Search results for: hydraulic form loss coefficient
10601 Performance Evaluation of Refinement Method for Wideband Two-Beams Formation
Authors: C. Bunsanit
Abstract:
This paper presents the refinement method for two beams formation of wideband smart antenna. The refinement method for weighting coefficients is based on Fully Spatial Signal Processing by taking Inverse Discrete Fourier Transform (IDFT), and its simulation results are presented using MATLAB. The radiation pattern is created by multiplying the incoming signal with real weights and then summing them together. These real weighting coefficients are computed by IDFT method; however, the range of weight values is relatively wide. Therefore, for reducing this range, the refinement method is used. The radiation pattern concerns with five input parameters to control. These parameters are maximum weighting coefficient, wideband signal, direction of mainbeam, beamwidth, and maximum of minor lobe level. Comparison of the obtained simulation results between using refinement method and taking only IDFT shows that the refinement method works well for wideband two beams formation.Keywords: fully spatial signal processing, beam forming, refinement method, smart antenna, weighting coefficient, wideband
Procedia PDF Downloads 22610600 Influence of Climate Change on Landslides in Northeast India: A Case Study
Authors: G. Vishnu, T. V. Bharat
Abstract:
Rainfall plays a major role in the stability of natural slopes in tropical and subtropical regions. These slopes usually have high slope angles and are stable during the dry season. The critical rainfall intensity that might trigger a landslide may not be the highest rainfall. In addition to geological discontinuities and anthropogenic factors, water content, suction, and hydraulic conductivity also play a role. A thorough geotechnical investigation with the principles of unsaturated soil mechanics is required to predict the failures in these cases. The study discusses three landslide events that had occurred in residual hills of Guwahati, India. Rainfall data analysis, history image analysis, land use, and slope maps of the region were analyzed and discussed. The landslide occurred on June (24, 26, and 28) 2020, on the respective sites, but the highest rainfall was on June (6 and 17) 2020. The factors that lead to the landslide occurrence is the combination of critical events initiated with rainfall, causing a reduction in suction. The sites consist of a mixture of rocks and soil. The slope failure occurs due to the saturation of the soil layer leading to loss of soil strength resulting in the flow of the entire soil rock mass. The land-use change, construction activities, other human and natural activities that lead to faster disintegration of rock mass may accelerate the landslide events. Landslides in these slopes are inevitable, and the development of an early warning system (EWS) to save human lives and resources is a feasible way. The actual time of failure of a slope can be better predicted by considering all these factors rather than depending solely on the rainfall intensities. An effective EWS is required with less false alarms in these regions by proper instrumentation of slope and appropriate climatic downscaling.Keywords: early warning system, historic image analysis, slope instrumentation, unsaturated soil mechanics
Procedia PDF Downloads 11410599 Adopting Collaborative Business Processes to Prevent the Loss of Information in Public Administration Organisations
Authors: A. Capodieci, G. Del Fiore, L. Mainetti
Abstract:
Recently, the use of web 2.0 tools has increased in companies and public administration organizations. This phenomenon, known as "Enterprise 2.0", has, de facto, modified common organizational and operative practices. This has led “knowledge workers” to change their working practices through the use of Web 2.0 communication tools. Unfortunately, these tools have not been integrated with existing enterprise information systems, a situation that could potentially lead to a loss of information. This is an important problem in an organizational context, because knowledge of information exchanged within the organization is needed to increase the efficiency and competitiveness of the organization. In this article we demonstrate that it is possible to capture this knowledge using collaboration processes, which are processes of abstraction created in accordance with design patterns and applied to new organizational operative practices.Keywords: business practices, business process patterns, collaboration tools, enterprise 2.0, knowledge workers
Procedia PDF Downloads 35810598 Analytical, Numerical, and Experimental Research Approaches to Influence of Vibrations on Hydroelastic Processes in Centrifugal Pumps
Authors: Dinara F. Gaynutdinova, Vladimir Ya Modorsky, Nikolay A. Shevelev
Abstract:
The problem under research is that of unpredictable modes occurring in two-stage centrifugal hydraulic pump as a result of hydraulic processes caused by vibrations of structural components. Numerical, analytical and experimental approaches are considered. A hypothesis was developed that the problem of unpredictable pressure decrease at the second stage of centrifugal pumps is caused by cavitation effects occurring upon vibration. The problem has been studied experimentally and theoretically as of today. The theoretical study was conducted numerically and analytically. Hydroelastic processes in dynamic “liquid – deformed structure” system were numerically modelled and analysed. Using ANSYS CFX program engineering analysis complex and computing capacity of a supercomputer the cavitation parameters were established to depend on vibration parameters. An influence domain of amplitudes and vibration frequencies on concentration of cavitation bubbles was formulated. The obtained numerical solution was verified using CFM program package developed in PNRPU. The package is based on a differential equation system in hyperbolic and elliptic partial derivatives. The system is solved by using one of finite-difference method options – the particle-in-cell method. The method defines the problem solution algorithm. The obtained numerical solution was verified analytically by model problem calculations with the use of known analytical solutions of in-pipe piston movement and cantilever rod end face impact. An infrastructure consisting of an experimental fast hydro-dynamic processes research installation and a supercomputer connected by a high-speed network, was created to verify the obtained numerical solutions. Physical experiments included measurement, record, processing and analysis of data for fast processes research by using National Instrument signals measurement system and Lab View software. The model chamber end face oscillated during physical experiments and, thus, loaded the hydraulic volume. The loading frequency varied from 0 to 5 kHz. The length of the operating chamber varied from 0.4 to 1.0 m. Additional loads weighed from 2 to 10 kg. The liquid column varied from 0.4 to 1 m high. Liquid pressure history was registered. The experiment showed dependence of forced system oscillation amplitude on loading frequency at various values: operating chamber geometrical dimensions, liquid column height and structure weight. Maximum pressure oscillation (in the basic variant) amplitudes were discovered at loading frequencies of approximately 1,5 kHz. These results match the analytical and numerical solutions in ANSYS and CFM.Keywords: computing experiment, hydroelasticity, physical experiment, vibration
