Search results for: fibre networks
2000 Accounting for Downtime Effects in Resilience-Based Highway Network Restoration Scheduling
Authors: Zhenyu Zhang, Hsi-Hsien Wei
Abstract:
Highway networks play a vital role in post-disaster recovery for disaster-damaged areas. Damaged bridges in such networks can disrupt the recovery activities by impeding the transportation of people, cargo, and reconstruction resources. Therefore, rapid restoration of damaged bridges is of paramount importance to long-term disaster recovery. In the post-disaster recovery phase, the key to restoration scheduling for a highway network is prioritization of bridge-repair tasks. Resilience is widely used as a measure of the ability to recover with which a network can return to its pre-disaster level of functionality. In practice, highways will be temporarily blocked during the downtime of bridge restoration, leading to the decrease of highway-network functionality. The failure to take downtime effects into account can lead to overestimation of network resilience. Additionally, post-disaster recovery of highway networks is generally divided into emergency bridge repair (EBR) in the response phase and long-term bridge repair (LBR) in the recovery phase, and both of EBR and LBR are different in terms of restoration objectives, restoration duration, budget, etc. Distinguish these two phases are important to precisely quantify highway network resilience and generate suitable restoration schedules for highway networks in the recovery phase. To address the above issues, this study proposes a novel resilience quantification method for the optimization of long-term bridge repair schedules (LBRS) taking into account the impact of EBR activities and restoration downtime on a highway network’s functionality. A time-dependent integer program with recursive functions is formulated for optimally scheduling LBR activities. Moreover, since uncertainty always exists in the LBRS problem, this paper extends the optimization model from the deterministic case to the stochastic case. A hybrid genetic algorithm that integrates a heuristic approach into a traditional genetic algorithm to accelerate the evolution process is developed. The proposed methods are tested using data from the 2008 Wenchuan earthquake, based on a regional highway network in Sichuan, China, consisting of 168 highway bridges on 36 highways connecting 25 cities/towns. The results show that, in this case, neglecting the bridge restoration downtime can lead to approximately 15% overestimation of highway network resilience. Moreover, accounting for the impact of EBR on network functionality can help to generate a more specific and reasonable LBRS. The theoretical and practical values are as follows. First, the proposed network recovery curve contributes to comprehensive quantification of highway network resilience by accounting for the impact of both restoration downtime and EBR activities on the recovery curves. Moreover, this study can improve the highway network resilience from the organizational dimension by providing bridge managers with optimal LBR strategies.Keywords: disaster management, highway network, long-term bridge repair schedule, resilience, restoration downtime
Procedia PDF Downloads 1501999 Assessment of Cassava Varieties in Ecuador for the Production of Lactic Acid From Starch by-Products
Authors: Pedro Maldonado-Alvarado
Abstract:
An important cassava quality production was detected in Ecuador. However, in this country, few products with low adding-value are produced from the tuber and none from cassava by-products. To our best knowledge, lactic acid was produced from Ecuadorian cassava bagasse starch in a biotechnological way. The objective of this contribution was to study the influence of the fermentation variables (pH and agitation) on the lactic acid production of Ecuadorian cassava varieties from bagasse starch. Enzymatic hydrolysis of cassava bagasse starch for INIAP 650 and INIAP 651 varieties spread in Ecuador was performed using α-amylase and amyloglucosidase. Then, glucose was fermented by Lactobacillus leichmannii strains in different conditions of agitation (0 and 150 rpm) and pH (4.5, 5.0, and 5.5). Significant differences in ash, fibre, protein, lipids, and amylose were found in cassava bagasse starch of INIAP 650 and INIAP 651 with 1.4 and 1.3%, 4.3 and 6%, 1.2 and 2.1%, 1.9 and 1.5%, and 24.3 and 26.5%, respectively. The determination of lactic acid was performed by potentiometric and FTIR analysis. Conversions of cassava bagasse to reduced sugars were 71.7 and 85.1% for INIAP 650 and INIAP 651, respectively. The best lactic acid concentrations were 27.6 and 33.5 g/L, obtained at agitation 150 rpm and pH 5.5 for INIAP 650 and INIAP 651. Qualitative analysis conducted by FTIR spectrophotometry confirmed the presence of lactic acid in the reacted products. This investigation could contribute to the valorisation of residues from promising cassava varieties in Ecuador and hence to increase the development of this country.Keywords: bagasse starch, cassava, Ecuador, fermentation, lactic acid
Procedia PDF Downloads 1931998 Recommender Systems Using Ensemble Techniques
Authors: Yeonjeong Lee, Kyoung-jae Kim, Youngtae Kim
Abstract:
This study proposes a novel recommender system that uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user’s preference. The proposed model consists of two steps. In the first step, this study uses logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. Then, this study combines the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. In the second step, this study uses the market basket analysis to extract association rules for co-purchased products. Finally, the system selects customers who have high likelihood to purchase products in each product group and recommends proper products from same or different product groups to them through above two steps. We test the usability of the proposed system by using prototype and real-world transaction and profile data. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The results also show that the proposed system may be useful in real-world online shopping store.Keywords: product recommender system, ensemble technique, association rules, decision tree, artificial neural networks
Procedia PDF Downloads 2941997 Vision-Based Collision Avoidance for Unmanned Aerial Vehicles by Recurrent Neural Networks
Authors: Yao-Hong Tsai
Abstract:
