Chain Network Design

Authors: Ehsan Yadegari

Abstract:

While there are several metaheuristics and exact approaches to solving the Supply Chain Network Design (SCND) problem, there still remains an unfilled gap in using the Teaching-Learning-Based Optimization (TLBO) algorithm. The algorithm has demonstrated desirable results with problems with complicated combinational optimization. The present study introduces a Discrete Self-Study TLBO (DSS-TLBO) with priority-based solution representation that can solve a supply chain network configuration model to lower the total expenses of establishing facilities and the flow of materials. The network features four layers, namely suppliers, plants, distribution centers (DCs), and customer zones. It is designed to meet the customer’s demand through transporting the material between layers of network and providing facilities in the best economic Potential locations. To have a higher quality of the solution and increase the speed of TLBO, a distinct operator was introduced that ensures self-adaptation (self-study) in the algorithm based on the four types of local search. In addition, while TLBO is used in continuous solution representation and priority-based solution representation is discrete, a few modifications were added to the algorithm to remove the solutions that are infeasible. As shown by the results of experiments, the superiority of DSS-TLBO compared to pure TLBO, genetic algorithm (GA) and firefly Algorithm (FA) was established.

Keywords: supply chain network design, teaching–learning-based optimization, improved metaheuristics, discrete solution representation

Procedia PDF Downloads 52
34497 Machine Learning Approach for Mutation Testing

Authors: Michael Stewart

Abstract:

Mutation testing is a type of software testing proposed in the 1970s where program statements are deliberately changed to introduce simple errors so that test cases can be validated to determine if they can detect the errors. Test cases are executed against the mutant code to determine if one fails, detects the error and ensures the program is correct. One major issue with this type of testing was it became intensive computationally to generate and test all possible mutations for complex programs. This paper used reinforcement learning and parallel processing within the context of mutation testing for the selection of mutation operators and test cases that reduced the computational cost of testing and improved test suite effectiveness. Experiments were conducted using sample programs to determine how well the reinforcement learning-based algorithm performed with one live mutation, multiple live mutations and no live mutations. The experiments, measured by mutation score, were used to update the algorithm and improved accuracy for predictions. The performance was then evaluated on multiple processor computers. With reinforcement learning, the mutation operators utilized were reduced by 50 – 100%.

Keywords: automated-testing, machine learning, mutation testing, parallel processing, reinforcement learning, software engineering, software testing

Procedia PDF Downloads 198
34496 Community Arts-Based Learning for Interdisciplinary Pedagogy: Measuring Program Effectiveness Using Design Imperatives for 'a New American University'

Authors: Kevin R. Wilson, Roger Mantie

Abstract:

Community arts-based learning and participatory education are pedagogical techniques that serve to be advantageous for students, curriculum development, and local communities. Using an interpretive approach to examine the significance of this arts-informed research in relation to the eight ‘design imperatives’ proposed as the new model for measuring quality in scholarship for Arizona State University as ‘A New American University’, the purpose of this study was to investigate personal, social, and cultural benefits resulting from student engagement in interdisciplinary community-based projects. Students from a graduate level music education class at the ASU Tempe campus (n=7) teamed with students from an undergraduate level community development class at the ASU Downtown Phoenix campus (n=14) to plan, facilitate, and evaluate seven community-based projects in several locations around the Phoenix-metro area. Data was collected using photo evidence, student reports, and evaluative measures designed by the students. The effectiveness of each project was measured in terms of their ability to meet the eight design imperatives to: 1) leverage place; 2) transform society; 3) value entrepreneurship; 4) conduct use-inspired research; 5) enable student success; 6) fuse intellectual disciplines; 7) be socially embedded; and 8) engage globally. Results indicated that this community arts-based project sufficiently captured the essence of each of these eight imperatives. Implications for how the nature of this interdisciplinary initiative allowed for the eight imperatives to manifest are provided, and project success is expounded upon in relation to utility of each imperative. Discussion is also given for how this type of service learning project formatted within the ‘New American University’ model for measuring quality in academia can be a beneficial pedagogical tool in higher education.

