Search results for: hierarchical text classification models
8889 An Approach for Estimation in Hierarchical Clustered Data Applicable to Rare Diseases
Authors: Daniel C. Bonzo
Abstract:
Practical considerations lead to the use of unit of analysis within subjects, e.g., bleeding episodes or treatment-related adverse events, in rare disease settings. This is coupled with data augmentation techniques such as extrapolation to enlarge the subject base. In general, one can think about extrapolation of data as extending information and conclusions from one estimand to another estimand. This approach induces hierarchichal clustered data with varying cluster sizes. Extrapolation of clinical trial data is being accepted increasingly by regulatory agencies as a means of generating data in diverse situations during drug development process. Under certain circumstances, data can be extrapolated to a different population, a different but related indication, and different but similar product. We consider here the problem of estimation (point and interval) using a mixed-models approach under an extrapolation. It is proposed that estimators (point and interval) be constructed using weighting schemes for the clusters, e.g., equally weighted and with weights proportional to cluster size. Simulated data generated under varying scenarios are then used to evaluate the performance of this approach. In conclusion, the evaluation result showed that the approach is a useful means for improving statistical inference in rare disease settings and thus aids not only signal detection but risk-benefit evaluation as well.Keywords: clustered data, estimand, extrapolation, mixed model
Procedia PDF Downloads 1368888 Activity Data Analysis for Status Classification Using Fitness Trackers
Authors: Rock-Hyun Choi, Won-Seok Kang, Chang-Sik Son
Abstract:
Physical activity is important for healthy living. Recently wearable devices which motivate physical activity are quickly developing, and become cheaper and more comfortable. In particular, fitness trackers provide a variety of information and need to provide well-analyzed, and user-friendly results. In this study, frequency analysis was performed to classify various data sets of Fitbit into simple activity status. The data from Fitbit cloud server consists of 263 subjects who were healthy factory and office workers in Korea from March 7th to April 30th, 2016. In the results, we found assumptions of activity state classification seem to be sufficient and reasonable.Keywords: activity status, fitness tracker, heart rate, steps
Procedia PDF Downloads 3848887 Use and Relationship of Shell Nouns as Cohesive Devices in the Quality of Second Language Writing
Authors: Kristine D. de Leon, Junifer A. Abatayo, Jose Cristina M. Pariña
Abstract:
The current study is a comparative analysis of the use of shell nouns as a cohesive device (CD) in an English for Second Language (ESL) setting in order to identify their use and relationship in the quality of second language (L2) writing. As these nouns were established to anticipate the meaning within, across or outside the text, their use has fascinated writing researchers. The corpus of the study included published articles from reputable journals and graduate students’ papers in order to analyze the frequency of shell nouns using “highly prevalent” nouns in the academic community, to identify the different lexicogrammatical patterns where these nouns occur and to the functions connected with these patterns. The result of the study implies that published authors used more shell nouns in their paper than graduate students. However, the functions of the different lexicogrammatical patterns for the frequently occurring shell nouns are somewhat similar. These results could help students in enhancing the cohesion of their text and in comprehending it.Keywords: anaphoric, cataphoric, lexico-grammatical, shell nouns
Procedia PDF Downloads 1858886 Power Quality Modeling Using Recognition Learning Methods for Waveform Disturbances
Authors: Sang-Keun Moon, Hong-Rok Lim, Jin-O Kim
Abstract:
This paper presents a Power Quality (PQ) modeling and filtering processes for the distribution system disturbances using recognition learning methods. Typical PQ waveforms with mathematical applications and gathered field data are applied to the proposed models. The objective of this paper is analyzing PQ data with respect to monitoring, discriminating, and evaluating the waveform of power disturbances to ensure the system preventative system failure protections and complex system problem estimations. Examined signal filtering techniques are used for the field waveform noises and feature extractions. Using extraction and learning classification techniques, the efficiency was verified for the recognition of the PQ disturbances with focusing on interactive modeling methods in this paper. The waveform of selected 8 disturbances is modeled with randomized parameters of IEEE 1159 PQ ranges. The range, parameters, and weights are updated regarding field waveform obtained. Along with voltages, currents have same process to obtain the waveform features as the voltage apart from some of ratings and filters. Changing loads are causing the distortion in the voltage waveform due to the drawing of the different patterns of current variation. In the conclusion, PQ disturbances in the voltage and current waveforms indicate different types of patterns of variations and disturbance, and a modified technique based on the symmetrical components in time domain was proposed in this paper for the PQ disturbances detection and then classification. Our method is based on the fact that obtained waveforms from suggested trigger conditions contain potential information for abnormality detections. The extracted features are sequentially applied to estimation and recognition learning modules for further studies.Keywords: power quality recognition, PQ modeling, waveform feature extraction, disturbance trigger condition, PQ signal filtering
Procedia PDF Downloads 1868885 Contrasted Mean and Median Models in Egyptian Stock Markets
Authors: Mai A. Ibrahim, Mohammed El-Beltagy, Motaz Khorshid
Abstract:
Emerging Markets return distributions have shown significance departure from normality were they are characterized by fatter tails relative to the normal distribution and exhibit levels of skewness and kurtosis that constitute a significant departure from normality. Therefore, the classical Markowitz Mean-Variance is not applicable for emerging markets since it assumes normally-distributed returns (with zero skewness and kurtosis) and a quadratic utility function. Moreover, the Markowitz mean-variance analysis can be used in cases of moderate non-normality and it still provides a good approximation of the expected utility, but it may be ineffective under large departure from normality. Higher moments models and median models have been suggested in the literature for asset allocation in this case. Higher moments models have been introduced to account for the insufficiency of the description of a portfolio by only its first two moments while the median model has been introduced as a robust statistic which is less affected by outliers than the mean. Tail risk measures such as Value-at Risk (VaR) and Conditional Value-at-Risk (CVaR) have been introduced instead of Variance to capture the effect of risk. In this research, higher moment models including the Mean-Variance-Skewness (MVS) and Mean-Variance-Skewness-Kurtosis (MVSK) are formulated as single-objective non-linear programming problems (NLP) and median models including the Median-Value at Risk (MedVaR) and Median-Mean Absolute Deviation (MedMAD) are formulated as a single-objective mixed-integer linear programming (MILP) problems. The higher moment models and median models are compared to some benchmark portfolios and tested on real financial data in the Egyptian main Index EGX30. The results show that all the median models outperform the higher moment models were they provide higher final wealth for the investor over the entire period of study. In addition, the results have confirmed the inapplicability of the classical Markowitz Mean-Variance to the Egyptian stock market as it resulted in very low realized profits.Keywords: Egyptian stock exchange, emerging markets, higher moment models, median models, mixed-integer linear programming, non-linear programming
Procedia PDF Downloads 3148884 The Influence of Covariance Hankel Matrix Dimension on Algorithms for VARMA Models
Authors: Celina Pestano-Gabino, Concepcion Gonzalez-Concepcion, M. Candelaria Gil-Fariña
Abstract:
Some estimation methods for VARMA models, and Multivariate Time Series Models in general, rely on the use of a Hankel matrix. It is known that if the data sample is populous enough and the dimension of the Hankel matrix is unnecessarily large, this may result in an unnecessary number of computations as well as in numerical problems. In this sense, the aim of this paper is two-fold. First, we provide some theoretical results for these matrices which translate into a lower dimension for the matrices normally used in the algorithms. This contribution thus serves to improve those methods from a numerical and, presumably, statistical point of view. Second, we have chosen an estimation algorithm to illustrate in practice our improvements. The results we obtained in a simulation of VARMA models show that an increase in the size of the Hankel matrix beyond the theoretical bound proposed as valid does not necessarily lead to improved practical results. Therefore, for future research, we propose conducting similar studies using any of the linear system estimation methods that depend on Hankel matrices.Keywords: covariances Hankel matrices, Kronecker indices, system identification, VARMA models
Procedia PDF Downloads 2438883 Analyzing the Factors That Influence Students' Professional Identity Using Hierarchical Regression Analysis to Ease Higher Education Transition
Authors: Alba Barbara-i-Molinero, Rosalia Cascon Pereira, Ana Beatriz Hernandez Lara
Abstract:
Our general motivation in undertaking this study is to propose alternative measures to lighten students experienced tensions during the transitions from high school to higher education based on the concept of professional identity strength. In order to do so, we measured the influence that three different factors external motivational conditionals, educational experience conditionals and personal motivation conditionals exerted over students’ professional identity strength and proposed the measures considering the obtained results. By using hierarchical regression analysis we addressed this issue, across disciplines and bachelor degrees, allowing us to gain also deeper insight into first-year university students PID. Our findings suggest that students’ from the different disciplines are influenced by personal motivational conditionals; while students from sciences are also influenced by external motivational conditionals. Based on the obtained results we propose three different alternative educational and recruitment strategies which aim to increase students’ professional identity strength and reduce the tensions generated during high school-university transitions. From this study theoretical contributions regarding the differences in the influence of these factors on students from different bachelor degrees arise; and practical implications for universities, derived from the proposed strategies.Keywords: professional identity, transitions, higher education, strategies
Procedia PDF Downloads 1818882 ChatGPT 4.0 Demonstrates Strong Performance in Standardised Medical Licensing Examinations: Insights and Implications for Medical Educators
Authors: K. O'Malley
Abstract:
Background: The emergence and rapid evolution of large language models (LLMs) (i.e., models of generative artificial intelligence, or AI) has been unprecedented. ChatGPT is one of the most widely used LLM platforms. Using natural language processing technology, it generates customized responses to user prompts, enabling it to mimic human conversation. Responses are generated using predictive modeling of vast internet text and data swathes and are further refined and reinforced through user feedback. The popularity of LLMs is increasing, with a growing number of students utilizing these platforms for study and revision purposes. Notwithstanding its many novel applications, LLM technology is inherently susceptible to bias and error. This poses a significant challenge in the educational setting, where academic integrity may be undermined. This study aims to evaluate the performance of the latest iteration of ChatGPT (ChatGPT4.0) in standardized state medical licensing examinations. Methods: A considered search strategy was used to interrogate the PubMed electronic database. The keywords ‘ChatGPT’ AND ‘medical education’ OR ‘medical school’ OR ‘medical licensing exam’ were used to identify relevant literature. The search included all peer-reviewed literature published in the past five years. The search was limited to publications in the English language only. Eligibility was ascertained based on the study title and abstract and confirmed by consulting the full-text document. Data was extracted into a Microsoft Excel document for analysis. Results: The search yielded 345 publications that were screened. 