Due to the sensor technology, video surveillance has become the main way for security control in every big city in the world. Surveillance is usually used by governments for intelligence gathering, the prevention of crime, the protection of a process, person, group or object, or the investigation of crime. Many surveillance systems based on computer vision technology have been developed in recent years. Moving target tracking is the most common task for Unmanned Aerial Vehicle (UAV) to find and track objects of interest in mobile aerial surveillance for civilian applications. The paper is focused on vision-based collision avoidance for UAVs by recurrent neural networks. First, images from cameras on UAV were fused based on deep convolutional neural network. Then, a recurrent neural network was constructed to obtain high-level image features for object tracking and extracting low-level image features for noise reducing. The system distributed the calculation of the whole system to local and cloud platform to efficiently perform object detection, tracking and collision avoidance based on multiple UAVs. The experiments on several challenging datasets showed that the proposed algorithm outperforms the state-of-the-art methods.Keywords: unmanned aerial vehicle, object tracking, deep learning, collision avoidance
Procedia PDF Downloads 1601996 Autonomous Vehicle Detection and Classification in High Resolution Satellite Imagery
Authors: Ali J. Ghandour, Houssam A. Krayem, Abedelkarim A. Jezzini
Abstract:
High-resolution satellite images and remote sensing can provide global information in a fast way compared to traditional methods of data collection. Under such high resolution, a road is not a thin line anymore. Objects such as cars and trees are easily identifiable. Automatic vehicles enumeration can be considered one of the most important applications in traffic management. In this paper, autonomous vehicle detection and classification approach in highway environment is proposed. This approach consists mainly of three stages: (i) first, a set of preprocessing operations are applied including soil, vegetation, water suppression. (ii) Then, road networks detection and delineation is implemented using built-up area index, followed by several morphological operations. This step plays an important role in increasing the overall detection accuracy since vehicles candidates are objects contained within the road networks only. (iii) Multi-level Otsu segmentation is implemented in the last stage, resulting in vehicle detection and classification, where detected vehicles are classified into cars and trucks. Accuracy assessment analysis is conducted over different study areas to show the great efficiency of the proposed method, especially in highway environment.Keywords: remote sensing, object identification, vehicle and road extraction, vehicle and road features-based classification
Procedia PDF Downloads 2311995 Prediction of Temperature Distribution during Drilling Process Using Artificial Neural Network
Authors: Ali Reza Tahavvor, Saeed Hosseini, Nazli Jowkar, Afshin Karimzadeh Fard
Abstract:
Experimental & numeral study of temperature distribution during milling process, is important in milling quality and tools life aspects. In the present study the milling cross-section temperature is determined by using Artificial Neural Networks (ANN) according to the temperature of certain points of the work piece and the points specifications and the milling rotational speed of the blade. In the present work, at first three-dimensional model of the work piece is provided and then by using the Computational Heat Transfer (CHT) simulations, temperature in different nods of the work piece are specified in steady-state conditions. Results obtained from CHT are used for training and testing the ANN approach. Using reverse engineering and setting the desired x, y, z and the milling rotational speed of the blade as input data to the network, the milling surface temperature determined by neural network is presented as output data. The desired points temperature for different milling blade rotational speed are obtained experimentally and by extrapolation method for the milling surface temperature is obtained and a comparison is performed among the soft programming ANN, CHT results and experimental data and it is observed that ANN soft programming code can be used more efficiently to determine the temperature in a milling process.Keywords: artificial neural networks, milling process, rotational speed, temperature
Procedia PDF Downloads 4051994 Air-Coupled Ultrasonic Testing for Non-Destructive Evaluation of Various Aerospace Composite Materials by Laser Vibrometry
Authors: J. Vyas, R. Kazys, J. Sestoke
Abstract:
Air-coupled ultrasonic is the contactless ultrasonic measurement approach which has become widespread for material characterization in Aerospace industry. It is always essential for the requirement of lightest weight, without compromising the durability. To archive the requirements, composite materials are widely used. This paper yields analysis of the air-coupled ultrasonics for composite materials such as CFRP (Carbon Fibre Reinforced Polymer) and GLARE (Glass Fiber Metal Laminate) and honeycombs for the design of modern aircrafts. Laser vibrometry could be the key source of characterization for the aerospace components. The air-coupled ultrasonics fundamentals, including principles, working modes and transducer arrangements used for this purpose is also recounted in brief. The emphasis of this paper is to approach the developed NDT techniques based on the ultrasonic guided waves applications and the possibilities of use of laser vibrometry in different materials with non-contact measurement of guided waves. 3D assessment technique which employs the single point laser head using, automatic scanning relocation of the material to assess the mechanical displacement including pros and cons of the composite materials for aerospace applications with defects and delaminations.Keywords: air-coupled ultrasonics, contactless measurement, laser interferometry, NDT, ultrasonic guided waves
Procedia PDF Downloads 2391993 An Energy Holes Avoidance Routing Protocol for Underwater Wireless Sensor Networks
Authors: A. Khan, H. Mahmood
Abstract:
In Underwater Wireless Sensor Networks (UWSNs), sensor nodes close to water surface (final destination) are often preferred for selection as forwarders. However, their frequent selection makes them depleted of their limited battery power. In consequence, these nodes die during early stage of network operation and create energy holes where forwarders are not available for packets forwarding. These holes severely affect network throughput. As a result, system performance significantly degrades. In this paper, a routing protocol is proposed to avoid energy holes during packets forwarding. The proposed protocol does not require the conventional position information (localization) of holes to avoid them. Localization is cumbersome; energy is inefficient and difficult to achieve in underwater environment where sensor nodes change their positions with water currents. Forwarders with the lowest water pressure level and the maximum number of neighbors are preferred to forward packets. These two parameters together minimize packet drop by following the paths where maximum forwarders are available. To avoid interference along the paths with the maximum forwarders, a packet holding time is defined for each forwarder. Simulation results reveal superior performance of the proposed scheme than the counterpart technique.Keywords: energy holes, interference, routing, underwater
