Search results for: fiber beam model
17356 Encoded Fiber Optic Sensors for Simultaneous Multipoint Sensing
Authors: C. Babu Rao, Pandian Chelliah
Abstract:
Owing to their reliability, a number of fluorescent spectra based fiber optic sensors have been developed for detection and identification of hazardous chemicals such as explosives, narcotics etc. In High security regions, such as airports, it is important to monitor simultaneously multiple locations. This calls for deployment of a portable sensor at each location. However, the selectivity and sensitivity of these techniques depends on the spectral resolution of the spectral analyzer. The better the resolution the larger the repertoire of chemicals that can be detected. A portable unit will have limitations in meeting these requirements. Optical fibers can be employed for collecting and transmitting spectral signal from the portable sensor head to a sensitive central spectral analyzer (CSA). For multipoint sensing, optical multiplexing of multiple sensor heads with CSA has to be adopted. However with multiplexing, when one sensor head is connected to CSA, the rest may remain unconnected for the turn-around period. The larger the number of sensor heads the larger this turn-around time will be. To circumvent this imitation, we propose in this paper, an optical encoding methodology to use multiple portable sensor heads connected to a single CSA. Each portable sensor head is assigned an unique address. Spectra of every chemical detected through this sensor head, are encoded by its unique address and can be identified at the CSA end. The methodology proposed is demonstrated through a simulation using Matlab SIMULINK.Keywords: optical encoding, fluorescence, multipoint sensing
Procedia PDF Downloads 71017355 UBCSAND Model Calibration for Generic Liquefaction Triggering Curves
Authors: Jui-Ching Chou
Abstract:
Numerical simulation is a popular method used to evaluate the effects of soil liquefaction on a structure or the effectiveness of a mitigation plan. Many constitutive models (UBCSAND model, PM4 model, SANISAND model, etc.) were presented to model the liquefaction phenomenon. In general, inputs of a constitutive model need to be calibrated against the soil cyclic resistance before being applied to the numerical simulation model. Then, simulation results can be compared with results from simplified liquefaction potential assessing methods. In this article, inputs of the UBCSAND model, a simple elastic-plastic stress-strain model, are calibrated against several popular generic liquefaction triggering curves of simplified liquefaction potential assessing methods via FLAC program. Calibrated inputs can provide engineers to perform a preliminary evaluation of an existing structure or a new design project.Keywords: calibration, liquefaction, numerical simulation, UBCSAND Model
Procedia PDF Downloads 17317354 Evolution of Bioactive Components of Prickly Pear Juice (Opuntia ficus indica) and Cocktails with Orange Juice
Authors: T. Hadj Sadok, R. Hattab Bey, K. Rebiha
Abstract:
The valuation of juice from prickly pear of Opuntia ficus indica inermis as cocktails appears an attractive alternative because of their nutritional intake and functional compound has anti-radical activity (polyphenols, vitamin C, carotenoids, Betalaines, fiber and minerals). The juice from the fruit pulp is characterized by a high pH 5.85 which makes it difficult for its conservation and preservation requires a thermal treatment at high temperatures (over 100 °C) harmful for bioactive constituents compared to juice orange more acidic and processed at temperatures < 100 °C. The valuation as fig cocktails-orange is particularly interesting thanks to the contribution of polyph2nols, fiber, vitamin C, reducing sugar (sweetener) and betalaine, minerals while allowing lower temperature processing to decrease pH. The heat treatment of these juices: orange alone or in cocktails showed that the antioxidant power decreases by 12% in presence of 30% of juice treated by the heat and of 28 and 32% in the presence of 10 and 20% juice which shows the effect prickly pear juice of Opuntia. During storage for 4 weeks the loss of vitamin C is 40 and 38% in the presence of 10 and 20% juice and 33% in the presence of 30% pear juice parallel, a treatment of stabilization by heat affects relatively the polyphenols rate which decreases from 10.5% to 30% in the cocktail, and 6.11-6.71pour cocktails at 10% and 20%. Vitamin C decreases to 12 to 24 % after a heat treatment at 85°C for 30 minutes respectively for the orange juice and pear juice; this reduction is higher when the juice is in the form of cocktails composed of 10 to 30 % pear juice.Keywords: prickly pear juice, orange cocktail, polyphenol, Opuntia ficus indica, vitamin
Procedia PDF Downloads 37917353 A Crop Growth Subroutine for Watershed Resources Management (WRM) Model 1: Description
Authors: Kingsley Nnaemeka Ogbu, Constantine Mbajiorgu
Abstract:
Vegetation has a marked effect on runoff and has become an important component in hydrologic model. The watershed Resources Management (WRM) model, a process-based, continuous, distributed parameter simulation model developed for hydrologic and soil erosion studies at the watershed scale lack a crop growth component. As such, this model assumes a constant parameter values for vegetation and hydraulic parameters throughout the duration of hydrologic simulation. Our approach is to develop a crop growth algorithm based on the original plant growth model used in the Environmental Policy Integrated Climate Model (EPIC) model. This paper describes the development of a single crop growth model which has the capability of simulating all crops using unique parameter values for each crop. Simulated crop growth processes will reflect the vegetative seasonality of the natural watershed system. An existing model was employed for evaluating vegetative resistance by hydraulic and vegetative parameters incorporated into the WRM model. The improved WRM model will have the ability to evaluate the seasonal variation of the vegetative roughness coefficient with depth of flow and further enhance the hydrologic model’s capability for accurate hydrologic studies.Keywords: runoff, roughness coefficient, PAR, WRM model