225 original articles were identified, of which 11 met the pre-determined criteria for inclusion in a narrative synthesis. These studies included performance assessments in national medical licensing examinations from the United States, United Kingdom, Saudi Arabia, Poland, Taiwan, Japan and Germany. ChatGPT 4.0 achieved scores ranging from 67.1 to 88.6 percent. The mean score across all studies was 82.49 percent (SD= 5.95). In all studies, ChatGPT exceeded the threshold for a passing grade in the corresponding exam. Conclusion: The capabilities of ChatGPT in standardized academic assessment in medicine are robust. While this technology can potentially revolutionize higher education, it also presents several challenges with which educators have not had to contend before. The overall strong performance of ChatGPT, as outlined above, may lend itself to unfair use (such as the plagiarism of deliverable coursework) and pose unforeseen ethical challenges (arising from algorithmic bias). Conversely, it highlights potential pitfalls if users assume LLM-generated content to be entirely accurate. In the aforementioned studies, ChatGPT exhibits a margin of error between 11.4 and 32.9 percent, which resonates strongly with concerns regarding the quality and veracity of LLM-generated content. It is imperative to highlight these limitations, particularly to students in the early stages of their education who are less likely to possess the requisite insight or knowledge to recognize errors, inaccuracies or false information. Educators must inform themselves of these emerging challenges to effectively address them and mitigate potential disruption in academic fora.Keywords: artificial intelligence, ChatGPT, generative ai, large language models, licensing exam, medical education, medicine, university
Procedia PDF Downloads 328881 Classification of Traffic Complex Acoustic Space
Abstract:
After years of development, the study of soundscape has been refined to the types of urban space and building. Traffic complex takes traffic function as the core, with obvious design features of architectural space combination and traffic streamline. The acoustic environment is strongly characterized by function, space, material, user and other factors. Traffic complex integrates various functions of business, accommodation, entertainment and so on. It has various forms, complex and varied experiences, and its acoustic environment is turned rich and interesting with distribution and coordination of various functions, division and unification of the mass, separation and organization of different space and the cross and the integration of multiple traffic flow. In this study, it made field recordings of each space of various traffic complex, and extracted and analyzed different acoustic elements, including changes in sound pressure, frequency distribution, steady sound source, sound source information and other aspects, to make cluster analysis of each independent traffic complex buildings. It divided complicated traffic complex building space into several typical sound space from acoustic environment perspective, mainly including stable sound space, high-pressure sound space, rhythm sound space and upheaval sound space. This classification can further deepen the study of subjective evaluation and control of the acoustic environment of traffic complex.Keywords: soundscape, traffic complex, cluster analysis, classification
Procedia PDF Downloads 2518880 A U-Net Based Architecture for Fast and Accurate Diagram Extraction
Authors: Revoti Prasad Bora, Saurabh Yadav, Nikita Katyal
Abstract:
In the context of educational data mining, the use case of extracting information from images containing both text and diagrams is of high importance. Hence, document analysis requires the extraction of diagrams from such images and processes the text and diagrams separately. To the author’s best knowledge, none among plenty of approaches for extracting tables, figures, etc., suffice the need for real-time processing with high accuracy as needed in multiple applications. In the education domain, diagrams can be of varied characteristics viz. line-based i.e. geometric diagrams, chemical bonds, mathematical formulas, etc. There are two broad categories of approaches that try to solve similar problems viz. traditional computer vision based approaches and deep learning approaches. The traditional computer vision based approaches mainly leverage connected components and distance transform based processing and hence perform well in very limited scenarios. The existing deep learning approaches either leverage YOLO or faster-RCNN architectures. These approaches suffer from a performance-accuracy tradeoff. This paper proposes a U-Net based architecture that formulates the diagram extraction as a segmentation problem. The proposed method provides similar accuracy with a much faster extraction time as compared to the mentioned state-of-the-art approaches. Further, the segmentation mask in this approach allows the extraction of diagrams of irregular shapes.Keywords: computer vision, deep-learning, educational data mining, faster-RCNN, figure extraction, image segmentation, real-time document analysis, text extraction, U-Net, YOLO
Procedia PDF Downloads 1378879 Classification of Myoelectric Signals Using Multilayer Perceptron Neural Network with Back-Propagation Algorithm in a Wireless Surface Myoelectric Prosthesis of the Upper-Limb
Authors: Kevin D. Manalo, Jumelyn L. Torres, Noel B. Linsangan
Abstract:
This paper focuses on a wireless myoelectric prosthesis of the upper-limb that uses a Multilayer Perceptron Neural network with back propagation. The algorithm is widely used in pattern recognition. The network can be used to train signals and be able to use it in performing a function on their own based on sample inputs. The paper makes use of the Neural Network in classifying the electromyography signal that is produced by the muscle in the amputee’s skin surface. The gathered data will be passed on through the Classification Stage wirelessly through Zigbee Technology. The signal will be classified and trained to be used in performing the arm positions in the prosthesis. Through programming using Verilog and using a Field Programmable Gate Array (FPGA) with Zigbee, the EMG signals will be acquired and will be used for classification. The classified signal is used to produce the corresponding Hand Movements (Open, Pick, Hold, and Grip) through the Zigbee controller. The data will then be processed through the MLP Neural Network using MATLAB which then be used for the surface myoelectric prosthesis. Z-test will be used to display the output acquired from using the neural network.Keywords: field programmable gate array, multilayer perceptron neural network, verilog, zigbee
Procedia PDF Downloads 3898878 Determinants of Quality of Life in Patients with Atypical Prarkinsonian Syndromes: 1-Year Follow-Up Study
Authors: Tatjana Pekmezovic, Milica Jecmenica-Lukic, Igor Petrovic, Vladimir Kostic
Abstract:
Background: A group of atypical parkinsonian syndromes (APS) includes a variety of rare neurodegenerative disorders characterized by reduced life expectancy, increasing disability, and considerable impact on health-related quality of life (HRQoL). Aim: In this study we wanted to answer two questions: a) which demographic and clinical factors are main contributors of HRQoL in our cohort of patients with APS, and b) how does quality of life of these patients change over 1-year follow-up period. Patients and Methods: We conducted a prospective cohort study in hospital settings. The initial study comprised all consecutive patients who were referred to the Department of Movement Disorders, Clinic of Neurology, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade (Serbia), from January 31, 2000 to July 31, 2013, with the initial diagnoses of ‘Parkinson’s disease’, ‘parkinsonism’, ‘atypical parkinsonism’ and ‘parkinsonism plus’ during the first 8 months from the appearance of first symptom(s). The patients were afterwards regularly followed in 4-6 month intervals and eventually the diagnoses were established for 46 patients fulfilling the criteria for clinically probable progressive supranuclear palsy (PSP) and 36 patients for probable multiple system atrophy (MSA). The health-related quality of life was assessed by using the SF-36 questionnaire (Serbian translation). Hierarchical multiple regression analysis was conducted to identify predictors of composite scores of SF-36. The importance of changes in quality of life scores of patients with APS between baseline and follow-up time-point were quantified using Wilcoxon Signed Ranks Test. The magnitude of any differences for the quality of life changes was calculated as an effect size (ES). Results: The final models of hierarchical regression analysis showed that apathy measured by the Apathy evaluation scale (AES) score accounted for 59% of the variance in the Physical Health Composite Score of SF-36 and 14% of the variance in the Mental Health Composite Score of SF-36 (p<0.01). The changes in HRQoL were assessed in 52 patients with APS who completed 1-year follow-up period. The analysis of magnitude for changes in HRQoL during one-year follow-up period have shown sustained medium ES (0.50-0.79) for both Physical and Mental health composite scores, total quality of life as well as for the Physical Health, Vitality, Role Emotional and Social Functioning. Conclusion: This study provides insight into new potential predictors of HRQoL and its changes over time in patients with APS. Additionally, identification of both prognostic markers of a poor HRQoL and magnitude of its changes should be considered when developing comprehensive treatment-related strategies and health care programs aimed at improving HRQoL and well-being in patients with APS.Keywords: atypical parkinsonian syndromes, follow-up study, quality of life, APS
Procedia PDF Downloads 3058877 Energy Consumption Models for Electric Vehicles: Survey and Proposal of a More Realistic Model
Authors: I. Sagaama, A. Kechiche, W. Trojet, F. Kamoun
Abstract:
Replacing combustion engine vehicles by electric vehicles (EVs) is a major step in recent years due to their potential benefits. Battery autonomy and charging processes are still a big issue for that kind of vehicles. Therefore, reducing the energy consumption of electric vehicles becomes a necessity. Many researches target introducing recent information and communication technologies in EVs in order to propose reducing energy consumption services. Evaluation of realistic scenarios is a big challenge nowadays. In this paper, we will elaborate a state of the art of different proposed energy consumption models in the literature, then we will present a comparative study of these models, finally, we will extend previous works in order to propose an accurate and realistic energy model for calculating instantaneous power consumption of electric vehicles.Keywords: electric vehicle, vehicular networks, energy models, traffic simulation
Procedia PDF Downloads 3708876 Generation of 3d Models Obtained with Low-Cost RGB and Thermal Sensors Mounted on Drones
Authors: Julio Manuel De Luis Ruiz, Javier Sedano Cibrián, RubéN Pérez Álvarez, Raúl Pereda García, Felipe Piña García
Abstract:
Nowadays it is common to resort to aerial photography to carry out the prospection and/or exploration of archaeological sites. In this sense, the classic 3D models are being applied to investigate the direction towards which the generally subterranean structures of an archaeological site may continue and therefore, to help in making the decisions that define the location of new excavations. In recent years, Unmanned Aerial Vehicles (UAVs) have been applied as the vehicles that carry the sensor. This implies certain advantages, such as the possibility of including low-cost sensors, given that these vehicles can carry the sensor at relatively low altitudes. Due to this, low-cost dual sensors have recently begun to be used. This new equipment can collaborate with classic Digital Elevation Models (DEMs) in the exploration of archaeological sites, but this entails the need for a methodological setting to optimise the acquisition, processing and exploitation of the information provided by low-cost dual sensors. This research focuses on the design of an appropriate workflow to obtain 3D models with low-cost sensors carried on UAVs, both in the RGB and thermal domains. All the foregoing has been applied to the archaeological site of Juliobriga, located in Cantabria (Spain).Keywords: process optimization, RGB models, thermal models, , UAV, workflow
Procedia PDF Downloads 1388875 An Efficient Hardware/Software Workflow for Multi-Cores Simulink Applications
Authors: Asma Rebaya, Kaouther Gasmi, Imen Amari, Salem Hasnaoui
Abstract:
Over these last years, applications such as telecommunications, signal processing, digital communication with advanced features (Multi-antenna, equalization..) witness a rapid evaluation accompanied with an increase of user exigencies in terms of latency, the power of computation… To satisfy these requirements, the use of hardware/software systems is a common solution; where hardware is composed of multi-cores and software is represented by models of computation, synchronous data flow (SDF) graph for instance. Otherwise, the most of the embedded system designers utilize Simulink for modeling. The issue is how to simplify the c code generation, for a multi-cores platform, of an application modeled by Simulink. To overcome this problem, we propose a workflow allowing an automatic transformation from the Simulink model to the SDF graph and providing an efficient schedule permitting to optimize the number of cores and to minimize latency. This workflow goes from a Simulink application and a hardware architecture described by IP.XACT language. Based on the synchronous and hierarchical behavior of both models, the Simulink block diagram is automatically transformed into an SDF graph. Once this process is successfully achieved, the scheduler calculates the optimal cores’ number needful by minimizing the maximum density of the whole application. Then, a core is chosen to execute a specific graph task in a specific order and, subsequently, a compatible C code is generated. In order to perform this proposal, we extend Preesm, a rapid prototyping tool, to take the Simulink model as entry input and to support the optimal schedule. Afterward, we compared our results to this tool results, using a simple illustrative application. The comparison shows that our results strictly dominate the Preesm results in terms of number of cores and latency. In fact, if Preesm needs m processors and latency L, our workflow need processors and latency L'< L.Keywords: hardware/software system, latency, modeling, multi-cores platform, scheduler, SDF graph, Simulink model, workflow