Procedia PDF Downloads 4091992 Methods for Restricting Unwanted Access on the Networks Using Firewall
Authors: Bhagwant Singh, Sikander Singh Cheema
Abstract:
This paper examines firewall mechanisms routinely implemented for network security in depth. A firewall can't protect you against all the hazards of unauthorized networks. Consequently, many kinds of infrastructure are employed to establish a secure network. Firewall strategies have already been the subject of significant analysis. This study's primary purpose is to avoid unnecessary connections by combining the capability of the firewall with the use of additional firewall mechanisms, which include packet filtering and NAT, VPNs, and backdoor solutions. There are insufficient studies on firewall potential and combined approaches, but there aren't many. The research team's goal is to build a safe network by integrating firewall strength and firewall methods. The study's findings indicate that the recommended concept can form a reliable network. This study examines the characteristics of network security and the primary danger, synthesizes existing domestic and foreign firewall technologies, and discusses the theories, benefits, and disadvantages of different firewalls. Through synthesis and comparison of various techniques, as well as an in-depth examination of the primary factors that affect firewall effectiveness, this study investigated firewall technology's current application in computer network security, then introduced a new technique named "tight coupling firewall." Eventually, the article discusses the current state of firewall technology as well as the direction in which it is developing.Keywords: firewall strategies, firewall potential, packet filtering, NAT, VPN, proxy services, firewall techniques
Procedia PDF Downloads 1011991 Experimental Study on Modified Double Slope Solar Still and Modified Basin Type Double Slope Multiwick Solar Still
Authors: Piyush Pal, Rahul Dev
Abstract:
Water is essential for life and fresh water is a finite resource that is becoming scarce day by day even though it is recycled by hydrological cycle. The fresh water reserves are being polluted due to expanding irrigation, industries, urban population and its development. Contaminated water leads to several health problems. With the increasing demand of fresh water, solar distillation is an alternate solution which uses solar energy to evaporate water and then to condense it, thereby collecting distilled water within or outside the same system to use it as potable water. The structure that houses the process is known as a 'solar still'. In this paper, ‘Modified double slope solar still (MDSSS)’ & 'Modified double slope basin type multiwick solar still (MDSBMSS)' have been designed to convert saline, brackish water into drinking water. In this work two different modified solar stills are fabricated to study the performance of these solar stills. For modification of solar stills, Fibre Reinforced Plastic (FRP) and Acrylic sheets are used. The experiments in MDSBMSS and MDSSS was carried on 10 September 2015 & 5 November 2015 respectively. Performances of the stills were investigated. The amount of distillate has been found 3624 Ml/day in MDSBMSS on 10 September 2015 and 2400 Ml/day in MDSSS on 5 November 2015.Keywords: contaminated water, conventional solar still, modified solar still, wick
Procedia PDF Downloads 4321990 Traffic Analysis and Prediction Using Closed-Circuit Television Systems
Authors: Aragorn Joaquin Pineda Dela Cruz
Abstract:
Road traffic congestion is continually deteriorating in Hong Kong. The largest contributing factor is the increase in vehicle fleet size, resulting in higher competition over the utilisation of road space. This study proposes a project that can process closed-circuit television images and videos to provide real-time traffic detection and prediction capabilities. Specifically, a deep-learning model involving computer vision techniques for video and image-based vehicle counting, then a separate model to detect and predict traffic congestion levels based on said data. State-of-the-art object detection models such as You Only Look Once and Faster Region-based Convolutional Neural Networks are tested and compared on closed-circuit television data from various major roads in Hong Kong. It is then used for training in long short-term memory networks to be able to predict traffic conditions in the near future, in an effort to provide more precise and quicker overviews of current and future traffic conditions relative to current solutions such as navigation apps.Keywords: intelligent transportation system, vehicle detection, traffic analysis, deep learning, machine learning, computer vision, traffic prediction
Procedia PDF Downloads 1021989 A Comparative Asessment of Some Algorithms for Modeling and Forecasting Horizontal Displacement of Ialy Dam, Vietnam
Authors: Kien-Trinh Thi Bui, Cuong Manh Nguyen
Abstract:
In order to simulate and reproduce the operational characteristics of a dam visually, it is necessary to capture the displacement at different measurement points and analyze the observed movement data promptly to forecast the dam safety. The accuracy of forecasts is further improved by applying machine learning methods to data analysis progress. In this study, the horizontal displacement monitoring data of the Ialy hydroelectric dam was applied to machine learning algorithms: Gaussian processes, multi-layer perceptron neural networks, and the M5-rules algorithm for modelling and forecasting of horizontal displacement of the Ialy hydropower dam (Vietnam), respectively, for analysing. The database which used in this research was built by collecting time series of data from 2006 to 2021 and divided into two parts: training dataset and validating dataset. The final results show all three algorithms have high performance for both training and model validation, but the MLPs is the best model. The usability of them are further investigated by comparison with a benchmark models created by multi-linear regression. The result show the performance which obtained from all the GP model, the MLPs model and the M5-Rules model are much better, therefore these three models should be used to analyze and predict the horizontal displacement of the dam.Keywords: Gaussian processes, horizontal displacement, hydropower dam, Ialy dam, M5-Rules, multi-layer perception neural networks
Procedia PDF Downloads 2101988 Optrix: Energy Aware Cross Layer Routing Using Convex Optimization in Wireless Sensor Networks
Authors: Ali Shareef, Aliha Shareef, Yifeng Zhu