Procedia PDF Downloads 37817352 Stock Market Prediction by Regression Model with Social Moods
Authors: Masahiro Ohmura, Koh Kakusho, Takeshi Okadome
Abstract:
This paper presents a regression model with autocorrelated errors in which the inputs are social moods obtained by analyzing the adjectives in Twitter posts using a document topic model. The regression model predicts Dow Jones Industrial Average (DJIA) more precisely than autoregressive moving-average models.Keywords: stock market prediction, social moods, regression model, DJIA
Procedia PDF Downloads 54817351 Flexible Integration of Airbag Weakening Lines in Interior Components: Airbag Weakening with Jenoptik Laser Technology
Authors: Markus Remm, Sebastian Dienert
Abstract:
Vehicle interiors are not only changing in terms of design and functionality but also due to new driving situations in which, for example, autonomous operating modes are possible. Flexible seating positions are changing the requirements for passive safety system behavior and location in the interior of a vehicle. With fully autonomous driving, the driver can, for example, leave the position behind the steering wheel and take a seated position facing backward. Since autonomous and non-autonomous vehicles will share the same road network for the foreseeable future, accidents cannot be avoided, which makes the use of passive safety systems indispensable. With JENOPTIK-VOTAN® A technology, the trend towards flexible predetermined airbag weakening lines is enabled. With the help of laser beams, the predetermined weakening lines are introduced from the backside of the components so that they are absolutely invisible. This machining process is sensor-controlled and guarantees that a small residual wall thickness remains for the best quality and reliability for airbag weakening lines. Due to the wide processing range of the laser, the processing of almost all materials is possible. A CO₂ laser is used for many plastics, natural fiber materials, foams, foils and material composites. A femtosecond laser is used for natural materials and textiles that are very heat-sensitive. This laser type has extremely short laser pulses with very high energy densities. Supported by a high-precision and fast movement of the laser beam by a laser scanner system, the so-called cold ablation is enabled to predetermine weakening lines layer by layer until the desired residual wall thickness remains. In that way, for example, genuine leather can be processed in a material-friendly and process-reliable manner without design implications to the components A-Side. Passive safety in the vehicle is increased through the interaction of modern airbag technology and high-precision laser airbag weakening. The JENOPTIK-VOTAN® A product family has been representing this for more than 25 years and is pointing the way to the future with new and innovative technologies.Keywords: design freedom, interior material processing, laser technology, passive safety
Procedia PDF Downloads 12117350 Enhancing Fracture Toughness of CF/PAEK Laminates for High-Velocity Impact Applications: An Experimental Investigation
Authors: Johannes Keil, Eric Mischorr, Veit Würfel, Jan Condé-Wolter, Alexander Liebsch, Maik Gude
Abstract:
In the aviation sector wastewater pipes are subjected to many different mechanical and medial loads. Worst-case scenarios include high-velocity impacts resulting from the introduction of foreign objects into the system. The industry is seeking to reduce the weight of these pipes, which are currently manufactured from titanium. A promising alternative is the use of fiber-reinforced polymers (FRP), specifically carbon fiber (CF) reinforced polyaryletherketone (PAEK) laminates. This study employs an experimental methodology to investigate the impact resistance of CF/PAEK laminates, with a particular focus on three configurations: crimp, non-crimp, and interleaved matrix rich films in cross-ply laminates. High-velocity impacts were performed using a gas gun resulting in three-dimensional damage patterns. Afterwards the damage behavior was qualitatively and quantitatively analyzed using ultrasonic scans and computed tomography (CT). Samples with an interleaved matrix-rich film led to a reduction of the damage area by around 40% compared to the non-interleaved, non-crimp samples, while the crimp architecture resulted in a reduction of more than 60%. Therefore, these findings contribute to understanding the influence of laminate architecture on impact resistance, paving the way for more efficient materials in aviation applications.Keywords: fracture toughness, high-velocity-impact, textile architecture, thermoplastic composites
Procedia PDF Downloads 1917349 Structural Equation Modeling Semiparametric Truncated Spline Using Simulation Data
Authors: Adji Achmad Rinaldo Fernandes
Abstract:
SEM analysis is a complex multivariate analysis because it involves a number of exogenous and endogenous variables that are interconnected to form a model. The measurement model is divided into two, namely, the reflective model (reflecting) and the formative model (forming). Before carrying out further tests on SEM, there are assumptions that must be met, namely the linearity assumption, to determine the form of the relationship. There are three modeling approaches to path analysis, including parametric, nonparametric and semiparametric approaches. The aim of this research is to develop semiparametric SEM and obtain the best model. The data used in the research is secondary data as the basis for the process of obtaining simulation data. Simulation data was generated with various sample sizes of 100, 300, and 500. In the semiparametric SEM analysis, the form of the relationship studied was determined, namely linear and quadratic and determined one and two knot points with various levels of error variance (EV=0.5; 1; 5). There are three levels of closeness of relationship for the analysis process in the measurement model consisting of low (0.1-0.3), medium (0.4-0.6) and high (0.7-0.9) levels of closeness. The best model lies in the form of the relationship X1Y1 linear, and. In the measurement model, a characteristic of the reflective model is obtained, namely that the higher the closeness of the relationship, the better the model obtained. The originality of this research is the development of semiparametric SEM, which has not been widely studied by researchers.Keywords: semiparametric SEM, measurement model, structural model, reflective model, formative model