Procedia PDF Downloads 2698874 Composite Kernels for Public Emotion Recognition from Twitter
Authors: Chien-Hung Chen, Yan-Chun Hsing, Yung-Chun Chang
Abstract:
The Internet has grown into a powerful medium for information dispersion and social interaction that leads to a rapid growth of social media which allows users to easily post their emotions and perspectives regarding certain topics online. Our research aims at using natural language processing and text mining techniques to explore the public emotions expressed on Twitter by analyzing the sentiment behind tweets. In this paper, we propose a composite kernel method that integrates tree kernel with the linear kernel to simultaneously exploit both the tree representation and the distributed emotion keyword representation to analyze the syntactic and content information in tweets. The experiment results demonstrate that our method can effectively detect public emotion of tweets while outperforming the other compared methods.Keywords: emotion recognition, natural language processing, composite kernel, sentiment analysis, text mining
Procedia PDF Downloads 2188873 Stochastic Age-Structured Population Models
Authors: Arcady Ponosov
Abstract:
Many well-known age-structured population models are derived from the celebrated McKendrick-von Foerster equation (MFE), also called the biological conservation law. A similar technique is suggested for the stochastically perturbed MFE. This technique is shown to produce stochastic versions of the deterministic population models, which appear to be very different from those one can construct by simply appending additive stochasticity to deterministic equations. In particular, it is shown that stochastic Nicholson’s blowflies model should contain both additive and multiplicative stochastic noises. The suggested transformation technique is similar to that used in the deterministic case. The difference is hidden in the formulas for the exact solutions of the simplified boundary value problem for the stochastically perturbed MFE. The analysis is also based on the theory of stochastic delay differential equations.Keywords: boundary value problems, population models, stochastic delay differential equations, stochastic partial differential equation
Procedia PDF Downloads 2548872 A Comparative Analysis of the Performance of COSMO and WRF Models in Quantitative Rainfall Prediction
Authors: Isaac Mugume, Charles Basalirwa, Daniel Waiswa, Mary Nsabagwa, Triphonia Jacob Ngailo, Joachim Reuder, Sch¨attler Ulrich, Musa Semujju
Abstract:
The Numerical weather prediction (NWP) models are considered powerful tools for guiding quantitative rainfall prediction. A couple of NWP models exist and are used at many operational weather prediction centers. This study considers two models namely the Consortium for Small–scale Modeling (COSMO) model and the Weather Research and Forecasting (WRF) model. It compares the models’ ability to predict rainfall over Uganda for the period 21st April 2013 to 10th May 2013 using the root mean square (RMSE) and the mean error (ME). In comparing the performance of the models, this study assesses their ability to predict light rainfall events and extreme rainfall events. All the experiments used the default parameterization configurations and with same horizontal resolution (7 Km). The results show that COSMO model had a tendency of largely predicting no rain which explained its under–prediction. The COSMO model (RMSE: 14.16; ME: -5.91) presented a significantly (p = 0.014) higher magnitude of error compared to the WRF model (RMSE: 11.86; ME: -1.09). However the COSMO model (RMSE: 3.85; ME: 1.39) performed significantly (p = 0.003) better than the WRF model (RMSE: 8.14; ME: 5.30) in simulating light rainfall events. All the models under–predicted extreme rainfall events with the COSMO model (RMSE: 43.63; ME: -39.58) presenting significantly higher error magnitudes than the WRF model (RMSE: 35.14; ME: -26.95). This study recommends additional diagnosis of the models’ treatment of deep convection over the tropics.Keywords: comparative performance, the COSMO model, the WRF model, light rainfall events, extreme rainfall events
Procedia PDF Downloads 2618871 Hybrid Structure Learning Approach for Assessing the Phosphate Laundries Impact
Authors: Emna Benmohamed, Hela Ltifi, Mounir Ben Ayed
Abstract:
Bayesian Network (BN) is one of the most efficient classification methods. It is widely used in several fields (i.e., medical diagnostics, risk analysis, bioinformatics research). The BN is defined as a probabilistic graphical model that represents a formalism for reasoning under uncertainty. This classification method has a high-performance rate in the extraction of new knowledge from data. The construction of this model consists of two phases for structure learning and parameter learning. For solving this problem, the K2 algorithm is one of the representative data-driven algorithms, which is based on score and search approach. In addition, the integration of the expert's knowledge in the structure learning process allows the obtainment of the highest accuracy. In this paper, we propose a hybrid approach combining the improvement of the K2 algorithm called K2 algorithm for Parents and Children search (K2PC) and the expert-driven method for learning the structure of BN. The evaluation of the experimental results, using the well-known benchmarks, proves that our K2PC algorithm has better performance in terms of correct structure detection. The real application of our model shows its efficiency in the analysis of the phosphate laundry effluents' impact on the watershed in the Gafsa area (southwestern Tunisia).Keywords: Bayesian network, classification, expert knowledge, structure learning, surface water analysis
Procedia PDF Downloads 1288870 Psychological Nano-Therapy: A New Method in Family Therapy
Authors: Siamak Samani, Nadereh Sohrabi
Abstract:
Psychological nano-therapy is a new method based on systems theory. According to the theory, systems with severe dysfunctions are resistant to changes. Psychological nano-therapy helps the therapists to break this ice. Two key concepts in psychological nano-therapy are nano-functions and nano-behaviors. The most important step in psychological nano-therapy in family therapy is selecting the most effective nano-function and nano-behavior. The aim of this study was to check the effectiveness of psychological nano-therapy for family therapy. One group pre-test-post-test design (quasi-experimental Design) was applied for research. The sample consisted of ten families with severe marital conflict. The important character of these families was resistance for participating in family therapy. In this study, sending respectful (nano-function) text massages (nano-behavior) with cell phone were applied as a treatment. Cohesion/respect sub scale from self-report family processes scale and family readiness for therapy scale were used to assess all family members in pre-test and post-test. In this study, one of family members was asked to send a respectful text massage to other family members every day for a week. The content of the text massages were selected and checked by therapist. To compare the scores of families in pre-test and post-test paired sample t-test was used. The results of the test showed significant differences in both cohesion/respect score and family readiness for therapy between per-test and post-test. The results revealed that these families have found a better atmosphere for participation in a complete family therapy program. Indeed, this study showed that psychological nano-therapy is an effective method to make family readiness for therapy.Keywords: family therapy, family conflicts, nano-therapy, family readiness
Procedia PDF Downloads 6598869 Jalal-Ale-Ahmad and ‘Critical Consciousness’: A Comparative Study
Authors: Zohreh Ramin
Abstract:
One of the most important contributions that Edward Said has had in the realm of critical theory is his insistence on the worldliness of the text and the critic. By this, Said meant that the critic and the text must be considered in their ‘material’ contexts. Foregrounding the substantial role of a critic as embodying what he refers to as ‘critical consciousness’, a true critic, Said maintains, is one who can stand between the ‘dominant culture’ and ‘the totalizing forms of critical systems.’ Considered as one of Iran’s major contemporary intellectuals, Jalal Ale Ahmad is responsible for introducing the idea of ‘Westoxication’ in Iran, constructing a social paradigm of the necessity to return to tradition in contemporary Iran. The present paper intends to study Al-Ahmad’s definition of the orient versus the occident, his criticism of the ‘machination’ of contemporary Iranian society, and his solution to the problem of ‘Westoxication’. The objective of this study is to see whether Ale Ahmad can be considered as embodying the spirit of ‘critical consciousness’ as described by Said as the necessary tool in the hands of an intellectual who is simultaneously attached filitavely to his culture but can detach himself affilitavely through employing critical consciousness.Keywords: Westoxication, filiative, affiliative, machination
Procedia PDF Downloads 1848868 A Framework for Automated Nuclear Waste Classification
Authors: Seonaid Hume, Gordon Dobie, Graeme West
Abstract:
Detecting and localizing radioactive sources is a necessity for safe and secure decommissioning of nuclear facilities. An important aspect for the management of the sort-and-segregation process is establishing the spatial distributions and quantities of the waste radionuclides, their type, corresponding activity, and ultimately classification for disposal. The data received from surveys directly informs decommissioning plans, on-site incident management strategies, the approach needed for a new cell, as well as protecting the workforce and the public. Manual classification of nuclear waste from a nuclear cell is time-consuming, expensive, and requires significant expertise to make the classification judgment call. Also, in-cell decommissioning is still in its relative infancy, and few techniques are well-developed. As with any repetitive and routine tasks, there is the opportunity to improve the task of classifying nuclear waste using autonomous systems. Hence, this paper proposes a new framework for the automatic classification of nuclear waste. This framework consists of five main stages; 3D spatial mapping and object detection, object classification, radiological mapping, source localisation based on gathered evidence and finally, waste classification. The first stage of the framework, 3D visual mapping, involves object detection from point cloud data. A review of related applications in other industries is provided, and recommendations for approaches for waste classification are made. Object detection focusses initially on cylindrical objects since pipework is significant in nuclear cells and indeed any industrial site. The approach can be extended to other commonly occurring primitives such as spheres and cubes. This is in preparation of stage two, characterizing the point cloud data and estimating the dimensions, material, degradation, and mass of the objects detected in order to feature match them to an inventory of possible items found in that nuclear cell. Many items in nuclear cells are one-offs, have limited or poor drawings available, or have been modified since installation, and have complex interiors, which often and inadvertently pose difficulties when accessing certain zones and identifying waste remotely. Hence, this may require expert input to feature match objects. The third stage, radiological mapping, is similar in order to facilitate the characterization of the nuclear cell in terms of radiation fields, including the type of radiation, activity, and location within the nuclear cell. The fourth stage of the framework takes the visual map for stage 1, the object characterization from stage 2, and radiation map from stage 3 and fuses them together, providing a more detailed scene of the nuclear cell by identifying the location of radioactive materials in three dimensions. The last stage involves combining the evidence from the fused data sets to reveal the classification of the waste in Bq/kg, thus enabling better decision making and monitoring for in-cell decommissioning. The presentation of the framework is supported by representative case study data drawn from an application in decommissioning from a UK nuclear facility. This framework utilises recent advancements of the detection and mapping capabilities of complex radiation fields in three dimensions to make the process of classifying nuclear waste faster, more reliable, cost-effective and safer.Keywords: nuclear decommissioning, radiation detection, object detection, waste classification
Procedia PDF Downloads 2008867 Ancient Latin Language and Haiku Poetry: A Case Study between Teaching and Translation Studies
Authors: Arianna Sacerdoti
Abstract:
The translation of Haiku Poetry into Latin is fundamentally experimental in nature. One of the first seminal books containing such translations, alongside translations into different modern languages, 'A Piedi Scalzi', was written by Tartamella in 2016. The results of a text-oriented study of this book will be commented upon and analyzed. The author Arianna Sacerdoti made similar translations with high school student. Such an experiment garners interest across a diverse range of disciplines such as teaching, translation studies, and classics reception studies. The methodology employed is text-oriented as the Haiku poem translations will be commented on by considering their relationship with the original. The results of this investigation, conducted within the field of experimental teaching, are expected to confirm the usefulness of this approach to the teaching of Latin and its potential to actively involve students in identifying the diachronic differences between the world of classical antiquity and the contemporary one.Keywords: ancient latin, Haiku, translation studies, reception of classics