Procedia PDF Downloads 24410597 The MTHFR C677T Polymorphism Screening: A Challenge in Recurrent Pregnancy Loss
Authors: Rim Frikha, Nouha Bouayed, Afifa Sellami, Nozha Chakroun, Salima Daoud, Leila Keskes, Tarek Rebai
Abstract:
Introduction: Recurrent pregnancy loss (RPL) defined as two or more pregnancy losses, is a serious clinical problem. Methylene-tetrahydro-folate-reductase (MTHFR) polymorphisms, commonly the variant C677T is recognized as an inherited thrombophilia which might affect embryonic development and pregnancy success and cause pregnancy complications as RPL. Material and Methods DNA was extracted from peripheral blood samples and PCR-RFLP was performed for the molecular diagnosis of the C677T MTHFR polymorphism among 70 patients (35 couples) with more than 2 fetal losses. Aims and Objective: The aim of this study is to determine the frequency of MTHFR C677T among Tunisian couples with RPL and to critically analyze the available literature on the importance of MTHFR polymorphism testing in the management of RPL. Result and comments: No C677T mutation was detected in the carriers of RPL. This result would be related to sample size and to different criteria (number of abortion), - The association between MTHFR polymorphisms and pregnancy complications has been reported but with controversial results. - A lack of evidence for MTHFR polymorphism testing previously recommended by ACMG (American College of Medical medicine). Our study highlights the importance of screening of MTHFR polymorphism since the real impact of such thrombotic molecular defect on the pregnancy outcome is evident. - Folic supplementation of these patients during pregnancy can prevent such complications and lead to a successful pregnancy outcome.Keywords: methylenetetrahydrofolate reductase, C677T, recurrent pregnancy loss, genetic testing
Procedia PDF Downloads 30610596 Microwave Transmission through Metamaterial Based on Permalloy Flakes under Magnetic Resonance and Antiresonance Conditions
Authors: Anatoly B. Rinkevich, Eugeny A. Kuznetsov, Yuri I. Ryabkov
Abstract:
Transmission of electromagnetic waves through a plate of metamaterial based on permalloy flakes and reflection from the plate is investigated. The metamaterial is prepared of permalloy flakes sized from few to 50μ placed into epoxy-amine matrix. Two series of metamaterial samples are under study with the volume portion of permalloy particles 15% and 30%. There is no direct electrical contact between permalloy particles. Microwave measurements have been carried out at frequencies of 12 to 30 GHz in magnetic fields up to 12 kOe. Sharp decrease of transmitted wave is observed under ferromagnetic resonance condition caused by absorption. Under magnetic antiresonance condition, in opposite, maximum of reflection coefficient is observed at frequencies exceeding 30 GHz. For example, for metamaterial sample with the volume portion of permalloy of 30%, the variation of reflection coefficient in magnetic field reaches 300%. These high variations are of interest to develop magnetic field driven microwave devices. Magnetic field variations of refractive index are also estimated.Keywords: ferromagnetic resonance, magnetic antiresonance, microwave metamaterials, permalloy flakes, transmission and reflection coefficients
Procedia PDF Downloads 14010595 Case Study Hyperbaric Oxygen Therapy for Idiopathic Sudden Sensorineural Hearing Loss
Authors: Magdy I. A. Alshourbagi
Abstract:
Background: The National Institute for Deafness and Communication Disorders defines idiopathic sudden sensorineural hearing loss as the idiopathic loss of hearing of at least 30 dB across 3 contiguous frequencies occurring within 3 days.The most common clinical presentation involves an individual experiencing a sudden unilateral hearing loss, tinnitus, a sensation of aural fullness and vertigo. The etiologies and pathologies of ISSNHL remain unclear. Several pathophysiological mechanisms have been described including: vascular occlusion, viral infections, labyrinthine membrane breaks, immune associated disease, abnormal cochlear stress response, trauma, abnormal tissue growth, toxins, ototoxic drugs and cochlear membrane damage. The rationale for the use of hyperbaric oxygen to treat ISSHL is supported by an understanding of the high metabolism and paucity of vascularity to the cochlea. The cochlea and the structures within it require a high oxygen supply. The direct vascular supply, particularly to the organ of Corti, is minimal. Tissue oxygenation to the structures within the cochlea occurs via oxygen diffusion from cochlear capillary networks into the perilymph and the cortilymph. . The perilymph is the primary oxygen source for these intracochlear structures. Unfortunately, perilymph oxygen tension is decreased significantly in patients with ISSHL. To achieve a consistent rise of perilymph oxygen content, the arterial-perilymphatic oxygen concentration difference must be extremely high. This can be restored with hyperbaric oxygen therapy. Subject and Methods: A 37 year old man was presented at the clinic with a five days history of muffled hearing and tinnitus of the right ear. Symptoms were sudden onset, with no associated pain, dizziness or otorrhea and no past history of hearing problems or medical illness. Family history was negative. Physical examination was normal. Otologic examination revealed normal tympanic membranes bilaterally, with no evidence of cerumen or middle ear effusion. Tuning fork examination showed positive Rinne test bilaterally but with lateralization of Weber test to the left side, indicating right ear sensorineural hearing loss. Audiometric analysis confirmed sensorineural hearing loss across all frequencies of about 70- dB in the right ear. Routine lab work were all within normal limits. Clinical diagnosis of idiopathic sudden sensorineural hearing loss of the right ear was made and the patient began a medical treatment (corticosteroid, vasodilator and HBO therapy). The recommended treatment profile consists of 100% O2 at 2.5 atmospheres absolute for 60 minutes daily (six days per week) for 40 treatments .The optimal number of HBOT treatments will vary, depending on the severity and duration of symptomatology and the response to treatment. Results: As HBOT is not yet a standard for idiopathic sudden sensorineural hearing loss, it was introduced to this patient as an adjuvant therapy. The HBOT program was scheduled for 40 sessions, we used a 12-seat multi place chamber for the HBOT, which was started at day seven after the hearing loss onset. After the tenth session of HBOT, improvement of both hearing (by audiogram) and tinnitus was obtained in the affected ear (right). Conclusions: In conclusion, HBOT may be used for idiopathic sudden sensorineural hearing loss as an adjuvant therapy. It may promote oxygenation to the inner ear apparatus and revive hearing ability. Patients who fail to respond to oral and intratympanic steroids may benefit from this treatment. Further investigation is warranted, including animal studies to understand the molecular and histopathological aspects of HBOT and randomized control clinical studies.Keywords: idiopathic sudden sensorineural hearing loss (issnhl), hyperbaric oxygen therapy (hbot), the decibel (db), oxygen (o2)