Keywords: community arts-based learning, participatory education, pedagogy, service learning

Procedia PDF Downloads 401
34495 Motivations, Communication Dimensions, and Perceived Outcomes in the Multi-Sectoral Collaboration of the Visitor Management Program of Mount Makiling Forest Reserve in Los Banos, Laguna, Philippines

Authors: Charmaine B. Distor

Abstract:

Collaboration has long been recognized in different fields, but there’s been little research on operationalizing it especially on a multi-sectoral setting as per the author’s best knowledge. Also, communication is one of the factors that is usually overlooked when studying it. Specifically, this study aimed to describe the organizational profile and tasks of collaborators in the visitor management program of Make It Makiling (MIM). It also identified the factors that motivated collaborators to collaborate in MIM while determining the communication dimensions in the collaborative process. It also determined the communication channels used by collaborators in MIM while identifying the outcomes of collaboration in MIM. This study also found out if a relationship exists between collaborators’ motivations for collaboration and their perceived outcomes of collaboration, and collaborators' communication dimensions and their perceived outcomes of collaboration. Lastly, it also provided recommendations to improve the communication in MIM. Data were gathered using a self-administered survey that was patterned after Mattessich and Monsey’s (1992) collaboration experience questionnaire. Interviews and secondary sources mainly provided by the Makiling Center for Mountain Ecosystems (MCME) were also used. From the seven MIM collaborating organizations that were selected through purposive sampling, 86 respondents were chosen. Then, data were analyzed through frequency counts, percentages, measures of central tendencies, and Pearson’s and Spearman rho correlations. Collaborators’ length of collaboration ranged from seven to twenty years. Furthermore, six out of seven of the collaborators were involved in the task of 'emergency, rescue, and communication'. For the other aspect of the antecedents, the history of previous collaboration efforts ranked as the highest rated motivation for collaboration. In line with this, the top communication dimension is the governance while perceived effectiveness garnered the highest overall average among the perceived outcomes of collaboration. Results also showed that the collaborators highly rely on formal communication channels. Meetings and memos were the most commonly used communication channels throughout all tasks under the four phases of MIM. Additionally, although collaborators have a high view towards their co-collaborators, they still rely on MCME to act as their manager in coordinating with one another indirectly. Based on the correlation analysis, antecedent (motivations)-outcome relationship generally had positive relationships. However, for the process (communication dimensions)-outcome relationship, both positive and negative relationships were observed. In conclusion, this study exhibited the same trend with existing literature which also used the same framework. For the antecedent-outcome relationship, it can be deduced that MCME, as the main organizer of MIM, can focus on these variables to achieve their desired outcomes because of the positive relationships. For the process-outcome relationship, MCME should also take note that there were negative relationships where an increase in the said communication dimension may result in a decrease in the desired outcome. Recommendations for further study include a methodology that contains: complete enumeration or any parametric sampling, a researcher-administered survey, and direct observations. These might require additional funding, but all may yield to richer data.

Keywords: antecedent-outcome relationship, carrying capacity, organizational communication, process-outcome relationship

Procedia PDF Downloads 123
34494 Flood-prone Urban Area Mapping Using Machine Learning, a Case Sudy of M'sila City (Algeria)

Authors: Medjadj Tarek, Ghribi Hayet

Abstract:

This study aims to develop a flood sensitivity assessment tool using machine learning (ML) techniques and geographic information system (GIS). The importance of this study is integrating the geographic information systems (GIS) and machine learning (ML) techniques for mapping flood risks, which help decision-makers to identify the most vulnerable areas and take the necessary precautions to face this type of natural disaster. To reach this goal, we will study the case of the city of M'sila, which is among the areas most vulnerable to floods. This study drew a map of flood-prone areas based on the methodology where we have made a comparison between 3 machine learning algorithms: the xGboost model, the Random Forest algorithm and the K Nearest Neighbour algorithm. Each of them gave an accuracy respectively of 97.92 - 95 - 93.75. In the process of mapping flood-prone areas, the first model was relied upon, which gave the greatest accuracy (xGboost).

Keywords: Geographic information systems (GIS), machine learning (ML), emergency mapping, flood disaster management

Procedia PDF Downloads 95
34493 Challenges to Collaborative Learning in Architectural Education in the Middle East

Authors: Lizmol Mathew, Divya Thomas, Shiney Rajan

Abstract:

Educational paradigm all over the globe is undergoing significant reform today. Because of this, so-called flipped classroom model is becoming increasingly popular in higher education. Flipped classroom has proved to be more effective than traditional lecture based model as flipped classroom model promotes active learning by encouraging students to work on in collaborative tasks and peer-led learning during the class-time. However, success of flipped classrooms relies on students’ ability and their attitudes towards collaboration and group work. This paper examines: 1) Students’ attitudes towards collaborative learning; 2) Main challenges to successful collaboration from students’ experience and 3) Students’ perception of criteria for successful team work. 4) Recommendations for enhancing collaborative learning. This study’s methodology involves quantitative analysis of surveys collected from students enrolled in undergraduate Architecture program at Qatar University. Analysis indicates that in general students enrolled in the program do not have positive perceptions or experiences associated with group work. Positive and negative factors that influence collaborative learning in higher education have been identified. Recommendations for improving collaborative work experience have been proposed.