Procedia PDF Downloads 4017348 Dynamics of Mach Zehnder Modulator in Open and Closed Loop Bias Condition
Authors: Ramonika Sengupta, Stuti Kachhwaha, Asha Adhiya, K. Satya Raja Sekhar, Rajwinder Kaur
Abstract:
Numerous efforts have been done in the past decade to develop the methods of secure communication that are free from interception and eavesdropping. In fiber optic communication, chaotic optical carrier signals are used for data encryption in secure data transmission. Mach-Zehnder Modulators (MZM) are the key components for generating the chaotic signals to be used as optical carriers. This paper presents the dynamics of a lithium niobate MZM modulator under various biasing conditions. The chaotic fluctuations of the intensity of a laser diode have been generated using the electro-optic MZM modulator operating in a highly nonlinear regime. The modulator is driven in closed loop by its own output at an earlier time. When used as an electro-optic oscillator employing delayed feedback, the MZM displays a wide range of output waveforms of varying complexity. The dynamical behavior of the system ranges from periodic to nonlinear oscillations. The nonlinearity displayed by the system is reproducible and is easily controllable. In this paper, we demonstrate a wide variety of optical signals generated by MZM using easily controllable device parameters in both open and close loop bias conditions.Keywords: chaotic carrier, fiber optic communication, Mach-Zehnder modulator, secure data transmission
Procedia PDF Downloads 27217347 Dose Profiler: A Tracking Device for Online Range Monitoring in Particle Therapy
Authors: G. Battistoni, F. Collamati, E. De Lucia, R. Faccini, C. Mancini-Terracciano, M. Marafini, I. Mattei, S. Muraro, V. Patera, A. Sarti, A. Sciubba, E. Solfaroli Camillocci, M. Toppi, G. Traini, S. M. Valle, C. Voena
Abstract:
Accelerated charged particles, mainly protons and carbon ions, are presently used in Particle Therapy (PT) to treat solid tumors. The precision of PT exploiting the charged particle high localized dose deposition in tissues and biological effectiveness in killing cancer cells demands for an online dose monitoring technique, crucial to improve the quality assurance of treatments: possible patient mis-positionings and biological changes with respect to the CT scan could negatively affect the therapy outcome. In PT the beam range confined in the irradiated target can be monitored thanks to the secondary radiation produced by the interaction of the projectiles with the patient tissue. The Dose Profiler (DP) is a novel device designed to track charged secondary particles and reconstruct their longitudinal emission distribution, correlated to the Bragg peak position. The feasibility of this approach has been demonstrated by dedicated experimental measurements. The DP has been developed in the framework of the INSIDE project, MIUR, INFN and Centro Fermi, Museo Storico della Fisica e Centro Studi e Ricerche 'E. Fermi', Roma, Italy and will be tested at the Proton Therapy center of Trento (Italy) within the end of 2017. The DP combines a tracker, made of six layers of two-view scintillating fibers with square cross section (0.5 x 0.5 mm2) with two layers of two-view scintillating bars (section 12.0 x 0.6 mm2). The electronic readout is performed by silicon photomultipliers. The sensitive area of the tracking planes is 20 x 20 cm2. To optimize the detector layout, a Monte Carlo (MC) simulation based on the FLUKA code has been developed. The complete DP geometry and the track reconstruction code have been fully implemented in the MC. In this contribution, the DP hardware will be described. The expected detector performance computed using a dedicated simulation of a 220 MeV/u carbon ion beam impinging on a PMMA target will be presented, and the result will be discussed in the standard clinical application framework. A possible procedure for real-time beam range monitoring is proposed, following the expectations in actual clinical operation.Keywords: online range monitoring, particle therapy, quality assurance, tracking detector
Procedia PDF Downloads 24017346 Of an 80 Gbps Passive Optical Network Using Time and Wavelength Division Multiplexing
Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Faizan Khan, Xiaodong Yang
Abstract:
Internet Service Providers are driving endless demands for higher bandwidth and data throughput as new services and applications require higher bandwidth. Users want immediate and accurate data delivery. This article focuses on converting old conventional networks into passive optical networks based on time division and wavelength division multiplexing. The main focus of this research is to use a hybrid of time-division multiplexing and wavelength-division multiplexing to improve network efficiency and performance. In this paper, we design an 80 Gbps Passive Optical Network (PON), which meets the need of the Next Generation PON Stage 2 (NGPON2) proposed in this paper. The hybrid of the Time and Wavelength division multiplexing (TWDM) is said to be the best solution for the implementation of NGPON2, according to Full-Service Access Network (FSAN). To co-exist with or replace the current PON technologies, many wavelengths of the TWDM can be implemented simultaneously. By utilizing 8 pairs of wavelengths that are multiplexed and then transmitted over optical fiber for 40 Kms and on the receiving side, they are distributed among 256 users, which shows that the solution is reliable for implementation with an acceptable data rate. From the results, it can be concluded that the overall performance, Quality Factor, and bandwidth of the network are increased, and the Bit Error rate is minimized by the integration of this approach.Keywords: bit error rate, fiber to the home, passive optical network, time and wavelength division multiplexing