Procedia PDF Downloads 43110594 Studies of the Corrosion Kinetics of Metal Alloys in Stagnant Simulated Seawater Environment
Authors: G. Kabir, A. M. Mohammed, M. A. Bawa
Abstract:
The paper presents corrosion behaviors of Naval Brass, aluminum alloy and carbon steel in simulated seawater under stagnant conditions. The behaviors were characterized on the variation of chloride ions concentration in the range of 3.0wt% and 3.5wt% and exposure time. The weight loss coupon-method immersion technique was employed. The weight loss for the various alloys was measured. Based on the obtained results, the corrosion rate was determined. It was found that the corrosion rates of the various alloys are related to the chloride ions concentrations, exposure time and kinetics of passive film formation of the various alloys. Carbon steel, suffers corrosion many folds more than Naval Brass. This indicated that the alloy exhibited relatively strong resistance to corrosion in the exposure environment of the seawater. Whereas, the aluminum alloy exhibited an excellent and beneficial resistance to corrosion more than the Naval Brass studied. Despite the prohibitive cost, Naval Brass and aluminum alloy, indicated to have beneficial corrosion behavior that can offer wide range of application in seashore operations. The corrosion kinetics parameters indicated that the corrosion reaction is limited by diffusion mass transfer of the corrosion reaction elements and not by reaction controlled.Keywords: alloys, chloride ions concentration, corrosion kinetics, corrosion rate, diffusion mass transfer, exposure time, seawater, weight loss
Procedia PDF Downloads 30210593 WebAppShield: An Approach Exploiting Machine Learning to Detect SQLi Attacks in an Application Layer in Run-time
Authors: Ahmed Abdulla Ashlam, Atta Badii, Frederic Stahl
Abstract:
In recent years, SQL injection attacks have been identified as being prevalent against web applications. They affect network security and user data, which leads to a considerable loss of money and data every year. This paper presents the use of classification algorithms in machine learning using a method to classify the login data filtering inputs into "SQLi" or "Non-SQLi,” thus increasing the reliability and accuracy of results in terms of deciding whether an operation is an attack or a valid operation. A method Web-App auto-generated twin data structure replication. Shielding against SQLi attacks (WebAppShield) that verifies all users and prevents attackers (SQLi attacks) from entering and or accessing the database, which the machine learning module predicts as "Non-SQLi" has been developed. A special login form has been developed with a special instance of data validation; this verification process secures the web application from its early stages. The system has been tested and validated, up to 99% of SQLi attacks have been prevented.Keywords: SQL injection, attacks, web application, accuracy, database
Procedia PDF Downloads 15110592 A Combined Error Control with Forward Euler Method for Dynamical Systems
Authors: R. Vigneswaran, S. Thilakanathan
Abstract:
Variable time-stepping algorithms for solving dynamical systems performed poorly for long time computations which pass close to a fixed point. To overcome this difficulty, several authors considered phase space error controls for numerical simulation of dynamical systems. In one generalized phase space error control, a step-size selection scheme was proposed, which allows this error control to be incorporated into the standard adaptive algorithm as an extra constraint at negligible extra computational cost. For this generalized error control, it was already analyzed the forward Euler method applied to the linear system whose coefficient matrix has real and negative eigenvalues. In this paper, this result was extended to the linear system whose coefficient matrix has complex eigenvalues with negative real parts. Some theoretical results were obtained and numerical experiments were carried out to support the theoretical results.Keywords: adaptivity, fixed point, long time simulations, stability, linear system
Procedia PDF Downloads 31210591 Evaluation of Reliability Flood Control System Based on Uncertainty of Flood Discharge, Case Study Wulan River, Central Java, Indonesia
Authors: Anik Sarminingsih, Krishna V. Pradana
Abstract:
The failure of flood control system can be caused by various factors, such as not considering the uncertainty of designed flood causing the capacity of the flood control system is exceeded. The presence of the uncertainty factor is recognized as a serious issue in hydrological studies. Uncertainty in hydrological analysis is influenced by many factors, starting from reading water elevation data, rainfall data, selection of method of analysis, etc. In hydrological modeling selection of models and parameters corresponding to the watershed conditions should be evaluated by the hydraulic model in the river as a drainage channel. River cross-section capacity is the first defense in knowing the reliability of the flood control system. Reliability of river capacity describes the potential magnitude of flood risk. Case study in this research is Wulan River in Central Java. This river occurring flood almost every year despite some efforts to control floods such as levee, floodway and diversion. The flood-affected areas include several sub-districts, mainly in Kabupaten Kudus and Kabupaten Demak. First step is analyze the frequency of discharge observation from Klambu weir which have time series data from 1951-2013. Frequency analysis is performed using several distribution frequency models such as Gumbel distribution, Normal, Normal Log, Pearson Type III and Log Pearson. The result of the model based on standard deviation overlaps, so the maximum flood discharge from the lower return periods may be worth more than the average discharge for larger return periods. The next step is to perform a hydraulic analysis to evaluate the reliability of river capacity based on the flood discharge resulted from several methods. The selection of the design flood discharge of flood control system is the result of the method closest to bankfull capacity of the river.Keywords: design flood, hydrological model, reliability, uncertainty, Wulan river
Procedia PDF Downloads 29410590 A Strategy to Oil Production Placement Zones Based on Maximum Closeness
Authors: Waldir Roque, Gustavo Oliveira, Moises Santos, Tatiana Simoes
Abstract:
Increasing the oil recovery factor of an oil reservoir has been a concern of the oil industry. Usually, the production placement zones are defined after some analysis of geological and petrophysical parameters, being the rock porosity, permeability and oil saturation of fundamental importance. In this context, the determination of hydraulic flow units (HFUs) renders an important step in the process of reservoir characterization since it may provide specific regions in the reservoir with similar petrophysical and fluid flow properties and, in particular, techniques supporting the placement of production zones that favour the tracing of directional wells. A HFU is defined as a representative volume of a total reservoir rock in which petrophysical and fluid flow properties are internally consistent and predictably distinct of other reservoir rocks. Technically, a HFU is characterized as a rock region that exhibit flow zone indicator (FZI) points lying on a straight line of the unit slope. The goal of this paper is to provide a trustful indication for oil production placement zones for the best-fit HFUs. The FZI cloud of points can be obtained from the reservoir quality index (RQI), a function of effective porosity and permeability. Considering log and core data the HFUs are identified and using the discrete rock type (DRT) classification, a set of connected cell clusters can be found and by means a graph centrality metric, the maximum closeness (MaxC) cell is obtained for each cluster. Considering the MaxC cells as production zones, an extensive analysis, based on several oil recovery factor and oil cumulative production simulations were done for the SPE Model 2 and the UNISIM-I-D synthetic fields, where the later was build up from public data available from the actual Namorado Field, Campos Basin, in Brazil. The results have shown that the MaxC is actually technically feasible and very reliable as high performance production placement zones.Keywords: hydraulic flow unit, maximum closeness centrality, oil production simulation, production placement zone
Procedia PDF Downloads 32910589 Treatment of Wastewater by Constructed Wetland Eco-Technology: Plant Species Alters the Performance and the Enrichment of Bacteria Ries Alters the Performance and the Enrichment of Bacteria
Authors: Kraiem Khadija, Hamadi Kallali, Naceur Jedidi
Abstract:
Constructed wetland systems are eco-technology recognized as environmentally friendly and emerging innovative solutions remediation as these systems are cost-effective and sustainable wastewater treatment systems. The performance of these biological system is affected by various factors such as plant, substrate, wastewater type, hydraulic loading rate, hydraulic retention time, water depth, and operation mood. The objective of this study was to to assess the alters of plant species on pollutants reduction and enrichment of anammox and nitrifing denitrifing bacteria in a modified vertical flow (VFCW) constructed wetland. This tests were carried out using three modified vertical constructed wetlands with a surface of 0.23 m² and depth 80 cm. It was a saturated vertical constructed wetland at the bottom. The saturation zone is maintained by the siphon structure at the outlet. The VFCW (₁) system was unplanted, VFCW (₂) planted with Typha angustofolia, and VFCW(₃) planted with Phragmites australis. The experimental units were fed with domestic wastewater and were operated by batch mode during 8 months at an average hydraulic loading rate around 20 cm day− 1. The operation cycle was two days feeding and five days rest. Results indicated that plants presence improved the removal efficiency; the removal rates of organic matter (85.1–90.9%; COD and 81.8–88.9%; BOD5), nitrogen (54.2–73%; NTK and 66–77%; NH4 -N) were higher by 10.7–30.1% compared to the unplanted vertical constructed wetland. On the other hand, the plant species had no significant effect on removal efficiency of COD, The removal of COD was similar in VFCW (₂) and VFCW (₃) (p > 0.05), attaining average removal efficiencies of 88.7% and 85.2%, respectively. Whereas it had a significant effect on NTK removal (p > 0.05), with an average removal rate of 72% versus 51% for VFCW (₂) and VFCW (₃), respectively. Among the three sets of vertical flow constructed wetlands, the VFCW(₂) removed the highest percent of total streptococcus, fecal streptococcus total coliforms, fecal coliforms, E. coli as 59, 62, 52, 63, and 58%, respectively. The presence and the plant species alters the community composition and abundance of the bacteria. The abundance of bacteria in the planted wetland was much higher than that in the unplanted one. VFCW(₃) had the highest relative abundance of nitrifying bacteria such as Nitrosospira (18%), Nitrosospira (12%), and Nitrobacter (8%). Whereas the vertical constructed wetland planted with typha had larger number of denitrifying species, with relative abundances of Aeromonas (13%), Paracoccus (11%), Thauera (7%), and Thiobacillus (6%). However, the abundance of nitrifying bacteria was very lower in this system than VFCW(₂). Interestingly, the presence of Thypha angustofolia species favored the enrichment of anammox bacteria compared to unplanted system and system planted with phragmites australis. The results showed that the middle layer had the most accumulation of anammox bacteria, which the anaerobic condition is better and the root system is moderate. Vegetation has several characteristics that make it an essential component of wetlands, but its exact effects are complex and debated.Keywords: wastawater, constructed wetland, anammox, removal
Procedia PDF Downloads 10410588 Wastewater Treatment Using Microalgae
Authors: Chigbo Ikechukwu Emmanuel
Abstract:
Microalgae can be used for tertiary treatment of wastewater due to their capacity to assimilate nutrients. The pH increase which is mediated by the growing algae also induces phosphorus precipitation and ammonia stripping to the air, and may in addition act disinfecting on the wastewater. Domestic wastewater is ideal for algal growth since it contains high concentrations of all necessary nutrients. The growth limiting factor is rather light, especially at higher latitudes. The most important operational factors for successful wastewater treatment with microalgae are depth, turbulence and hydraulic retention time.Keywords: microalgae, wastewater treatment, phosphorus, nitrogen, light, operation, ponds, growth
Procedia PDF Downloads 47810587 Conduction Accompanied With Transient Radiative Heat Transfer Using Finite Volume Method
Authors: A. Ashok, K.Satapathy, B. Prerana Nashine
Abstract:
The objective of this research work is to investigate for one dimensional transient radiative transfer equations with conduction using finite volume method. Within the infrastructure of finite-volume, we obtain the conservative discretization of the terms in order to preserve the overall conservative property of finitevolume schemes. Coupling of conductive and radiative equation resulting in fluxes is governed by the magnitude of emissivity, extinction coefficient, and temperature of the medium as well as geometry of the problem. The problem under consideration has been solved, for a slab dominating radiation coupled with transient conduction based on finite volume method. The boundary conditions are also chosen so as to give a good model of the discretized form of radiation transfer equation. The important feature of the present method is flexibility in specifying the control angles in the FVM, while keeping the simplicity in the solution procedure. Effects of various model parameters are examined on the distributions of temperature, radiative and conductive heat fluxes and incident radiation energy etc. The finite volume method is considered to effectively evaluate the propagation of radiation intensity through a participating medium.Keywords: participating media, finite volume method, radiation coupled with conduction, transient radiative heat transfer