Keywords: architecture, collaborative learning, female, group work, higher education, Middle East, Qatar, student experience

Procedia PDF Downloads 331
34492 Cognitive and Metacognitive Space in the Task Design at Postgraduate Taught Level

Authors: Mei Lin, Lana Yj Liu, Thin Ngoc Pham

Abstract:

Postgraduate taught (PGT) students’ learning strategies align with what the learning task constitutes and the environment that the task creates. Cognitively, they can discover new perspectives, challenge general assumptions, establish clear connections, and synthesise information. Metacognitively, their engagement is conducive to the development of planning, monitoring, and evaluating strategies. Given that there has been a lack of longitudinal insights into international PGT students’ experiences of the cognitive and metacognitive space created in the tasks, this paper presentation aims to fill the gaps by longitudinally exploring (1) the fundamentals of task designs to create cognitive and metacognitive space and (2) the opportunities and challenges of multicultural group discussions as a pedagogical approach for the implementation of cognitive and metacognitive space in the learning tasks. Data were collected from the two rounds of semi-structured interviews with 11 international PGT students in two programmes at a UK university -at the end of semester one and at the end of semester two. The findings show that the task designs, to create cognitive and metacognitive space, need to include four interconnected factors: clarity, relevance, motivation, and practicality. In addition, international PGT students perceived that they practised and developed their cognitive and metacognitive abilities while getting immersed in multicultural group discussions. The findings, from the learners’ point of view, make some pedagogy-related suggestions to the task designs at the master’s level, particularly how to engage students in learning during their transition into higher education in a different cultural setting.

Keywords: cognitive space, master students, metacognitive space, task design

Procedia PDF Downloads 59
34491 Implementation-Oriented Discussion for Historical and Cultural Villages’ Conservation Planning

Authors: Xing Zhang

Abstract:

Since the State Council of China issued the Regulations on the Conservation of Historical Cultural Towns and Villages in 2008, formulation of conservation planning has been carried out in national, provincial and municipal historical and cultural villages for protection needs, which provides a legal basis for inheritance of historical culture and protection of historical resources. Although the quantity and content of the conservation planning are continually increasing, the implementation and application are still ambiguous. To solve the aforementioned problems, this paper explores methods to enhance the implementation of conservation planning from the perspective of planning formulation. Specifically, the technical framework of "overall objectives planning - sub-objectives planning - zoning guidelines - implementation by stages" is proposed to implement the planning objectives in different classifications and stages. Then combined with details of the Qiqiao historical and cultural village conservation planning project in Ningbo, five sub-objectives are set, which are implemented through the village zoning guidelines. At the same time, the key points and specific projects in the near-term, medium-term and long-term work are clarified, and the spatial planning is transformed into the action plan with time scale. The proposed framework and method provide a reference for the implementation and management of the conservation planning of historical and cultural villages in the future.

Keywords: conservation planning, planning by stages, planning implementation, zoning guidelines

Procedia PDF Downloads 242
34490 Work Engagement, Sense of Humor and Workplace Outcomes: The Mediating Role of Psychological Capital

Authors: Vandana Maurya

Abstract:

Positive psychological capital is the key contributor to the competitive advantage of the organizations. Moreover, work engagement and sense of humor are also positive notions and are able to facilitate positive workplace behaviour but the mechanism behind these relationships are not well understood. The purpose of this study was to examine the relationships among work engagement, sense of humor and outcome variables (organizational citizenship behaviour and ethical performance) as well as investigating how psychological capital (PsyCap) mediates the relationships between work engagement, sense of humor and the outcome variables among healthcare professionals. A cross-sectional survey was conducted on healthcare professionals (n= 240). Data were collected using questionnaires which includes Utrecht Work Engagement Scale (UWES), Multi-dimensional Sense of Humor Scale (MSHS), Psychological Capital Questionnaire (PCQ), Organizational Citizenship Behavior Questionnaire, and Ethical Performance Scale (EPS). The results of the regression analyses showed that work engagement and sense of humor both positively predicted the outcome variables. Mediation analysis reveals that psychological capital mediates the relationship between predictor and outcome variables. The study recommends that the framework presented in this study can be an important tool for managers to enhance their employees’ psychological capital by increasing their levels of work engagement and sense of humor. In turn, psychological capital could be a positive resource for employees to dealing more ethically and enhancing more positive workplace behaviour.