Procedia PDF Downloads 1338866 Analyzing Data Protection in the Era of Big Data under the Framework of Virtual Property Layer Theory
Authors: Xiaochen Mu
Abstract:
Data rights confirmation, as a key legal issue in the development of the digital economy, is undergoing a transition from a traditional rights paradigm to a more complex private-economic paradigm. In this process, data rights confirmation has evolved from a simple claim of rights to a complex structure encompassing multiple dimensions of personality rights and property rights. Current data rights confirmation practices are primarily reflected in two models: holistic rights confirmation and process rights confirmation. The holistic rights confirmation model continues the traditional "one object, one right" theory, while the process rights confirmation model, through contractual relationships in the data processing process, recognizes rights that are more adaptable to the needs of data circulation and value release. In the design of the data property rights system, there is a hierarchical characteristic aimed at decoupling from raw data to data applications through horizontal stratification and vertical staging. This design not only respects the ownership rights of data originators but also, based on the usufructuary rights of enterprises, constructs a corresponding rights system for different stages of data processing activities. The subjects of data property rights include both data originators, such as users, and data producers, such as enterprises, who enjoy different rights at different stages of data processing. The intellectual property rights system, with the mission of incentivizing innovation and promoting the advancement of science, culture, and the arts, provides a complete set of mechanisms for protecting innovative results. However, unlike traditional private property rights, the granting of intellectual property rights is not an end in itself; the purpose of the intellectual property system is to balance the exclusive rights of the rights holders with the prosperity and long-term development of society's public learning and the entire field of science, culture, and the arts. Therefore, the intellectual property granting mechanism provides both protection and limitations for the rights holder. This perfectly aligns with the dual attributes of data. In terms of achieving the protection of data property rights, the granting of intellectual property rights is an important institutional choice that can enhance the effectiveness of the data property exchange mechanism. Although this is not the only path, the granting of data property rights within the framework of the intellectual property rights system helps to establish fundamental legal relationships and rights confirmation mechanisms and is more compatible with the classification and grading system of data. The modernity of the intellectual property rights system allows it to adapt to the needs of big data technology development through special clauses or industry guidelines, thus promoting the comprehensive advancement of data intellectual property rights legislation. This paper analyzes data protection under the virtual property layer theory and two-fold virtual property rights system. Based on the “bundle of right” theory, this paper establishes specific three-level data rights. This paper analyzes the cases: Google v. Vidal-Hall, Halliday v Creation Consumer Finance, Douglas v Hello Limited, Campbell v MGN and Imerman v Tchenquiz. This paper concluded that recognizing property rights over personal data and protecting data under the framework of intellectual property will be beneficial to establish the tort of misuse of personal information.Keywords: data protection, property rights, intellectual property, Big data
Procedia PDF Downloads 398865 Temporality in Architecture and Related Knowledge
Authors: Gonca Z. Tuncbilek
Abstract:
Architectural research tends to define architecture in terms of its permanence. In this study, the term ‘temporality’ and its use in architectural discourse is re-visited. The definition, proposition, and efficacy of the temporality occur both in architecture and in its related knowledge. The temporary architecture not only fulfills the requirement of the architectural programs, but also plays a significant role in generating an environment of architectural discourse. In recent decades, there is a great interest on the temporary architectural practices regarding to the installations, exhibition spaces, pavilions, and expositions; inviting the architects to experience and think about architecture. The temporary architecture has a significant role among the architecture, the architect, and the architectural discourse. Experiencing the contemporary materials, methods and technique; they have proposed the possibilities of the future architecture. These structures give opportunities to the architects to a wide-ranging variety of freedoms to experience the ‘new’ in architecture. In addition to this experimentation, they can be considered as an agent to redefine and reform the boundaries of the architectural discipline itself. Although the definition of architecture is re-analyzed in terms of its temporality rather than its permanence; architecture, in reality, still relies on historically codified types and principles of the formation. The concept of type can be considered for several different sciences, and there is a tendency to organize and understand the world in terms of classification in many different cultures and places. ‘Type’ is used as a classification tool with/without the scope of the critical invention. This study considers theories of type, putting forward epistemological and discursive arguments related to the form of architecture, being related to historical and formal disciplinary knowledge in architecture. This study has been to emphasize the importance of the temporality in architecture as a creative tool to reveal the position within the architectural discourse. The temporary architecture offers ‘new’ opportunities in the architectural field to be analyzed. In brief, temporary structures allow the architect freedoms to the experimentation in architecture. While redefining the architecture in terms of temporality, architecture still relies on historically codified types (pavilions, exhibitions, expositions, and installations). The notion of architectural types and its varying interpretations are analyzed based on the texts of architectural theorists since the Age of Enlightenment. Investigating the classification of type in architecture particularly temporary architecture, it is necessary to return to the discussion of the origin of the knowledge and its classification.Keywords: classification of architecture, exhibition design, pavilion design, temporary architecture