Procedia PDF Downloads 7017345 In-Process Integration of Resistance-Based, Fiber Sensors during the Braiding Process for Strain Monitoring of Carbon Fiber Reinforced Composite Materials
Authors: Oscar Bareiro, Johannes Sackmann, Thomas Gries
Abstract:
Carbon fiber reinforced polymer composites (CFRP) are used in a wide variety of applications due to its advantageous properties and design versatility. The braiding process enables the manufacture of components with good toughness and fatigue strength. However, failure mechanisms of CFRPs are complex and still present challenges associated with their maintenance and repair. Within the broad scope of structural health monitoring (SHM), strain monitoring can be applied to composite materials to improve reliability, reduce maintenance costs and safely exhaust service life. Traditional SHM systems employ e.g. fiber optics, piezoelectrics as sensors, which are often expensive, time consuming and complicated to implement. A cost-efficient alternative can be the exploitation of the conductive properties of fiber-based sensors such as carbon, copper, or constantan - a copper-nickel alloy – that can be utilized as sensors within composite structures to achieve strain monitoring. This allows the structure to provide feedback via electrical signals to a user which are essential for evaluating the structural condition of the structure. This work presents a strategy for the in-process integration of resistance-based sensors (Elektrisola Feindraht AG, CuNi23Mn, Ø = 0.05 mm) into textile preforms during its manufacture via the braiding process (Herzog RF-64/120) to achieve strain monitoring of braided composites. For this, flat samples of instrumented composite laminates of carbon fibers (Toho Tenax HTS40 F13 24K, 1600 tex) and epoxy resin (Epikote RIMR 426) were manufactured via vacuum-assisted resin infusion. These flat samples were later cut out into test specimens and the integrated sensors were wired to the measurement equipment (National Instruments, VB-8012) for data acquisition during the execution of mechanical tests. Quasi-static tests were performed (tensile, 3-point bending tests) following standard protocols (DIN EN ISO 527-1 & 4, DIN EN ISO 14132); additionally, dynamic tensile tests were executed. These tests were executed to assess the sensor response under different loading conditions and to evaluate the influence of the sensor presence on the mechanical properties of the material. Several orientations of the sensor with regards to the applied loading and sensor placements inside the laminate were tested. Strain measurements from the integrated sensors were made by programming a data acquisition code (LabView) written for the measurement equipment. Strain measurements from the integrated sensors were then correlated to the strain/stress state for the tested samples. From the assessment of the sensor integration approach it can be concluded that it allows for a seamless sensor integration into the textile preform. No damage to the sensor or negative effect on its electrical properties was detected during inspection after integration. From the assessment of the mechanical tests of instrumented samples it can be concluded that the presence of the sensors does not alter significantly the mechanical properties of the material. It was found that there is a good correlation between resistance measurements from the integrated sensors and the applied strain. It can be concluded that the correlation is of sufficient accuracy to determinate the strain state of a composite laminate based solely on the resistance measurements from the integrated sensors.Keywords: braiding process, in-process sensor integration, instrumented composite material, resistance-based sensor, strain monitoring
Procedia PDF Downloads 10617344 High Frequency Nanomechanical Oscillators Based on Synthetic Nanowires
Authors: Minjin Kim, Jihwan Kim, Bongsoo Kim, Junho Suh
Abstract:
We demonstrate nanomechanical resonators constructed with synthetic nanowires (NWs) and study their electro-mechanical properties at millikelvin temperatures. Nanomechanical resonators are fabricated using single-crystalline Au NWs and InAs NWs. The mechanical resonance signals are acquired by either magnetomotive or capacitive detection methods. The Au NWs are synthesized by chemical vapor transport method at 1100 °C, and they exhibit clean surface and single-crystallinity with little defects. Due to pristine surface quality, these Au NW mechanical resonators could provide an ideal model system for studying surface-related effects on the mechanical systems. The InAs NWs are synthesized by molecular beam epitaxy or metal organic chemical vapor deposition method. The InAs NWs show electronic conductance modulation resembling Coulomb blockade, which also manifests in the mechanical resonance signals in the form of damping and resonance frequency shift. Our result provides an evidence of strong electro-mechanical coupling in synthetic NW nanomechanical resonators.Keywords: Au nanowire, InAs nanowire, nanomechanical resonator, synthetic nanowires
Procedia PDF Downloads 21017343 Metabolic Predictive Model for PMV Control Based on Deep Learning
Authors: Eunji Choi, Borang Park, Youngjae Choi, Jinwoo Moon
Abstract:
In this study, a predictive model for estimating the metabolism (MET) of human body was developed for the optimal control of indoor thermal environment. Human body images for indoor activities and human body joint coordinated values were collected as data sets, which are used in predictive model. A deep learning algorithm was used in an initial model, and its number of hidden layers and hidden neurons were optimized. Lastly, the model prediction performance was analyzed after the model being trained through collected data. In conclusion, the possibility of MET prediction was confirmed, and the direction of the future study was proposed as developing various data and the predictive model.Keywords: deep learning, indoor quality, metabolism, predictive model