Keywords: ethical performance, humor, organizational citizenship behavior, PsyCap, work engagement

Procedia PDF Downloads 216
34489 Predictive Modeling of Student Behavior in Virtual Reality: A Machine Learning Approach

Authors: Gayathri Sadanala, Shibam Pokhrel, Owen Murphy

Abstract:

In the ever-evolving landscape of education, Virtual Reality (VR) environments offer a promising avenue for enhancing student engagement and learning experiences. However, understanding and predicting student behavior within these immersive settings remain challenging tasks. This paper presents a comprehensive study on the predictive modeling of student behavior in VR using machine learning techniques. We introduce a rich data set capturing student interactions, movements, and progress within a VR orientation program. The dataset is divided into training and testing sets, allowing us to develop and evaluate predictive models for various aspects of student behavior, including engagement levels, task completion, and performance. Our machine learning approach leverages a combination of feature engineering and model selection to reveal hidden patterns in the data. We employ regression and classification models to predict student outcomes, and the results showcase promising accuracy in forecasting behavior within VR environments. Furthermore, we demonstrate the practical implications of our predictive models for personalized VR-based learning experiences and early intervention strategies. By uncovering the intricate relationship between student behavior and VR interactions, we provide valuable insights for educators, designers, and developers seeking to optimize virtual learning environments.

Keywords: interaction, machine learning, predictive modeling, virtual reality

Procedia PDF Downloads 143
34488 Performance Evaluation of Distributed Deep Learning Frameworks in Cloud Environment

Authors: Shuen-Tai Wang, Fang-An Kuo, Chau-Yi Chou, Yu-Bin Fang

Abstract:

2016 has become the year of the Artificial Intelligence explosion. AI technologies are getting more and more matured that most world well-known tech giants are making large investment to increase the capabilities in AI. Machine learning is the science of getting computers to act without being explicitly programmed, and deep learning is a subset of machine learning that uses deep neural network to train a machine to learn  features directly from data. Deep learning realizes many machine learning applications which expand the field of AI. At the present time, deep learning frameworks have been widely deployed on servers for deep learning applications in both academia and industry. In training deep neural networks, there are many standard processes or algorithms, but the performance of different frameworks might be different. In this paper we evaluate the running performance of two state-of-the-art distributed deep learning frameworks that are running training calculation in parallel over multi GPU and multi nodes in our cloud environment. We evaluate the training performance of the frameworks with ResNet-50 convolutional neural network, and we analyze what factors that result in the performance among both distributed frameworks as well. Through the experimental analysis, we identify the overheads which could be further optimized. The main contribution is that the evaluation results provide further optimization directions in both performance tuning and algorithmic design.

Keywords: artificial intelligence, machine learning, deep learning, convolutional neural networks

Procedia PDF Downloads 211
34487 The Use of Coronary Calcium Scanning for Cholesterol Assessment and Management

Authors: Eva Kirzner

Abstract:

Based on outcome studies published over the past two decades, in 2018, the ACC/AHA published new guidelines for the management of hypercholesterolemia that incorporate the use of coronary artery calcium (CAC) scanning as a decision tool for ascertaining which patients may benefit from statin therapy. This use is based on the recognition that the absence of calcium on CAC scanning (i.e., a CAC score of zero) usually signifies the absence of significant atherosclerotic deposits in the coronary arteries. Specifically, in patients with a high risk for atherosclerotic cardiovascular disease (ASCVD), initiation of statin therapy is generally recommended to decrease ASCVD risk. However, among patients with intermediate ASCVD risk, the need for statin therapy is less certain. However, there is a need for new outcome studies that provide evidence that the management of hypercholesterolemia based on these new ACC/AHA recommendations is safe for patients. Based on a Pub-Med and Google Scholar literature search, four relevant population-based or patient-based cohort studies that studied the relationship between CAC scanning, risk assessment or mortality, and statin therapy that were published between 2017 and 2021 were identified (see references). In each of these studies, patients were assessed for their baseline risk for atherosclerotic cardiovascular disease (ASCVD) using the Pooled Cohorts Equation (PCE), an ACC/AHA calculator for determining patient risk based on assessment of patient age, gender, ethnicity, and coronary artery disease risk factors. The combined findings of these four studies provided concordant evidence that a zero CAC score defines patients who remain at low clinical risk despite the non-use of statin therapy. Thus, these new studies confirm the use of CAC scanning as a safe tool for reducing the potential overuse of statin therapy among patients with zero CAC scores. Incorporating these new data suggest the following best practice: (1) ascertain ASCVD risk according to the PCE in all patients; (2) following an initial attempt trial to lower ASCVD risk with optimal diet among patients with elevated ASCVD risk, initiate statin therapy for patients who have a high ASCVD risk score; (3) if the ASCVD score is intermediate, refer patients for CAC scanning; and (4) and if the CAC score is zero among the intermediate risk ASCVD patients, statin therapy can be safely withheld despite the presence of an elevated serum cholesterol level.