Procedia PDF Downloads 3658864 From Problem Space to Executional Architecture: The Development of a Simulator to Examine the Effect of Autonomy on Mainline Rail Capacity
Authors: Emily J. Morey, Kevin Galvin, Thomas Riley, R. Eddie Wilson
Abstract:
The key challenges faced by integrating autonomous rail operations into the existing mainline railway environment have been identified through the understanding and framing of the problem space and stakeholder analysis. This was achieved through the completion of the first four steps of Soft Systems Methodology, where the problem space has been expressed via conceptual models. Having identified these challenges, we investigated one of them, namely capacity, via the use of models and simulation. This paper examines the approach used to move from the conceptual models to a simulation which can determine whether the integration of autonomous trains can plausibly increase capacity. Within this approach, we developed an architecture and converted logical models into physical resource models and associated design features which were used to build a simulator. From this simulator, we are able to analyse mixtures of legacy-autonomous operations and produce fundamental diagrams and trajectory plots to describe the dynamic behaviour of mixed mainline railway operations.Keywords: autonomy, executable architecture, modelling and simulation, railway capacity
Procedia PDF Downloads 838863 Move Analysis of Death Row Statements: An Explanatory Study Applied to Death Row Statements in Texas Department of Criminal Justice Website
Authors: Giya Erina
Abstract:
Linguists have analyzed the rhetorical structure of various forensic genres, but only a few have investigated the complete structure of death row statements. Unlike other forensic text types, such as suicide or ransom notes, the focus of death row statement analysis is not the authenticity or falsity of the text, but its intended meaning and its communicative purpose. As it constitutes their last statement before their execution, there are probably many things that inmates would like to express. This study mainly examines the rhetorical moves of 200 death row statements from the Texas Department of Criminal Justice website using rhetorical move analysis. The rhetorical moves identified in the statements will be classified based on their communicative purpose, and they will be grouped into moves and steps. A move structure will finally be suggested from the most common or characteristic moves and steps, as well as some sub-moves. However, because of some statements’ atypicality, some moves may appear in different parts of the texts or not at all.Keywords: Death row statements, forensic linguistics, genre analysis, move analysis
Procedia PDF Downloads 2958862 Initial Concept of Islamic Social Entrepreneurship: Identification of Research Gap from Existing Model
Authors: Mohd Adib Abd Muin
Abstract:
Social entrepreneurship has become a new phenomenon in a country in order to reduce social problems and eradicate poverty communities. However, the study based on Islamic social entrepreneurship from the social entrepreneurial activity is still new especially in the Islamic perspective. In addition, this research found that is lacking of model on social entrepreneurship that focus on Islamic perspective. Therefore, the objective of this paper is to identify the issues and research gap based on Islamic perspective from existing models and to develop a concept of Islamic social entrepreneurship according to Islamic perspective and Maqasid Shari’ah. The research method used in this study is literature review and comparative analysis from 11 existing models of social entrepreneurship. The research finding shows that 11 existing models on social entrepreneurship has been analyzed and it shows that the existing models on social entrepreneurship do not emphasize on Islamic perspective.Keywords: component, social entrepreneurship, Islamic perspective, research gap
Procedia PDF Downloads 4498861 Roof Material Detection Based on Object-Based Approach Using WorldView-2 Satellite Imagery
Authors: Ebrahim Taherzadeh, Helmi Z. M. Shafri, Kaveh Shahi
Abstract:
One of the most important tasks in urban area remote sensing is detection of impervious surface (IS), such as building roof and roads. However, detection of IS in heterogeneous areas still remains as one of the most challenging works. In this study, detection of concrete roof using an object-oriented approach was proposed. A new rule-based classification was developed to detect concrete roof tile. The proposed rule-based classification was applied to WorldView-2 image. Results showed that the proposed rule has good potential to predict concrete roof material from WorldView-2 images with 85% accuracy.Keywords: object-based, roof material, concrete tile, WorldView-2
Procedia PDF Downloads 4248860 Global Positioning System Match Characteristics as a Predictor of Badminton Players’ Group Classification
Authors: Yahaya Abdullahi, Ben Coetzee, Linda Van Den Berg
Abstract:
The study aimed at establishing the global positioning system (GPS) determined singles match characteristics that act as predictors of successful and less-successful male singles badminton players’ group classification. Twenty-two (22) male single players (aged: 23.39 ± 3.92 years; body stature: 177.11 ± 3.06cm; body mass: 83.46 ± 14.59kg) who represented 10 African countries participated in the study. Players were categorised as successful and less-successful players according to the results of five championships’ of the 2014/2015 season. GPS units (MinimaxX V4.0), Polar Heart Rate Transmitter Belts and digital video cameras were used to collect match data. GPS-related variables were corrected for match duration and independent t-tests, a cluster analysis and a binary forward stepwise logistic regression were calculated. A Receiver Operating Characteristic Curve (ROC) was used to determine the validity of the group classification model. High-intensity accelerations per second were identified as the only GPS-determined variable that showed a significant difference between groups. Furthermore, only high-intensity accelerations per second (p=0.03) and low-intensity efforts per second (p=0.04) were identified as significant predictors of group classification with 76.88% of players that could be classified back into their original groups by making use of the GPS-based logistic regression formula. The ROC showed a value of 0.87. The identification of the last-mentioned GPS-related variables for the attainment of badminton performances, emphasizes the importance of using badminton drills and conditioning techniques to not only improve players’ physical fitness levels but also their abilities to accelerate at high intensities.Keywords: badminton, global positioning system, match analysis, inertial movement analysis, intensity, effort
Procedia PDF Downloads 191