Abstract:
Energy minimization is of great importance in wireless sensor networks in extending the battery lifetime. One of the key activities of nodes in a WSN is communication and the routing of their data to a centralized base-station or sink. Routing using the shortest path to the sink is not the best solution since it will cause nodes along this path to fail prematurely. We propose a cross-layer energy efficient routing protocol Optrix that utilizes a convex formulation to maximize the lifetime of the network as a whole. We further propose, Optrix-BW, a novel convex formulation with bandwidth constraint that allows the channel conditions to be accounted for in routing. By considering this key channel parameter we demonstrate that Optrix-BW is capable of congestion control. Optrix is implemented in TinyOS, and we demonstrate that a relatively large topology of 40 nodes can converge to within 91% of the optimal routing solution. We describe the pitfalls and issues related with utilizing a continuous form technique such as convex optimization with discrete packet based communication systems as found in WSNs. We propose a routing controller mechanism that allows for this transformation. We compare Optrix against the Collection Tree Protocol (CTP) and we found that Optrix performs better in terms of convergence to an optimal routing solution, for load balancing and network lifetime maximization than CTP.Keywords: wireless sensor network, Energy Efficient Routing
Procedia PDF Downloads 3911987 Aggregation Scheduling Algorithms in Wireless Sensor Networks
Authors: Min Kyung An
Abstract:
In Wireless Sensor Networks which consist of tiny wireless sensor nodes with limited battery power, one of the most fundamental applications is data aggregation which collects nearby environmental conditions and aggregates the data to a designated destination, called a sink node. Important issues concerning the data aggregation are time efficiency and energy consumption due to its limited energy, and therefore, the related problem, named Minimum Latency Aggregation Scheduling (MLAS), has been the focus of many researchers. Its objective is to compute the minimum latency schedule, that is, to compute a schedule with the minimum number of timeslots, such that the sink node can receive the aggregated data from all the other nodes without any collision or interference. For the problem, the two interference models, the graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR), have been adopted with different power models, uniform-power and non-uniform power (with power control or without power control), and different antenna models, omni-directional antenna and directional antenna models. In this survey article, as the problem has proven to be NP-hard, we present and compare several state-of-the-art approximation algorithms in various models on the basis of latency as its performance measure.Keywords: data aggregation, convergecast, gathering, approximation, interference, omni-directional, directional
Procedia PDF Downloads 2291986 Hybrid Localization Schemes for Wireless Sensor Networks
Authors: Fatima Babar, Majid I. Khan, Malik Najmus Saqib, Muhammad Tahir
Abstract:
This article provides range based improvements over a well-known single-hop range free localization scheme, Approximate Point in Triangulation (APIT) by proposing an energy efficient Barycentric coordinate based Point-In-Triangulation (PIT) test along with PIT based trilateration. These improvements result in energy efficiency, reduced localization error and improved localization coverage compared to APIT and its variants. Moreover, we propose to embed Received signal strength indication (RSSI) based distance estimation in DV-Hop which is a multi-hop localization scheme. The proposed localization algorithm achieves energy efficiency and reduced localization error compared to DV-Hop and its available improvements. Furthermore, a hybrid multi-hop localization scheme is also proposed that utilize Barycentric coordinate based PIT test and both range based (Received signal strength indicator) and range free (hop count) techniques for distance estimation. Our experimental results provide evidence that proposed hybrid multi-hop localization scheme results in two to five times reduction in the localization error compare to DV-Hop and its variants, at reduced energy requirements.Keywords: Localization, Trilateration, Triangulation, Wireless Sensor Networks
Procedia PDF Downloads 4671985 Wind Power Forecasting Using Echo State Networks Optimized by Big Bang-Big Crunch Algorithm
Authors: Amir Hossein Hejazi, Nima Amjady
Abstract:
In recent years, due to environmental issues traditional energy sources had been replaced by renewable ones. Wind energy as the fastest growing renewable energy shares a considerable percent of energy in power electricity markets. With this fast growth of wind energy worldwide, owners and operators of wind farms, transmission system operators, and energy traders need reliable and secure forecasts of wind energy production. In this paper, a new forecasting strategy is proposed for short-term wind power prediction based on Echo State Networks (ESN). The forecast engine utilizes state-of-the-art training process including dynamical reservoir with high capability to learn complex dynamics of wind power or wind vector signals. The study becomes more interesting by incorporating prediction of wind direction into forecast strategy. The Big Bang-Big Crunch (BB-BC) evolutionary optimization algorithm is adopted for adjusting free parameters of ESN-based forecaster. The proposed method is tested by real-world hourly data to show the efficiency of the forecasting engine for prediction of both wind vector and wind power output of aggregated wind power production.Keywords: wind power forecasting, echo state network, big bang-big crunch, evolutionary optimization algorithm
Procedia PDF Downloads 5721984 Multi-Scale Control Model for Network Group Behavior
Authors: Fuyuan Ma, Ying Wang, Xin Wang
Abstract:
Social networks have become breeding grounds for the rapid spread of rumors and malicious information, posing threats to societal stability and causing significant public harm. Existing research focuses on simulating the spread of information and its impact on users through propagation dynamics and applies methods such as greedy approximation strategies to approximate the optimal control solution at the global scale. However, the greedy strategy at the global scale may fall into locally optimal solutions, and the approximate simulation of information spread may accumulate more errors. Therefore, we propose a multi-scale control model for network group behavior, introducing individual and group scales on top of the greedy strategy’s global scale. At the individual scale, we calculate the propagation influence of nodes based on their structural attributes to alleviate the issue of local optimality. At the group scale, we conduct precise propagation simulations to avoid introducing cumulative errors from approximate calculations without increasing computational costs. Experimental results on three real-world datasets demonstrate the effectiveness of our proposed multi-scale model in controlling network group behavior.Keywords: influence blocking maximization, competitive linear threshold model, social networks, network group behavior