Keywords: cholesterol, cardiovascular disease, statin therapy, coronary calcium

Procedia PDF Downloads 115
34486 Discovering the Dimension of Abstractness: Structure-Based Model that Learns New Categories and Categorizes on Different Levels of Abstraction

Authors: Georgi I. Petkov, Ivan I. Vankov, Yolina A. Petrova

Abstract:

A structure-based model of category learning and categorization at different levels of abstraction is presented. The model compares different structures and expresses their similarity implicitly in the forms of mappings. Based on this similarity, the model can categorize different targets either as members of categories that it already has or creates new categories. The model is novel using two threshold parameters to evaluate the structural correspondence. If the similarity between two structures exceeds the higher threshold, a new sub-ordinate category is created. Vice versa, if the similarity does not exceed the higher threshold but does the lower one, the model creates a new category on higher level of abstraction.

Keywords: analogy-making, categorization, learning of categories, abstraction, hierarchical structure

Procedia PDF Downloads 191
34485 Perceptions of Research Staff on the Implementation of Each-B Study: A Randomised Controlled Trial

Authors: Laila Khawaja

Abstract:

In recent years, an increasing emphasis has been placed on measuring program implementation, in part because of the great variability in how complex interventions are delivered in real-life settings. There is an increased awareness that while conducting process evaluations, one should aim to identify and understand the complexities of intervention if they are to be used for future intervention development or the strategies needed to implement the same intervention in a different setting. Complex interventions are public health interventions that are not drugs or surgical procedures but have many potential active aspects of intervention. In this paper, process evaluations are aligned with MRC guidelines to identify contextual factors related to outcomes to assess the quality of implementation. This paper briefly discusses the perceptions of research team on the implementation of the intervention of ‘Engaging Adolescents in Changing Behaviour’ (EACH-B), a school-based complex intervention study aiming to improve diet and physical activity among adolescents aged 12-13 years. Through qualitative interviews and focus groups with 10 staff members, we aimed to understand their experiences and reflections on implementing the EACH-B trial delivered in 49 Schools around Hampshire, England. Data were uploaded into NVivo, and analysis was conducted using thematic analysis. The investigation revealed two overarching themes: (a) how the communication patterns with teachers were impacted during the delivery of implementation and (b) what were the team’s strategies to keep logistics aligned with the research process that impacted the overall implementation of the trial. The paper informs adaptation strategies used by the research team to establish and maintain effective communication with the teachers as well as the thoughtfulness of the team’s logistic strategy for the successful delivery of the trial.

Keywords: complex interventions, process evaluation, adaptation strategies, randomised controlled trial

Procedia PDF Downloads 67
34484 A Deep Learning Based Integrated Model For Spatial Flood Prediction

Authors: Vinayaka Gude Divya Sampath

Abstract:

The research introduces an integrated prediction model to assess the susceptibility of roads in a future flooding event. The model consists of deep learning algorithm for forecasting gauge height data and Flood Inundation Mapper (FIM) for spatial flooding. An optimal architecture for Long short-term memory network (LSTM) was identified for the gauge located on Tangipahoa River at Robert, LA. Dropout was applied to the model to evaluate the uncertainty associated with the predictions. The estimates are then used along with FIM to identify the spatial flooding. Further geoprocessing in ArcGIS provides the susceptibility values for different roads. The model was validated based on the devastating flood of August 2016. The paper discusses the challenges for generalization the methodology for other locations and also for various types of flooding. The developed model can be used by the transportation department and other emergency response organizations for effective disaster management.