Procedia PDF Downloads 25717342 Overview Studies of High Strength Self-Consolidating Concrete
Authors: Raya Harkouss, Bilal Hamad
Abstract:
Self-Consolidating Concrete (SCC) is considered as a relatively new technology created as an effective solution to problems associated with low quality consolidation. A SCC mix is defined as successful if it flows freely and cohesively without the intervention of mechanical compaction. The construction industry is showing high tendency to use SCC in many contemporary projects to benefit from the various advantages offered by this technology. At this point, a main question is raised regarding the effect of enhanced fluidity of SCC on the structural behavior of high strength self-consolidating reinforced concrete. A three phase research program was conducted at the American University of Beirut (AUB) to address this concern. The first two phases consisted of comparative studies conducted on concrete and mortar mixes prepared with second generation Sulphonated Naphtalene-based superplasticizer (SNF) or third generation Polycarboxylate Ethers-based superplasticizer (PCE). The third phase of the research program investigates and compares the structural performance of high strength reinforced concrete beam specimens prepared with two different generations of superplasticizers that formed the unique variable between the concrete mixes. The beams were designed to test and exhibit flexure, shear, or bond splitting failure. The outcomes of the experimental work revealed comparable resistance of beam specimens cast using self-compacting concrete and conventional vibrated concrete. The dissimilarities in the experimental values between the SCC and the control VC beams were minimal, leading to a conclusion, that the high consistency of SCC has little effect on the flexural, shear and bond strengths of concrete members.Keywords: self-consolidating concrete (SCC), high-strength concrete, concrete admixtures, mechanical properties of hardened SCC, structural behavior of reinforced concrete beams
Procedia PDF Downloads 25517341 Model Averaging in a Multiplicative Heteroscedastic Model
Authors: Alan Wan
Abstract:
In recent years, the body of literature on frequentist model averaging in statistics has grown significantly. Most of this work focuses on models with different mean structures but leaves out the variance consideration. In this paper, we consider a regression model with multiplicative heteroscedasticity and develop a model averaging method that combines maximum likelihood estimators of unknown parameters in both the mean and variance functions of the model. Our weight choice criterion is based on a minimisation of a plug-in estimator of the model average estimator's squared prediction risk. We prove that the new estimator possesses an asymptotic optimality property. Our investigation of finite-sample performance by simulations demonstrates that the new estimator frequently exhibits very favourable properties compared to some existing heteroscedasticity-robust model average estimators. The model averaging method hedges against the selection of very bad models and serves as a remedy to variance function misspecification, which often discourages practitioners from modeling heteroscedasticity altogether. The proposed model average estimator is applied to the analysis of two real data sets.Keywords: heteroscedasticity-robust, model averaging, multiplicative heteroscedasticity, plug-in, squared prediction risk
Procedia PDF Downloads 38417340 Reliability Prediction of Tires Using Linear Mixed-Effects Model
Authors: Myung Hwan Na, Ho- Chun Song, EunHee Hong
Abstract:
We widely use normal linear mixed-effects model to analysis data in repeated measurement. In case of detecting heteroscedasticity and the non-normality of the population distribution at the same time, normal linear mixed-effects model can give improper result of analysis. To achieve more robust estimation, we use heavy tailed linear mixed-effects model which gives more exact and reliable analysis conclusion than standard normal linear mixed-effects model.Keywords: reliability, tires, field data, linear mixed-effects model
Procedia PDF Downloads 56317339 Parametric Study for Optimal Design of Hybrid Bridge Joint
Authors: Bongsik Park, Jae Hyun Park, Jae-Yeol Cho
Abstract:
Mixed structure, which is a kind of hybrid system, is incorporating steel beam and prestressed concrete beam. Hybrid bridge adopting mixed structure have some merits. Main span length can be made longer by using steel as main span material. In case of cable-stayed bridge having asymmetric span length, negative reaction at side span can be restrained without extra restraining devices by using weight difference between main span material and side span material. However angle of refraction might happen because of rigidity difference between materials and stress concentration also might happen because of abnormal loading transmission at joint in the hybrid bridge. Therefore the joint might be a weak point of the structural system and it needs to pay attention to design of the joint. However, design codes and standards about the joint in the hybrid-bridge have not been established so the joint designs in most of construction cases have been very conservative or followed previous design without extra verification. In this study parametric study using finite element analysis for optimal design of hybrid bridge joint is conducted. Before parametric study, finite element analysis was conducted based on previous experimental data and it is verified that analysis result approximated experimental data. Based on the finite element analysis results, parametric study was conducted. The parameters were selected as those have influences on joint behavior. Based on the parametric study results, optimal design of hybrid bridge joint has been determined.Keywords: parametric study, optimal design, hybrid bridge, finite element analysis
Procedia PDF Downloads 42517338 Design of Bacterial Pathogens Identification System Based on Scattering of Laser Beam Light and Classification of Binned Plots
Authors: Mubashir Hussain, Mu Lv, Xiaohan Dong, Zhiyang Li, Bin Liu, Nongyue He