Procedia PDF Downloads 211983 Feed Value of Selected Nigerian Browse Plants: Chemical Composition and in vitro Digestibility
Authors: Isaac Samuel
Abstract:
A study was conducted to determine the in-vitro degradation of selected Nigerian browse plants consumed by small ruminants on free range in northern guinea savannah region of Nigeria using in vitro gas production, proximate composition, fibre components, methane gas production and dry matter degradation as tools. The leaves samples of the selected browse plants were collected, processed and incubated using in vitro gas dry matter degradation techniques. Results obtained showed variation in the rate of degradation. The result obtained from chemical analysis showed that the CP content of A. occidentale (26.49%) was higher than F. thonningi (23.58%), M. indica (20.58%) and T. catappa (18.61%). Both ADF and NDF of A. occidentale (40.00 and 50.00) were as well higher than F. thonningi (20.00 and 40.00), M. indica (20.00 and 40.00) and T.catappa (20.00 and 42.00). Results from in vitro gas production however showed that T. catappa (23.67ml/DM) has a significantly higher (p<0.05) value than F.thonningi (20.67ml/DM), A. occidentale (16.67ml/DM), and M. indica(14.00ml/DM) at 72 hours of incubation. Methane gas production and in vitro gas production can be used to predict dry matter degradation and nutritive value of feedstuff for small ruminants. A. occidentale with the least methane gas production and highest crude protein (CP) content might have the most nutritive value among the browse plants investigated.Keywords: in vitro, degradation, browse, gas production
Procedia PDF Downloads 3571982 Effect of Selenium Source on Meat Quality of Bonsmara Bull Calves
Authors: J. van Soest, B. Bruneel, J. Smit, N. Williams, P. Swiegers
Abstract:
Selenium (Se) is an essential trace mineral involved in reducing oxidative stress, enhancing immune status, improving reproduction, and regulating growth. During finishing period, selenium supplementation can be applied to improve meat quality. Dietary selenium can be provided in inorganic or organic forms. Specifically, L-selenomethionine (organic selenium) allows for selenium storage in animal protein which supports the animal during periods of high oxidative stress. The objective of this study was to investigate the effects of synthetically produced, single amino acid, L-selenomethionine (Excential Selenium 4000, Orffa Additives BV) on production parameters, health status, and meat quality of Bonsmara bull calves. 24 calves, 7 months of age, completed a 60-day initial growing period at a commercial feedlot, after which they were transported to research station Rumen-8 (Bethlehem, South-Africa). After a ten-day adaptation period, the bulls were allocated to a control (n=12) or treatment (n=12) group. Each group was divided over 3 pens based on weight. Both groups received Total Mixed Ration supplemented with 5.25 mg Se/head per day. The control group was supplemented with sodium selenite as Se source, whilst the treatment group was supplemented with L-selenomethionine (Excential Selenium 4000, Orffa Additives BV). Animals were limited to 10 kg feed intake per head per day to ensure similar Se intake. Treatment period lasted 1.5 months. A beta-adrenergic agonist was included in the feed for the last 30 days. During the treatment period, average daily gain, average daily feed intake, and feed conversion ratio were recorded. Blood parameters were measured at day 1, day 25, and before slaughter (day 47). After slaughter, carcass weight, dressing percentage, grading, and meat quality (pH, tenderness, colour, odour, purge, proximate analyses, acid detergent fibre, and neutral detergent fibre) were determined. No differences between groups were found in performance. A higher number of animals with cortisol levels below detection limit (27.6 nmol/l) was recorded for the treatment group. Other blood parameters showed no differences. No differences were found regarding carcass weight and dressing percentage. Important parameters of meat quality were significantly improved in the treatment group: instrumental tenderness at 14 days ageing was 2.8 and 3.4 for treatment and control respectively (P=0.010), and a 0.5% decrease in purge (of fresh samples) was shown, 1.5% and 2.0% for treatment group and control respectively (p=0.029). Besides, pH was shown to be numerically reduced in the treatment group. In summary, supplementation with L-selenomethionine as selenium source improved meat quality compared to sodium selenite. Lower instrumental tenderness (Warner Bratzler Shear Force, WBSF) was recorded for the treatment group. This indicates less tough meat and highest consumer satisfaction. Regarding purge, control was just below 2.0%, an important threshold for consumer acceptation. Treatment group scored 0.5% lower for purge than control, indicating higher consumer satisfaction. The lower pH in the treatment group could be an indication of higher glycogen reserves in muscle which could contribute to a reduced risk of Dark Firm Dry carcasses. More animals showed cortisol levels below detection limit in the treatment group, indicating lower levels of stress when animals receive L-selenomethionine.Keywords: calves, meat quality, nutrition, selenium
Procedia PDF Downloads 1811981 Modeling and Minimizing the Effects of Ferroresonance for Medium Voltage Transformers
Authors: Mohammad Hossein Mohammadi Sanjani, Ashknaz Oraee, Arian Amirnia, Atena Taheri, Mohammadreza Arabi, Mahmud Fotuhi-Firuzabad
Abstract:
Ferroresonance effects cause overvoltage in medium voltage transformers and isolators used in electrical networks. Ferroresonance effects are nonlinear and occur between the network capacitor and the nonlinear inductance of the voltage transformer during saturation. This phenomenon is unwanted for transformers since it causes overheating, introduction of high dynamic forces in primary coils, and rise of voltage in primary coils for the voltage transformer. Furthermore, it results in electrical and thermal failure of the transformer. Expansion of distribution lines, design of the transformer in smaller sizes, and the increase of harmonics in distribution networks result in an increase of ferroresonance. There is limited literature available to improve the effects of ferroresonance; therefore, optimizing its effects for voltage transformers is of great importance. In this study, comprehensive modeling of a medium voltage block-type voltage transformer is performed. In addition, a recent model is proposed to improve the performance of voltage transformers during the occurrence of ferroresonance using damping oscillations. Also, transformer design optimization is presented in this study to show further improvements in the performance of the voltage transformer. The recently proposed model is experimentally tested and verified on a medium voltage transformer in the laboratory, and simulation results show a large reduction of the effects of ferroresonance.Keywords: optimization, voltage transformer, ferroresonance, modeling, damper