Keywords: deep learning, disaster management, flood prediction, urban flooding

Procedia PDF Downloads 147
34483 Foot Recognition Using Deep Learning for Knee Rehabilitation

Authors: Rakkrit Duangsoithong, Jermphiphut Jaruenpunyasak, Alba Garcia

Abstract:

The use of foot recognition can be applied in many medical fields such as the gait pattern analysis and the knee exercises of patients in rehabilitation. Generally, a camera-based foot recognition system is intended to capture a patient image in a controlled room and background to recognize the foot in the limited views. However, this system can be inconvenient to monitor the knee exercises at home. In order to overcome these problems, this paper proposes to use the deep learning method using Convolutional Neural Networks (CNNs) for foot recognition. The results are compared with the traditional classification method using LBP and HOG features with kNN and SVM classifiers. According to the results, deep learning method provides better accuracy but with higher complexity to recognize the foot images from online databases than the traditional classification method.

Keywords: foot recognition, deep learning, knee rehabilitation, convolutional neural network

Procedia PDF Downloads 161
34482 Data Analytics of Electronic Medical Records Shows an Age-Related Differences in Diagnosis of Coronary Artery Disease

Authors: Maryam Panahiazar, Andrew M. Bishara, Yorick Chern, Roohallah Alizadehsani, Dexter Hadleye, Ramin E. Beygui

Abstract:

Early detection plays a crucial role in enhancing the outcome for a patient with coronary artery disease (CAD). We utilized a big data analytics platform on ~23,000 patients with CAD from a total of 960,129 UCSF patients in 8 years. We traced the patients from their first encounter with a physician to diagnose and treat CAD. Characteristics such as demographic information, comorbidities, vital, lab tests, medications, and procedures are included. There are statistically significant gender-based differences in patients younger than 60 years old from the time of the first physician encounter to coronary artery bypass grafting (CABG) with a p-value=0.03. There are no significant differences between the patients between 60 and 80 years old (p-value=0.8) and older than 80 (p-value=0.4) with a 95% confidence interval. This recognition would affect significant changes in the guideline for referral of the patients for diagnostic tests expeditiously to improve the outcome by avoiding the delay in treatment.

Keywords: electronic medical records, coronary artery disease, data analytics, young women

Procedia PDF Downloads 148
34481 A Methodological Concept towards a Framework Development for Social Software Adoption in Higher Education System

Authors: Kenneth N. Ohei, Roelien Brink

Abstract:

For decades, teaching and learning processes have centered on the traditional approach (Web 1.0) that promoted teacher-directed pedagogical practices. Currently, there is a realization that the traditional approach is not adequate to effectively address and improve all student-learning outcomes. The subsequent incorporation of social software, Information, and Communication Technology (ICT) tools in universities may serve as complementary to support educational goals, offering students the affordability and opportunity to educational choices and learning platforms. Consequently, educators’ inability to incorporate these instructional ICT tools in their teaching and learning practices remains a challenge. This will signify that educators still lack the ICT skills required to administer lectures and bridging learning gaps. This study probes a methodological concept with the aim of developing a framework towards the adoption of social software in HES to help facilitate business processes and can build social presence among students. A mixed method will be appropriate to develop a comprehensive framework needed in Higher Educational System (HES). After research have been conducted, the adoption of social software will be based on the developed comprehensive framework which is supposed to impact positively on education and approach of delivery, improves learning experience, engagement and finally, increases educational opportunities and easy access to educational contents.

Keywords: blended and integrated learning, learning experience and engagement, higher educational system, HES, information and communication technology, ICT, social presence, Web 1.0, Web 2.0, Web 3.0

Procedia PDF Downloads 157
34480 Machine Learning Approach for Yield Prediction in Semiconductor Production

Authors: Heramb Somthankar, Anujoy Chakraborty

Abstract:

This paper presents a classification study on yield prediction in semiconductor production using machine learning approaches. A complicated semiconductor production process is generally monitored continuously by signals acquired from sensors and measurement sites. A monitoring system contains a variety of signals, all of which contain useful information, irrelevant information, and noise. In the case of each signal being considered a feature, "Feature Selection" is used to find the most relevant signals. The open-source UCI SECOM Dataset provides 1567 such samples, out of which 104 fail in quality assurance. Feature extraction and selection are performed on the dataset, and useful signals were considered for further study. Afterward, common machine learning algorithms were employed to predict whether the signal yields pass or fail. The most relevant algorithm is selected for prediction based on the accuracy and loss of the ML model.

Keywords: deep learning, feature extraction, feature selection, machine learning classification algorithms, semiconductor production monitoring, signal processing, time-series analysis

Procedia PDF Downloads 109