Abstract:
Detection and classification of microbes have a vast range of applications in biomedical engineering especially in detection, characterization, and quantification of bacterial contaminants. For identification of pathogens, different techniques are emerging in the field of biomedical engineering. Latest technology uses light scattering, capable of identifying different pathogens without any need for biochemical processing. Bacterial Pathogens Identification System (BPIS) which uses a laser beam, passes through the sample and light scatters off. An assembly of photodetectors surrounded by the sample at different angles to detect the scattering of light. The algorithm of the system consists of two parts: (a) Library files, and (b) Comparator. Library files contain data of known species of bacterial microbes in the form of binned plots, while comparator compares data of unknown sample with library files. Using collected data of unknown bacterial species, highest voltage values stored in the form of peaks and arranged in 3D histograms to find the frequency of occurrence. Resulting data compared with library files of known bacterial species. If sample data matching with any library file of known bacterial species, sample identified as a matched microbe. An experiment performed to identify three different bacteria particles: Enterococcus faecalis, Pseudomonas aeruginosa, and Escherichia coli. By applying algorithm using library files of given samples, results were compromising. This system is potentially applicable to several biomedical areas, especially those related to cell morphology.Keywords: microbial identification, laser scattering, peak identification, binned plots classification
Procedia PDF Downloads 15017337 A Study of Evolutional Control Systems
Authors: Ti-Jun Xiao, Zhe Xu
Abstract:
Controllability is one of the fundamental issues in control systems. In this paper, we study the controllability of second order evolutional control systems in Hilbert spaces with memory and boundary controls, which model dynamic behaviors of some viscoelastic materials. Transferring the control problem into a moment problem and showing the Riesz property of a family of functions related to Cauchy problems for some integrodifferential equations, we obtain a general boundary controllability theorem for these second order evolutional control systems. This controllability theorem is applicable to various concrete 1D viscoelastic systems and recovers some previous related results. It is worth noting that Riesz sequences can be used for numerical computations of the control functions and the identification of new Riesz sequence is of independent interest for the basis-function theory. Moreover, using the Riesz sequences, we obtain the existence and uniqueness of (weak) solutions to these second order evolutional control systems in Hilbert spaces. Finally, we derive the exact boundary controllability of a viscoelastic beam equation, as an application of our abstract theorem.Keywords: evolutional control system, controllability, boundary control, existence and uniqueness
Procedia PDF Downloads 22217336 Experimental Work to Estimate the Strength of Ferrocement Slabs Incorporating Silica Fume and Steel Fibre
Authors: Mohammed Mashrei
Abstract:
Ferrocement is a type of thin reinforced concrete made of cement-sand matrix with closely spaced relatively small diameter wire meshes, with or without steel bars of small diameter called skeletal steel. This work concerns on the behavior of square ferrocement slabs of dimensions (500) mm x (500) mm and 30 mm subjected to a central load. This study includes testing thirteen ferrocement slabs. The main variables considered in the experimental work are the number of wire mesh layers, percentage of silica fume and the presence of steel fiber. The effects of these variables on the behavior and load carrying capacity of tested slabs under central load were investigated. From the experimental results, it is found that by increasing the percentage of silica fume from (0 to 1.5, 3, 4.5 and 6) of weight of cement the ultimate loads are affected. Also From this study, it is observed that the load carrying capacity increases with the presence of steel fiber reinforcement, the ductility is high in the case of steel fibers. The increasing wire mesh layer from six to ten layers increased the load capacity by 76%. Also, a reduction in width of crack with increasing in number of cracks in the samples that content on steel fibers comparing with samples without steel fibers was observed from the results.Keywords: ferrocement, fibre, silica fume, slab, strength
Procedia PDF Downloads 23517335 Towards a Measurement-Based E-Government Portals Maturity Model
Authors: Abdoullah Fath-Allah, Laila Cheikhi, Rafa E. Al-Qutaish, Ali Idri
Abstract:
The e-government emerging concept transforms the way in which the citizens are dealing with their governments. Thus, the citizens can execute the intended services online anytime and anywhere. This results in great benefits for both the governments (reduces the number of officers) and the citizens (more flexibility and time saving). Therefore, building a maturity model to assess the e-government portals becomes desired to help in the improvement process of such portals. This paper aims at proposing an e-government maturity model based on the measurement of the best practices’ presence. The main benefit of such maturity model is to provide a way to rank an e-government portal based on the used best practices, and also giving a set of recommendations to go to the higher stage in the maturity model.Keywords: best practices, e-government portal, maturity model, quality model
Procedia PDF Downloads 33817334 Planktivorous Fish Schooling Responses to Current at Natural and Artificial Reefs
Authors: Matthew Holland, Jason Everett, Martin Cox, Iain Suthers
Abstract:
High spatial-resolution distribution of planktivorous reef fish can reveal behavioural adaptations to optimise the balance between feeding success and predator avoidance. We used a multi-beam echosounder to record bathymetry and the three-dimensional distribution of fish schools associated with natural and artificial reefs. We utilised generalised linear models to assess the distribution, orientation, and aggregation of fish schools relative to the structure, vertical relief, and currents. At artificial reefs, fish schooled more closely to the structure and demonstrated a preference for the windward side, particularly when exposed to strong currents. Similarly, at natural reefs fish demonstrated a preference for windward aspects of bathymetry, particularly when associated with high vertical relief. Our findings suggest that under conditions with stronger current velocity, fish can exercise their preference to remain close to structure for predator avoidance, while still receiving an adequate supply of zooplankton delivered by the current. Similarly, when current velocity is low, fish tend to disperse for better access to zooplankton. As artificial reefs are generally deployed with the goal of creating productivity rather than simply attracting fish from elsewhere, we advise that future artificial reefs be designed as semi-linear arrays perpendicular to the prevailing current, with multiple tall towers. This will facilitate the conversion of dispersed zooplankton into energy for higher trophic levels, enhancing reef productivity and fisheries.Keywords: artificial reef, current, forage fish, multi-beam, planktivorous fish, reef fish, schooling
Procedia PDF Downloads 15817333 Flutter Control Analysis of an Aircraft Wing Using Carbon Nanotubes Reinforced Polymer
Authors: Timothee Gidenne, Xia Pinqi
Abstract:
In this paper, an investigation of the use of carbon nanotubes (CNTs) reinforced polymer as an actuator for an active flutter suppression to counter the flutter phenomena is conducted. The goal of this analysis is to establish a link between the behavior of the control surface and the actuators to demonstrate the veracity of using such a suppression system for the aeronautical field. A preliminary binary flutter model using simplified unsteady aerodynamics is developed to study the behavior of the wing while reaching the flutter speed and when the control system suppresses the flutter phenomena. The Timoshenko beam theory for bilayer materials is used to match the response of the control surface with the CNTs reinforced polymer (CNRP) actuators. According to Timoshenko theory, results show a good and realistic response for such a purpose. Even if the results are still preliminary, they show evidence of the potential use of CNRP for control surface actuation for the small-scale and lightweight system.Keywords: actuators, aeroelastic, aeroservoelasticity, carbon nanotubes, flutter, flutter suppression
Procedia PDF Downloads 12817332 Earthquake Resistant Sustainable Steel Green Building
Authors: Arup Saha Chaudhuri
Abstract:
Structural steel is a very ductile material with high strength carrying capacity, thus it is very useful to make earthquake resistant buildings. It is a homogeneous material also. The member section and the structural system can be made very efficient for economical design. As the steel is recyclable and reused, it is a green material. The embodied energy for the efficiently designed steel structure is less than the RC structure. For sustainable green building steel is the best material nowadays. Moreover, pre-engineered and pre-fabricated faster construction methodologies help the development work to complete within the stipulated time. In this paper, the usefulness of Eccentric Bracing Frame (EBF) in steel structure over Moment Resisting Frame (MRF) and Concentric Bracing Frame (CBF) is shown. Stability of the steel structures against horizontal forces especially in seismic condition is efficiently possible by Eccentric bracing systems with economic connection details. The EBF is pin–ended, but the beam-column joints are designed for pin ended or for full connectivity. The EBF has several desirable features for seismic resistance. In comparison with CBF system, EBF system can be designed for appropriate stiffness and drift control. The link beam is supposed to yield in shear or flexure before initiation of yielding or buckling of the bracing member in tension or compression. The behavior of a 2-D steel frame is observed under seismic loading condition in the present paper. Ductility and brittleness of the frames are compared with respect to time period of vibration and dynamic base shear. It is observed that the EBF system is better than MRF system comparing the time period of vibration and base shear participation.Keywords: steel building, green and sustainable, earthquake resistant, EBF system
Procedia PDF Downloads 34917331 Characteristic of Taro (Colocasia esculenta), Seaweed (Gracilaria Sp.), and Fishes Bone Collagens Flour Based Analog Rice
Authors: Y. S. Darmanto, P. H. Riyadi, S. Susanti
Abstract:
Recently, approximately 9.1 million people of 237.56 million of Indonesian population suffer diabetes. Such condition was caused by high rice consumption of most Indonesian people. It has been known that rice contains low amylose, high calorie, and possesses hyperglycemic properties. Through this study, we tried to solve that problem by creating a super food in order to provide an alternative healthy and balanced diet. We formulated Taro and Seaweed flour based analog rice that fortified by various fishes bone collagens. Corms of Taro contain easily digestible starch and seaweed is rich in fiber, vitamin, and mineral. That mixture was fortified with collagen-containing unique amino acids such as glysine, lysine, alanine, arginine, proline, and hydroxyprolin. Subsequently, super analog rice was characterized about its nutritional composition such are proximate analyses, water, dietary fiber and amylose content. Furthermore, its morphological structure was analyzed by using scanning electron microscopy while the level of consumer preferences was performed by hedonic test. Results demonstrated that fortification by using various fishes bone collagen into analog rice were significantly different in nutritional composition, morphological structure as well as its preferences. Thus, this study was expected as new avenue in functional food discovery especially in the treatment and prevention of diabetic diseases.Keywords: analogue rice, taro, seaweed, collagen