Procedia PDF Downloads 1011980 Reliable and Error-Free Transmission through Multimode Polymer Optical Fibers in House Networks
Authors: Tariq Ahamad, Mohammed S. Al-Kahtani, Taisir Eldos
Abstract:
Optical communications technology has made enormous and steady progress for several decades, providing the key resource in our increasingly information-driven society and economy. Much of this progress has been in finding innovative ways to increase the data carrying capacity of a single optical fiber. In this research article we have explored basic issues in terms of security and reliability for secure and reliable information transfer through the fiber infrastructure. Conspicuously, one potentially enormous source of improvement has however been left untapped in these systems: fibers can easily support hundreds of spatial modes, but today’s commercial systems (single-mode or multi-mode) make no attempt to use these as parallel channels for independent signals. Bandwidth, performance, reliability, cost efficiency, resiliency, redundancy, and security are some of the demands placed on telecommunications today. Since its initial development, fiber optic systems have had the advantage of most of these requirements over copper-based and wireless telecommunications solutions. The largest obstacle preventing most businesses from implementing fiber optic systems was cost. With the recent advancements in fiber optic technology and the ever-growing demand for more bandwidth, the cost of installing and maintaining fiber optic systems has been reduced dramatically. With so many advantages, including cost efficiency, there will continue to be an increase of fiber optic systems replacing copper-based communications. This will also lead to an increase in the expertise and the technology needed to tap into fiber optic networks by intruders. As ever before, all technologies have been subject to hacking and criminal manipulation, fiber optics is no exception. Researching fiber optic security vulnerabilities suggests that not everyone who is responsible for their networks security is aware of the different methods that intruders use to hack virtually undetected into fiber optic cables. With millions of miles of fiber optic cables stretching across the globe and carrying information including but certainly not limited to government, military, and personal information, such as, medical records, banking information, driving records, and credit card information; being aware of fiber optic security vulnerabilities is essential and critical. Many articles and research still suggest that fiber optics is expensive, impractical and hard to tap. Others argue that it is not only easily done, but also inexpensive. This paper will briefly discuss the history of fiber optics, explain the basics of fiber optic technologies and then discuss the vulnerabilities in fiber optic systems and how they can be better protected. Knowing the security risks and knowing the options available may save a company a lot embarrassment, time, and most importantly money.Keywords: in-house networks, fiber optics, security risk, money
Procedia PDF Downloads 4201979 Fish Markets in Sierra Leone: Size, Structure, Distribution Networks and Opportunities for Aquaculture Development
Authors: Milton Jusu, Moses Koroma
Abstract:
Efforts by the Ministry of Fisheries and Marine Resources and its development partners to introduce “modern” aquaculture in Sierra Leone since the 1970s have not been successful. A number of reasons have been hypothesized, including the suggestion that the market infrastructure and demand for farmed fish were inadequate to stimulate large-scale and widespread aquaculture production in the country. We have assessed the size, structure, networks and opportunities in fish markets using a combination of Participatory Rural Appraisals (PRAs) and questionnaire surveys conducted in a sample of 29 markets (urban, weekly, wholesale and retail) and two hundred traders. The study showed that the local fish markets were dynamic, with very high variations in demand and supply. The markets sampled supplied between 135.2 and 9947.6 tonnes/year. Mean prices for fresh fish varied between US$1.12 and US$3.89/kg depending on species, with smoked catfish and shrimps commanding prices as high as US$7.4/kg. It is unlikely that marine capture fisheries can increase their current production levels, and these may, in fact, already be over-exploited and declining. Marine fish supplies are particularly low between July and September. More careful attention to the timing of harvests (rainy season, not dry season) and to species (catfish, not tilapia) (could help in the successful adoption of aquaculture.Keywords: fisheries and aquaculture, fish market, marine fish supplies, harvests
Procedia PDF Downloads 711978 Suicide Conceptualization in Adolescents through Semantic Networks
Authors: K. P. Valdés García, E. I. Rodríguez Fonseca, L. G. Juárez Cantú
Abstract:
Suicide is a global, multidimensional and dynamic problem of mental health, which requires a constant study for its understanding and prevention. When research of this phenomenon is done, it is necessary to consider the different characteristics it may have because of the individual and sociocultural variables, the importance of this consideration is related to the generation of effective treatments and interventions. Adolescents are a vulnerable population due to the characteristics of the development stage. The investigation was carried out with the objective of identifying and describing the conceptualization of adolescents of suicide, and in this process, we find possible differences between men and women. The study was carried out in Saltillo, Coahuila, Mexico. The sample was composed of 418 volunteer students aged between 11 and 18 years. The ethical aspects of the research were reviewed and considered in all the processes of the investigation with the participants, their parents and the schools to which they belonged, psychological attention was offered to the participants and preventive workshops were carried in the educational institutions. Natural semantic networks were the instrument used, since this hybrid method allows to find and analyze