Procedia PDF Downloads 38910586 A New Manoeuvre for Prevention of Post-Partum Haemorrhage
Authors: Amr Hamdy
Abstract:
Background: Postpartum haemorrhage (PPH) is the leading cause of maternal mortality worldwide. Many methods have been developed to decrease its rate. The aim of this study was to evaluate the applicability of a new non-pharmacologic maneuver in decreasing its rate. Methods: This case series study was conducted in one centre in Cairo, Egypt, from January-2010 to June-2013. 400 pregnant–women aged 18 years or more and candidate for normal labour; were enrolled to this study. High-risk subjects for PPH were excluded. After placental delivery, the new maneuver was done by sustained traction of the anterior and posterior lips of the cervix by two ovum forceps for duration of 90 seconds. The amount of blood loss was estimated by standardized visual estimation after removal of the forceps. All subjects were followed up for 6 hours. Results: The rate of PPH, defined as more than 500 ml, was 8 cases (2%) with 95% CI (0.63-3.37%). The rate of PPH was not affected by parity, gestational age, episiotomy or the presence of tears. PPH is more in cases with anemia (p 0.032). It occurred in all cases with uterine atony (p <0.001). The range of estimated blood loss was 550-600ml in cases with PPH and 150-450ml in cases without PPH. Severe PPH more than 1000 ml, did not occur. Conclusion: This pilot study introduced a novel maneuver that can be helpful in decreasing the rate of PPH and reducing the amount of post partum blood loss.Despite the low rate of PPH showed in this study, the need for conducting a randomized controlled study is at its highest level before further inclusion of such manoeuvre to be a part of the current medical practice and before considering it as an evident tool to decrease the burden of PPH.Keywords: maternal mortality, new manoeuvre, post-partum haemorrhage, uterine atony
Procedia PDF Downloads 19510585 Research on Spatial Pattern and Spatial Structure of Human Settlement from the View of Spatial Anthropology – A Case Study of the Settlement in Sizhai Village, City of Zhuji, Zhejiang Province, China
Authors: Ni Zhenyu
Abstract:
A human settlement is defined as the social activities, social relationships and lifestyles generated within a certain territory, which is also relatively independent territorial living space and domain composed of common people. Along with the advancement of technology and the development of society, the idea, presented in traditional research, that human settlements are deemed as substantial organic integrity with strong autonomy, are more often challenged nowadays. Spatial form of human settlements is one of the most outstanding external expressions with its subjectivity and autonomy, nevertheless, the projections of social, economic activities on certain territories are even more significant. What exactly is the relationship between human beings and the spatial form of the settlements where they live in? a question worth thinking over has been raised, that if a new view, a spatial anthropological one , can be constructed to review and respond to spatial form of human settlements based on research theories and methods of cultural anthropology within the profession of architecture. This article interprets how the typical spatial form of human settlements in the basin area of Bac Giang Province is formed under the collective impacts of local social order, land use condition, topographic features, and social contracts. A particular case of the settlement in Sizhai Village, City of Zhuji, Zhejiang Province is chosen to study for research purpose. Spatial form of human settlements are interpreted as a modeled integrity affected corporately by dominant economy, social patterns, key symbol marks and core values, etc.. Spatial form of human settlements, being a structured existence, is a materialized, behavioral, and social space; it can be considered as a place where human beings realize their behaviors and a path on which the continuity of their behaviors are kept, also for social practice a territory where currant social structure and social relationships are maintained, strengthened and rebuilt. This article aims to break the boundary of understanding that spatial form of human settlements is pure physical space, furthermore, endeavors to highlight the autonomy status of human beings, focusing on their relationships with certain territories, their interpersonal relationships, man-earth relationships and the state of existence of human beings, elaborating the deeper connotation behind spatial form of human settlements.Keywords: spatial anthropology, human settlement, spatial pattern, spatial structure
Procedia PDF Downloads 41110584 The Effect of Velocity Increment by Blockage Factor on Savonius Hydrokinetic Turbine Performance
Authors: Thochi Seb Rengma, Mahendra Kumar Gupta, P. M. V. Subbarao
Abstract:
Hydrokinetic turbines can be used to produce power in inaccessible villages located near rivers. The hydrokinetic turbine uses the kinetic energy of the water and maybe put it directly into the natural flow of water without dams. For off-grid power production, the Savonius-type vertical axis turbine is the easiest to design and manufacture. This proposal uses three-dimensional computational fluid dynamics (CFD) simulations to measure the considerable interaction and complexity of turbine blades. Savonius hydrokinetic turbine (SHKT) performance is affected by a blockage in the river, canals, and waterways. Putting a large object in a water channel causes water obstruction and raises local free stream velocity. The blockage correction factor or velocity increment measures the impact of velocity on the performance. SHKT performance is evaluated by comparing power coefficient (Cp) with tip-speed ratio (TSR) at various blockage ratios. The maximum Cp was obtained at a TSR of 1.1 with a blockage ratio of 45%, whereas TSR of 0.8 yielded the highest Cp without blockage. The greatest Cp of 0.29 was obtained with a 45% blockage ratio compared to a Cp max of 0.18 without a blockage.Keywords: savonius hydrokinetic turbine, blockage ratio, vertical axis turbine, power coefficient
Procedia PDF Downloads 13210583 Teachers’ Awareness of the Significance of Lifelong Learning: A Case Study of Secondary School Teachers of Batna - Algeria
Authors: Bahloul Amel
Abstract:
This study is an attempt to raise the awareness of the stakeholders and the authorities on the sensitivity of Algerian secondary school teachers of English as a Foreign Language about the students’ loss of English language skills learned during formal schooling with effort and at expense and the supposed measures to arrest that loss. Data was collected from secondary school teachers of EFL and analyzed quantitatively using a questionnaire containing open-ended and close-ended questions. The results advocate a consensus about the need for actions to be adopted to make assessment techniques outcome-oriented. Most of the participants were in favor of including curricular activities involving contextualized learning, problem-solving learning critical self-awareness, self and peer-assisted learning, use of computers and internet so as to make learners autonomous.Keywords: lifelong learning, EFL, contextualized learning, Algeria
Procedia PDF Downloads 34810582 An Experimental Investigation of the Surface Pressure on Flat Plates in Turbulent Boundary Layers
Authors: Azadeh Jafari, Farzin Ghanadi, Matthew J. Emes, Maziar Arjomandi, Benjamin S. Cazzolato
Abstract:
The turbulence within the atmospheric boundary layer induces highly unsteady aerodynamic loads on structures. These loads, if not accounted for in the design process, will lead to structural failure and are therefore important for the design of the structures. For an accurate prediction of wind loads, understanding the correlation between atmospheric turbulence and the aerodynamic loads is necessary. The aim of this study is to investigate the effect of turbulence within the atmospheric boundary layer on the surface pressure on a flat plate over a wide range of turbulence intensities and integral length scales. The flat plate is chosen as a fundamental geometry which represents structures such as solar panels and billboards. Experiments were conducted at the University of Adelaide large-scale wind tunnel. Two wind tunnel boundary layers with different intensities and length scales of turbulence were generated using two sets of spires with different dimensions and a fetch of roughness elements. Average longitudinal turbulence intensities of 13% and 26% were achieved in each boundary layer, and the longitudinal integral length scale within the three boundary layers was between 0.4 m and 1.22 m. The pressure distributions on a square flat plate at different elevation angles between 30° and 90° were measured within the two boundary layers with different turbulence intensities and integral length scales. It was found that the peak pressure coefficient on the flat plate increased with increasing turbulence intensity and integral length scale. For example, the peak pressure coefficient on a flat plate elevated at 90° increased from 1.2 to 3 with increasing turbulence intensity from 13% to 26%. Furthermore, both the mean and the peak pressure distribution on the flat plates varied with turbulence intensity and length scale. The results of this study can be used to provide a more accurate estimation of the unsteady wind loads on structures such as buildings and solar panels.Keywords: atmospheric boundary layer, flat plate, pressure coefficient, turbulence
Procedia PDF Downloads 13910581 The Decrease of Collagen or Mineral Affect the Fracture in the Turkey Long Bones
Authors: P. Vosynek, T. Návrat, M. Peč, J. Pořízka, P. Diviš
Abstract:
Changes of mechanical properties and response behavior of bones is an important external sign of medical problems like osteoporosis, bone remodeling after fracture or surgery, osteointegration, or bone tissue loss of astronauts in space. Measuring of mechanical behavior of bones in physiological and osteoporotic states, quantified by different degrees of protein (collagen) and mineral loss, is thus an important topic in biomechanical research. This contribution deals with the relation between mechanical properties of the turkey long bone–tibia in physiological, demineralized, and deproteinized state. Three methods for comparison were used: densitometry, three point bending and harmonic response analysis. The results help to find correlations between the methods and estimate their possible application in medical practice.Keywords: bone properties, long bone, osteoporosis, response behavior
Procedia PDF Downloads 48210580 1D/3D Modeling of a Liquid-Liquid Two-Phase Flow in a Milli-Structured Heat Exchanger/Reactor
Authors: Antoinette Maarawi, Zoe Anxionnaz-Minvielle, Pierre Coste, Nathalie Di Miceli Raimondi, Michel Cabassud
Abstract:
Milli-structured heat exchanger/reactors have been recently widely used, especially in the chemical industry, due to their enhanced performances in heat and mass transfer compared to conventional apparatuses. In our work, the ‘DeanHex’ heat exchanger/reactor with a 2D-meandering channel is investigated both experimentally and numerically. The square cross-sectioned channel has a hydraulic diameter of 2mm. The aim of our study is to model local physico-chemical phenomena (heat and mass transfer, axial dispersion, etc.) for a liquid-liquid two-phase flow in our lab-scale meandering channel, which represents the central part of the heat exchanger/reactor design. The numerical approach of the reactor is based on a 1D model for the flow channel encapsulated in a 3D model for the surrounding solid, using COMSOL Multiphysics V5.5. The use of the 1D approach to model the milli-channel reduces significantly the calculation time compared to 3D approaches, which are generally focused on local effects. Our 1D/3D approach intends to bridge the gap between the simulation at a small scale and the simulation at the reactor scale at a reasonable CPU cost. The heat transfer process between the 1D milli-channel and its 3D surrounding is modeled. The feasibility of this 1D/3D coupling was verified by comparing simulation results to experimental ones originated from two previous works. Temperature profiles along the channel axis obtained by simulation fit the experimental profiles for both cases. The next step is to integrate the liquid-liquid mass transfer model and to validate it with our experimental results. The hydrodynamics of the liquid-liquid two-phase system is modeled using the ‘mixture model approach’. The mass transfer behavior is represented by an overall volumetric mass transfer coefficient ‘kLa’ correlation obtained from our experimental results in the millimetric size meandering channel. The present work is a first step towards the scale-up of our ‘DeanHex’ expecting future industrialization of such equipment. Therefore, a generalized scaled-up model of the reactor comprising all the transfer processes will be built in order to predict the performance of the reactor in terms of conversion rate and energy efficiency at an industrial scale.Keywords: liquid-liquid mass transfer, milli-structured reactor, 1D/3D model, process intensification
Procedia PDF Downloads 13010579 Optimizing Weight Loss with AI (GenAISᵀᴹ): A Randomized Trial of Dietary Supplement Prescriptions in Obese Patients
Authors: Evgeny Pokushalov, Andrey Ponomarenko, John Smith, Michael Johnson, Claire Garcia, Inessa Pak, Evgenya Shrainer, Dmitry Kudlay, Sevda Bayramova, Richard Miller
Abstract:
Background: Obesity is a complex, multifactorial chronic disease that poses significant health risks. Recent advancements in artificial intelligence (AI) offer the potential for more personalized and effective dietary supplement (DS) regimens to promote weight loss. This study aimed to evaluate the efficacy of AI-guided DS prescriptions compared to standard physician-guided DS prescriptions in obese patients. Methods: This randomized, parallel-group pilot study enrolled 60 individuals aged 40 to 60 years with a body mass index (BMI) of 25 or greater. Participants were randomized to receive either AI-guided DS prescriptions (n = 30) or physician-guided DS prescriptions (n = 30) for 180 days. The primary endpoints were the percentage change in body weight and the proportion of participants achieving a ≥5% weight reduction. Secondary endpoints included changes in BMI, fat mass, visceral fat rating, systolic and diastolic blood pressure, lipid profiles, fasting plasma glucose, hsCRP levels, and postprandial appetite ratings. Adverse events were monitored throughout the study. Results: Both groups were well balanced in terms of baseline characteristics. Significant weight loss was observed in the AI-guided group, with a mean reduction of -12.3% (95% CI: -13.1 to -11.5%) compared to -7.2% (95% CI: -8.1 to -6.3%) in the physician-guided group, resulting in a treatment difference of -5.1% (95% CI: -6.4 to -3.8%; p < 0.01). At day 180, 84.7% of the AI-guided group achieved a weight reduction of ≥5%, compared to 54.5% in the physician-guided group (Odds Ratio: 4.3; 95% CI: 3.1 to 5.9; p < 0.01). Significant improvements were also observed in BMI, fat mass, and visceral fat rating in the AI-guided group (p < 0.01 for all). Postprandial appetite suppression was greater in the AI-guided group, with significant reductions in hunger and prospective food consumption, and increases in fullness and satiety (p < 0.01 for all). Adverse events were generally mild-to-moderate, with higher incidences of gastrointestinal symptoms in the AI-guided group, but these were manageable and did not impact adherence. Conclusion: The AI-guided dietary supplement regimen was more effective in promoting weight loss, improving body composition, and suppressing appetite compared to the physician-guided regimen. These findings suggest that AI-guided, personalized supplement prescriptions could offer a more effective approach to managing obesity. Further research with larger sample sizes is warranted to confirm these results and optimize AI-based interventions for weight loss.Keywords: obesity, AI-guided, dietary supplements, weight loss, personalized medicine, metabolic health, appetite suppression
Procedia PDF Downloads 710578 Influence of Bragg Reflectors Pairs on Resonance Characteristics of Solidly Mounted Resonators
Authors: Vinita Choudhary
Abstract:
The solidly mounted resonator (SMR) is a bulk acoustic wave-based device consisting of a piezoelectric layer sandwiched between two electrodes upon Bragg reflectors, which then are attached to a substrate. To transform the effective acoustic impedance of the substrate to a near zero value, the Bragg reflectors are composed of alternating high and low acoustic impedance layers of quarter-wavelength thickness. In this work presents the design and investigation of acoustic Bragg reflectors (ABRs) for solidly mounted bulk acoustic wave resonators through analysis and simulation. This performance of the resonator is analyzed using 1D Mason modeling. The performance parameters are the effect of Bragg pairs number on transmissivity, reflectivity, insertion loss, the electromechanical and quality factor of the 5GHz operating resonator.Keywords: bragg reflectors, SMR, insertion loss, quality factor
Procedia PDF Downloads 9810577 Modeling and Simulating Productivity Loss Due to Project Changes
Authors: Robert Pellerin, Michel Gamache, Remi Trudeau, Nathalie Perrier
Abstract:
The context of large engineering projects is particularly favorable to the appearance of engineering changes and contractual modifications. These elements are potential causes for claims. In this paper, we investigate one of the critical components of the claim management process: the calculation of the impacts of changes in terms of losses of productivity due to the need to accelerate some project activities. When project changes are initiated, delays can arise. Indeed, project activities are often executed in fast-tracking in an attempt to respect the completion date. But the acceleration of project execution and the resulting rework can entail important costs as well as induce productivity losses. In the past, numerous methods have been proposed to quantify the duration of delays, the gains achieved by project acceleration, and the loss of productivity. The calculation related to those changes can be divided into two categories: direct cost and indirect cost. The direct cost is easily quantifiable as opposed to indirect costs which are rarely taken into account during the calculation of the cost of an engineering change or contract modification despite several research projects have been made on this subject. However, proposed models have not been accepted by companies yet, nor they have been accepted in court. Those models require extensive data and are often seen as too specific to be used for all projects. These techniques are also ignoring the resource constraints and the interdependencies between the causes of delays and the delays themselves. To resolve this issue, this research proposes a simulation model that mimics how major engineering changes or contract modifications are handled in large construction projects. The model replicates the use of overtime in a reactive scheduling mode in order to simulate the loss of productivity present when a project change occurs. Multiple tests were conducted to compare the results of the proposed simulation model with statistical analysis conducted by other researchers. Different scenarios were also conducted in order to determine the impact the number of activities, the time of occurrence of the change, the availability of resources, and the type of project changes on productivity loss. Our results demonstrate that the number of activities in the project is a critical variable influencing the productivity of a project. When changes occur, the presence of a large number of activities leads to a much lower productivity loss than a small number of activities. The speed of reducing productivity for 30-job projects is about 25 percent faster than the reduction speed for 120-job projects. The moment of occurrence of a change also shows a significant impact on productivity. Indeed, the sooner the change occurs, the lower the productivity of the labor force. The availability of resources also impacts the productivity of a project when a change is implemented. There is a higher loss of productivity when the amount of resources is restricted.Keywords: engineering changes, indirect costs overtime, productivity, scheduling, simulation
Procedia PDF Downloads 23810576 International Comparison in Component of Design-Potential
Authors: Kazuko Sakamoto
Abstract:
It is difficult to explain the factor of design preference only in culture or a geographical environment. It is necessary to turn one's eyes also to the factor in an individual. The purpose of this research is to clarify design potential which is inherent in consumers. Design potential is the consciousness and interpretation to an individual design. That is, it catches quantitatively the preparatory state which faces design. For example, a mobile phone differs in designs, such as a color and a form, by the country or the area. It is considered because a regional consumer taste exists. The root is design potential. This consists of design participation, design knowledge, and design sensitivity. Having focused this time is by design sensitivity, and international comparison of the Netherlands, Bangladesh, China, and Japan was performed. As a result, very interesting finding has been derived. For example, although Bangladesh caught the similarity of goods by the color, other three nations were caught in the form. Moreover, although the Netherlands, Bangladesh, and China liked symmetry, only Japan liked asymmetry. This shows that history and a cultural background have had big influence to the design.Keywords: design-potential, cultural difference, form characteristic, product development
Procedia PDF Downloads 37710575 Construction of Strain Distribution Profiles of EDD Steel at Elevated Temperatures
Authors: K. Eshwara Prasad, R. Raman Goud, Swadesh Kumar Singh, N. Sateesh
Abstract:
In the present work forming limit diagrams and strain distribution profile diagrams for extra deep drawing steel at room and elevated temperatures have been determined experimentally by conducting stretch forming experiments by using designed and fabricated warm stretchforming tooling setup. With the help of forming Limit Diagrams (FLDs) and strain distribution profile diagrams the formability of Extra Deep Drawing steel has been analyzed and co-related with mechanical properties like strain hardening COEFFICIENT (n) and normal anisotropy (r−).Mechanical properties of EDD steel from room temperature to 4500C were determined and discussed the impact of temperature on the properties like work hardening exponent (n) anisotropy(r-) and strength coefficient of the material. Also the fractured surfaces after stretching have undergone the some metallurgical investigations and attempt has been made to co-relate with the formability of EDD steel sheets. They are co-related and good agreement with FLDs at various temperatures.Keywords: FLD, microhardness, strain distribution profile, stretch forming
Procedia PDF Downloads 32410574 Strain DistributionProfiles of EDD Steel at Elevated Temperatures
Authors: Eshwara Prasad Koorapati, R. Raman Goud, Swadesh Kumar Singh
Abstract:
In the present work forming limit diagrams and strain distribution profile diagrams for extra deep drawing steel at room and elevated temperatures have been determined experimentally by conducting stretch forming experiments by using designed and fabricated warm stretch forming tooling setup. With the help of forming Limit Diagrams (FLDs) and strain distribution profile diagrams the formability of Extra Deep Drawing steel has been analyzed and co-related with mechanical properties like strain hardening coefficient (n) and normal anisotropy (r−).Mechanical properties of EDD steel from room temperature to 4500 C were determined and discussed the impact of temperature on the properties like work hardening exponent (n) anisotropy (r-) and strength coefficient of the material. Also, the fractured surfaces after stretching have undergone the some metallurgical investigations and attempt has been made to co-relate with the formability of EDD steel sheets. They are co-related and good agreement with FLDs at various temperatures.Keywords: FLD, micro hardness, strain distribution profile, stretch forming
Procedia PDF Downloads 42110573 Control Strategy for a Solar Vehicle Race
Authors: Francois Defay, Martim Calao, Jean Francois Dassieu, Laurent Salvetat
Abstract:
Electrical vehicles are a solution for reducing the pollution using green energy. The shell Eco-Marathon provides rules in order to minimize the battery use for the race. The use of solar panel combined with efficient motor control and race strategy allow driving a 60kg vehicle with one pilot using only the solar energy in the best case. This paper presents a complete modelization of a solar vehicle used for the shell eco-marathon. This project called Helios is cooperation between non-graduated students, academic institutes, and industrials. The prototype is an ultra-energy-efficient vehicle based on one-meter square solar panel and an own-made brushless controller to optimize the electrical part. The vehicle is equipped with sensors and embedded system to provide all the data in real time in order to evaluate the best strategy for the course. A complete modelization with Matlab/Simulink is used to test the optimal strategy to increase the global endurance. Experimental results are presented to validate the different parts of the model: mechanical, aerodynamics, electrical, solar panel. The major finding of this study is to provide solutions to identify the model parameters (Rolling Resistance Coefficient, drag coefficient, motor torque coefficient, etc.) by means of experimental results combined with identification techniques. One time the coefficients are validated, the strategy to optimize the consumption and the average speed can be tested first in simulation before to be implanted for the race. The paper describes all the simulation and experimental parts and provides results in order to optimize the global efficiency of the vehicle. This works have been started four years ago and evolved many students for the experimental and theoretical parts and allow to increase the knowledge on electrical self-efficient vehicle.Keywords: electrical vehicle, endurance, optimization, shell eco-marathon
Procedia PDF Downloads 26610572 Study on the Transition to Pacemaker of Two Coupled Neurons
Authors: Sun Zhe, Ruggero Micheletto
Abstract:
The research of neural network is very important for the development of advanced next generation intelligent devices and the medical treatment. The most important part of the neural network research is the learning. The process of learning in our brain is essentially several adjustment processes of connection strength between neurons. It is very difficult to figure out how this mechanism works in the complex network and how the connection strength influences brain functions. For this reason, we made a model with only two coupled neurons and studied the influence of connection strength between them. To emulate the neuronal activity of realistic neurons, we prefer to use the Izhikevich neuron model. This model can simulate the neuron variables accurately and it’s simplicity is very suitable to implement on computers. In this research, the parameter ρ is used to estimate the correlation coefficient between spike train of two coupling neurons.We think the results is very important for figuring out the mechanism between synchronization of coupling neurons and synaptic plasticity. The result also presented the importance of the spike frequency adaptation in complex systems.Keywords: neural networks, noise, stochastic processes, coupled neurons, correlation coefficient, synchronization, pacemaker, synaptic plasticity
Procedia PDF Downloads 284