Procedia PDF Downloads 26417330 Use of Shipping Containers as Office Buildings in Brazil: Thermal and Energy Performance for Different Constructive Options and Climate Zones
Authors: Lucas Caldas, Pablo Paulse, Karla Hora
Abstract:
Shipping containers are present in different Brazilian cities, firstly used for transportation purposes, but which become waste materials and an environmental burden in their end-of-life cycle. In the last decade, in Brazil, some buildings made partly or totally from shipping containers started to appear, most of them for commercial and office uses. Although the use of a reused container for buildings seems a sustainable solution, it is very important to measure the thermal and energy aspects when they are used as such. In this context, this study aims to evaluate the thermal and energy performance of an office building totally made from a 12-meter-long, High Cube 40’ shipping container in different Brazilian Bioclimatic Zones. Four different constructive solutions, mostly used in Brazil were chosen: (1) container without any covering; (2) with internally insulated drywall; (3) with external fiber cement boards; (4) with both drywall and fiber cement boards. For this, the DesignBuilder with EnergyPlus was used for the computational simulation in 8760 hours. The EnergyPlus Weather File (EPW) data of six Brazilian capital cities were considered: Curitiba, Sao Paulo, Brasilia, Campo Grande, Teresina and Rio de Janeiro. Air conditioning appliance (split) was adopted for the conditioned area and the cooling setpoint was fixed at 25°C. The coefficient of performance (CoP) of air conditioning equipment was set as 3.3. Three kinds of solar absorptances were verified: 0.3, 0.6 and 0.9 of exterior layer. The building in Teresina presented the highest level of energy consumption, while the one in Curitiba presented the lowest, with a wide range of differences in results. The constructive option of external fiber cement and drywall presented the best results, although the differences were not significant compared to the solution using just drywall. The choice of absorptance showed a great impact in energy consumption, mainly compared to the case of containers without any covering and for use in the hottest cities: Teresina, Rio de Janeiro, and Campo Grande. This study brings as the main contribution the discussion of constructive aspects for design guidelines for more energy-efficient container buildings, considering local climate differences, and helps the dissemination of this cleaner constructive practice in the Brazilian building sector.Keywords: bioclimatic zones, Brazil, shipping containers, thermal and energy performance
Procedia PDF Downloads 17417329 CFD Simulation of a Large Scale Unconfined Hydrogen Deflagration
Authors: I. C. Tolias, A. G. Venetsanos, N. Markatos
Abstract:
In the present work, CFD simulations of a large scale open deflagration experiment are performed. Stoichiometric hydrogen-air mixture occupies a 20 m hemisphere. Two combustion models are compared and are evaluated against the experiment. The Eddy Dissipation Model and a Multi-physics combustion model which is based on Yakhot’s equation for the turbulent flame speed. The values of models’ critical parameters are investigated. The effect of the turbulence model is also examined. k-ε model and LES approach were tested.Keywords: CFD, deflagration, hydrogen, combustion model
Procedia PDF Downloads 50217328 Experimental Investigation on the Anchor Behavior of Planar Clamping Anchor for Carbon Fiber-Reinforced Polymer Plate
Authors: Yongyu Duo, Xiaogang Liu, Qingrui Yue
Abstract:
The anchor plays a critical role in the utilization of the tensile strength of carbon fiber-reinforced polymer (CFRP) plate when it is applied for the prestressed retrofitted and cable structures. In this paper, the anchor behavior of planar clamping anchor (PCA) under different interface treatment forms and normal pressures was investigated by the uniaxial static tensile test. Two interface treatment forms were adopted, including pure friction and the coupling action of friction and bonding. The results indicated that the load-bearing capacity of PCA could be obviously improved by the coupling action of friction and bonding compared with the action of pure friction. Under the normal pressure of 11 MPa, 22 MPa, and 33 MPa, the load-bearing capacity of PCA was enhanced by 164.61%, 68.40%, and 52.78%, respectively, and the tensile strength of the CFRP plate was fully exploited when the normal pressure reached 44 MPa. In addition, the experimental coefficient of static friction between the galling CFRP plate and a sandblasted steel plate was in the range of 0.28-0.30, corresponding to various normal pressure. Moreover, the failure mode was determined by the interface treatment form and normal pressure. The research in this paper has important guiding significance to optimize the design of the mechanical clamping anchor, contributing to promoting the application of CFRP plate in reinforcement and cable structure.Keywords: PCA, CFRP plate, interface treatment form, normal pressure, friction, coupling action
Procedia PDF Downloads 8117327 A Framework for Consumer Selection on Travel Destinations
Authors: J. Rhodes, V. Cheng, P. Lok
Abstract:
The aim of this study is to develop a parsimonious model that explains the effect of different stimulus on a tourist’s intention to visit a new destination. The model consists of destination trust and interest as the mediating variables. The model was tested using two different types of stimulus; both studies empirically supported the proposed model. Furthermore, the first study revealed that advertising has a stronger effect than positive online reviews. The second study found that the peripheral route of the elaboration likelihood model has a stronger influence power than the central route in this context.Keywords: advertising, electronic word-of-mouth, elaboration likelihood model, intention to visit, trust
Procedia PDF Downloads 458