the social concept of a phenomenon; in this case, the word suicide was used as an evocative stimulus and participants were asked to evoke at least five words and a maximum 10 that they thought were related to suicide, and then hierarchize them according to the closeness with the construct. The subsequent analysis was carried with Excel, yielding the semantic weights, affective loads and the distances between each of the semantic fields established according to the words reported by the subjects. The results showed similarities in the conceptualization of suicide in adolescents, men and women. Seven semantic fields were generated; the words were related in the discourse analysis: 1) death, 2) possible triggering factors, 3) associated moods, 4) methods used to carry it out, 5) psychological symptomatology that could affect, 6) words associated with a rejection of suicide, and finally, 7) specific objects to carry it out. One of the necessary aspects to consider in the investigations of complex issues such as suicide is to have a diversity of instruments and techniques that adjust to the characteristics of the population and that allow to understand the phenomena from the social constructs and not only theoretical. The constant study of suicide is a pressing need, the loss of a life from emotional difficulties that can be solved through psychiatry and psychological methods requires governments and professionals to pay attention and work with the risk population.Keywords: adolescents, psychological construct, semantic networks, suicide
Procedia PDF Downloads 1091977 Evolving Convolutional Filter Using Genetic Algorithm for Image Classification
Authors: Rujia Chen, Ajit Narayanan
Abstract:
Convolutional neural networks (CNN), as typically applied in deep learning, use layer-wise backpropagation (BP) to construct filters and kernels for feature extraction. Such filters are 2D or 3D groups of weights for constructing feature maps at subsequent layers of the CNN and are shared across the entire input. BP as a gradient descent algorithm has well-known problems of getting stuck at local optima. The use of genetic algorithms (GAs) for evolving weights between layers of standard artificial neural networks (ANNs) is a well-established area of neuroevolution. In particular, the use of crossover techniques when optimizing weights can help to overcome problems of local optima. However, the application of GAs for evolving the weights of filters and kernels in CNNs is not yet an established area of neuroevolution. In this paper, a GA-based filter development algorithm is proposed. The results of the proof-of-concept experiments described in this paper show the proposed GA algorithm can find filter weights through evolutionary techniques rather than BP learning. For some simple classification tasks like geometric shape recognition, the proposed algorithm can achieve 100% accuracy. The results for MNIST classification, while not as good as possible through standard filter learning through BP, show that filter and kernel evolution warrants further investigation as a new subarea of neuroevolution for deep architectures.Keywords: neuroevolution, convolutional neural network, genetic algorithm, filters, kernels
Procedia PDF Downloads 1861976 Effect of Enzymatic Modification on the Crystallinity of Cellulose Pulps
Authors: J. Janicki, M. Rom, C. Slusarczyk, J. Fabia, M. Siika-aho, K. Marjamaa, K. Kruus, K. Langfelder, C. Steel, M. Paloheimo, T. Puranen, S. Mäkinen, D. Wawro
Abstract:
The cellulose is one of the most abundant polymers in the world, however, its application in the high-end value products such as films or fibres, it triggered by the cellulose properties. The noticeable presence of hydrogen bonding reflected with partially crystalline structure makes the cellulose insoluble in common solvents and not meltable. The existing technologies, such as viscose process, suffer from environmental and economical problems, because of the risk of harmful chemicals liberation during the spinning process. The enzymatic modification of cellulose with endoglucanase makes it directly alkali soluble in NaOH solution, giving the opportunities for film and fibers formation. As the effect of enzymatic treatment, there are observed changes in crystalline structure and accompanying changes of the affinity of cellulose to water, demonstrated by water retention value. The objective of the project ELMO - Novel carbohydrate modifying enzymes for fibre modification is is to develop new enzyme products for modification of dissolving grade pulps. The aim is to increase the reactivity of dissolving grade pulps and remove residual hemicellulose. The scientific aim of this paper is to present the effect of enzymatic treatment on the crystallinity and affinity to water of cellulose pulps modified with enzymes.Keywords: cellulose, crystallinity, WAXS, enzyme
Procedia PDF Downloads 2361975 Correlation between Speech Emotion Recognition Deep Learning Models and Noises
Authors: Leah Lee
Abstract:
This paper examines the correlation between deep learning models and emotions with noises to see whether or not noises mask emotions. The deep learning models used are plain convolutional neural networks (CNN), auto-encoder, long short-term memory (LSTM), and Visual Geometry Group-16 (VGG-16). Emotion datasets used are Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS), Crowd-sourced Emotional Multimodal Actors Dataset (CREMA-D), Toronto Emotional Speech Set (TESS), and Surrey Audio-Visual Expressed Emotion (SAVEE). To make it four times bigger, audio set files, stretch, and pitch augmentations are utilized. From the augmented datasets, five different features are extracted for inputs of the models. There are eight different emotions to be classified. Noise variations are white noise, dog barking, and cough sounds. The variation in the signal-to-noise ratio (SNR) is 0, 20, and 40. In summation, per a deep learning model, nine different sets with noise and SNR variations and just augmented audio files without any noises will be used in the experiment. To compare the results of the deep learning models, the accuracy and receiver operating characteristic (ROC) are checked.Keywords: auto-encoder, convolutional neural networks, long short-term memory, speech emotion recognition, visual geometry group-16
Procedia PDF Downloads 751974 A Review on Medical Image Registration Techniques
Authors: Shadrack Mambo, Karim Djouani, Yskandar Hamam, Barend van Wyk, Patrick Siarry
Abstract:
This paper discusses the current trends in medical image registration techniques and addresses the need to provide a solid theoretical foundation for research endeavours. Methodological analysis and synthesis of quality literature was done, providing a platform for developing a good foundation for research study in this field which is crucial in understanding the existing levels of knowledge. Research on medical image registration techniques assists clinical and medical practitioners in diagnosis of tumours and lesion in anatomical organs, thereby enhancing fast and accurate curative treatment of patients. Literature review aims to provide a solid theoretical foundation for research endeavours in image registration techniques. Developing a solid foundation for a research study is possible through a methodological analysis and synthesis of existing contributions. Out of these considerations, the aim of this paper is to enhance the scientific community’s understanding of the current status of research in medical image registration techniques and also communicate to them, the contribution of this research in the field of image processing. The gaps identified in current techniques can be closed by use of artificial neural networks that form learning systems designed to minimise error function. The paper also suggests several areas of future research in the image registration.Keywords: image registration techniques, medical images, neural networks, optimisaztion, transformation
Procedia PDF Downloads 1771973 Aromatic Medicinal Plant Classification Using Deep Learning
Authors: Tsega Asresa Mengistu, Getahun Tigistu
Abstract:
Computer vision is an artificial intelligence subfield that allows computers and systems to retrieve meaning from digital images. It is applied in various fields of study self-driving cars, video surveillance, agriculture, Quality control, Health care, construction, military, and everyday life. Aromatic and medicinal plants are botanical raw materials used in cosmetics, medicines, health foods, and other natural health products for therapeutic and Aromatic culinary purposes. Herbal industries depend on these special plants. These plants and their products not only serve as a valuable source of income for farmers and entrepreneurs, and going to export not only industrial raw materials but also valuable foreign exchange. There is a lack of technologies for the classification and identification of Aromatic and medicinal plants in Ethiopia. The manual identification system of plants is a tedious, time-consuming, labor, and lengthy process. For farmers, industry personnel, academics, and pharmacists, it is still difficult to identify parts and usage of plants before ingredient extraction. In order to solve this problem, the researcher uses a deep learning approach for the efficient identification of aromatic and medicinal plants by using a convolutional neural network. The objective of the proposed study is to identify the aromatic and medicinal plant Parts and usages using computer vision technology. Therefore, this research initiated a model for the automatic classification of aromatic and medicinal plants by exploring computer vision technology. Morphological characteristics are still the most important tools for the identification of plants. Leaves are the most widely used parts of plants besides the root, flower and fruit, latex, and barks. The study was conducted on aromatic and medicinal plants available in the Ethiopian Institute of Agricultural Research center. An experimental research design is proposed for this study. This is conducted in Convolutional neural networks and Transfer learning. The Researcher employs sigmoid Activation as the last layer and Rectifier liner unit in the hidden layers. Finally, the researcher got a classification accuracy of 66.4 in convolutional neural networks and 67.3 in mobile networks, and 64 in the Visual Geometry Group.Keywords: aromatic and medicinal plants, computer vision, deep convolutional neural network
Procedia PDF Downloads 4381972 Genome-Wide Functional Analysis of Phosphatase in Cryptococcus neoformans
Authors: Jae-Hyung Jin, Kyung-Tae Lee, Yee-Seul So, Eunji Jeong, Yeonseon Lee, Dongpil Lee, Dong-Gi Lee, Yong-Sun Bahn
Abstract:
Cryptococcus neoformans causes cryptococcal meningoencephalitis mainly in immunocompromised patients as well as immunocompetent people. But therapeutic options are limited to treat cryptococcosis. Some signaling pathways including cyclic AMP pathway, MAPK pathway, and calcineurin pathway play a central role in the regulation of the growth, differentiation, and virulence of C. neoformans. To understand signaling networks regulating the virulence of C. neoformans, we selected the 114 putative phosphatase genes, one of the major components of signaling networks, in the genome of C. neoformans. We identified putative phosphatases based on annotation in C. neoformans var. grubii genome database provided by the Broad Institute and National Center for Biotechnology Information (NCBI) and performed a BLAST search of phosphatases of Saccharomyces cerevisiae, Aspergillus nidulans, Candida albicans and Fusarium graminearum to Cryptococcus neoformans. We classified putative phosphatases into 14 groups based on InterPro phosphatase domain annotation. Here, we constructed 170 signature-tagged gene-deletion strains through homologous recombination methods for 91 putative phosphatases. We examined their phenotypic traits under 30 different in vitro conditions, including growth, differentiation, stress response, antifungal resistance and virulence-factor production.Keywords: human fungal pathogen, phosphatase, deletion library, functional genomics
Procedia PDF Downloads 3641971 Using Deep Learning Real-Time Object Detection Convolution Neural Networks for Fast Fruit Recognition in the Tree
Authors: K. Bresilla, L. Manfrini, B. Morandi, A. Boini, G. Perulli, L. C. Grappadelli
Abstract:
Image/video processing for fruit in the tree using hard-coded feature extraction algorithms have shown high accuracy during recent years. While accurate, these approaches even with high-end hardware are computationally intensive and too slow for real-time systems. This paper details the use of deep convolution neural networks (CNNs), specifically an algorithm (YOLO - You Only Look Once) with 24+2 convolution layers. Using deep-learning techniques eliminated the need for hard-code specific features for specific fruit shapes, color and/or other attributes. This CNN is trained on more than 5000 images of apple and pear fruits on 960 cores GPU (Graphical Processing Unit). Testing set showed an accuracy of 90%. After this, trained data were transferred to an embedded device (Raspberry Pi gen.3) with camera for more portability. Based on correlation between number of visible fruits or detected fruits on one frame and the real number of fruits on one tree, a model was created to accommodate this error rate. Speed of processing and detection of the whole platform was higher than 40 frames per second. This speed is fast enough for any grasping/harvesting robotic arm or other real-time applications.Keywords: artificial intelligence, computer vision, deep learning, fruit recognition, harvesting robot, precision agriculture
Procedia PDF Downloads 420